Canny Edge Detection

09gr820

March 23, 2009

1 Introduction

The purpose of edge detection in general is to significantly reduce the amount of data in an
image, while preserving the structural properties to be used for further image processing. Several
algorithms exists, and this worksheet focuses on a particular one developed by John F. Canny
(JFC) in 1986 [2]. Even though it is quite old, it has become one of the standard edge detection
methods and it is still used in research [3] [1].

The aim of JFC was to develop an algorithm that is optimal with regards to the following
criteria:

1. Detection: The probability of detecting real edge points should be maximized while the
probability of falsely detecting non-edge points should be minimized. This corresponds to
maximizing the signal-to-noise ratio.

2. Localization: The detected edges should be as close as possible to the real edges.

3. Number of responses: One real edge should not result in more than one detected edge
(one can argue that this is implicitly included in the first requirement).

With JFC’s mathematical formulation of these criteria, Canny’s Edge Detector is optimal for
a certain class of edges (known as step edges). A C++ implementation of the algorithm has
been written, and this will be further described in Section 3. The images used throughout this
worksheet are generated using this implementation.

1.1 Test Image

The image in Figure 1 is used throughout this worksheet to demonstrate how Canny edge de-
tection works. It depicts a partially assembled pump from Grundfos, and the edge detection is
a step in the process of estimating the pose (position and orientation) of the pump.

The image has been preprocessed as described in the worksheet “Ideas for Solution to the Pose
Estimation Problem”. The preprocessing includes:

e Determining ROI (Region of Interest) that includes only white background besides the
pump, and cropping the image to this region.

e Conversion to gray-scale to limit the computational requirements.

Figure 1: The image used as example of Canny edge detection.

e Histogram-stretching, so that the image uses the entire gray-scale. This step may not be

necessary, but it is included to counter-compensate for automatic light adjustment in the
used web camera.

2 The Canny Edge Detection Algorithm

The algorithm runs in 5 separate steps:

1.
2.

Smoothing: Blurring of the image to remove noise.

Finding gradients: The edges should be marked where the gradients of the image has
large magnitudes.

Non-maximum suppression: Only local maxima should be marked as edges.
Double thresholding: Potential edges are determined by thresholding.

Edge tracking by hysteresis: Final edges are determined by suppressing all edges that
are not connected to a very certain (strong) edge.

Each step is described in the following subsections.

2.1

Smoothing

It is inevitable that all images taken from a camera will contain some amount of noise. To
prevent that noise is mistaken for edges, noise must be reduced. Therefore the image is first
smoothed by applying a Gaussian filter. The kernel of a Gaussian filter with a standard deviation
of 0 = 1.4 is shown in Equation (1). The effect of smoothing the test image with this filter is

shown in Figure 2.

2 4 5 4 2
L [49 12 9 4

—— |5 12 15 12 5 (1)
591y 9 12 9 4
2 4 5 4 2

(a) Original (b) Smoothed

Figure 2: The original grayscale image is smoothed with a Gaussian filter to suppress noise.

2.2 Finding gradients

The Canny algorithm basically finds edges where the grayscale intensity of the image changes
the most. These areas are found by determining gradients of the image. Gradients at each pixel
in the smoothed image are determined by applying what is known as the Sobel-operator. First
step is to approximate the gradient in the x- and y-direction respectively by applying the kernels
shown in Equation (2).

-1 0 1
Kox=1| -2 0 2
-1 0 1
1 2 1
Key=| 0 0 0 (2)
-1 -2 -1

The gradient magnitudes (also known as the edge strengths) can then be determined as an
Euclidean distance measure by applying the law of Pythagoras as shown in Equation (3). It
is sometimes simplified by applying Manhattan distance measure as shown in Equation (4) to
reduce the computational complexity. The Euclidean distance measure has been applied to the
test image. The computed edge strengths are compared to the smoothed image in Figure 3.

Gl = /GZ+ G} 3)

|G| = |G| + |Gyl (4)

where:
Gx and Gy are the gradients in the x- and y-directions respectively.

It is obvious from Figure 3, that an image of the gradient magnitudes often indicate the edges
quite clearly. However, the edges are typically broad and thus do not indicate exactly where
the edges are. To make it possible to determine this (see Section 2.3), the direction of the edges
must be determined and stored as shown in Equation (5).

6 = arctan (lgyD (5)

3

a) Smoothed b) Gradient magnitudes
(a) g

Figure 3: The gradient magnitudes in the smoothed image shown in 3b as well as their directions are
determined by applying e.g. the Sobel-operator.

2.3 Non-maximum suppression

The purpose of this step is to convert the “blurred” edges in the image of the gradient magnitudes
to “sharp” edges. Basically this is done by preserving all local maxima in the gradient image,
and deleting everything else. The algorithm is for each pixel in the gradient image:

1. Round the gradient direction 6 to nearest 45°, corresponding to the use of an 8-connected
neighbourhood.

2. Compare the edge strength of the current pixel with the edge strength of the pixel in the
positive and negative gradient direction. L.e. if the gradient direction is north (theta =
90°), compare with the pixels to the north and south.

3. If the edge strength of the current pixel is largest; preserve the value of the edge strength.
If not, suppress (i.e. remove) the value.

A simple example of non-maximum suppression is shown in Figure 4. Almost all pixels have
gradient directions pointing north. They are therefore compared with the pixels above and
below. The pixels that turn out to be maximal in this comparison are marked with white
borders. All other pixels will be suppressed. Figure 5 shows the effect on the test image.

s ‘A %)
4 5 7* 6* 7*
A A

Figure 4: Illustration of non-mazimum suppression. The edge strengths are indicated both as colors and
numbers, while the gradient directions are shown as arrows. The resulting edge pixels are marked with
white borders.

(a) Gradient values (b) Edges after non-maximum sup-
pression

Figure 5: Non-maximum suppression. FEdge-pixels are only preserved where the gradient has local
maxima.

2.4 Double thresholding

The edge-pixels remaining after the non-maximum suppression step are (still) marked with their
strength pixel-by-pixel. Many of these will probably be true edges in the image, but some may
be caused by noise or color variations for instance due to rough surfaces. The simplest way to
discern between these would be to use a threshold, so that only edges stronger that a certain
value would be preserved. The Canny edge detection algorithm uses double thresholding. Edge
pixels stronger than the high threshold are marked as strong; edge pixels weaker than the low
threshold are suppressed and edge pixels between the two thresholds are marked as weak. The
effect on the test image with thresholds of 20 and 80 is shown in Figure 6.

(a) Edges after non-maximum sup- (b) Double thresholding
pression

Figure 6: Thresholding of edges. In the second image strong edges are white, while weak edges are grey.
FEdges with a strength below both thresholds are suppressed.

2.5 Edge tracking by hysteresis

Strong edges are interpreted as “certain edges”, and can immediately be included in the final
edge image. Weak edges are included if and only if they are connected to strong edges. The

logic is of course that noise and other small variations are unlikely to result in a strong edge
(with proper adjustment of the threshold levels). Thus strong edges will (almost) only be due to
true edges in the original image. The weak edges can either be due to true edges or noise/color
variations. The latter type will probably be distributed independently of edges on the entire
image, and thus only a small amount will be located adjacent to strong edges. Weak edges due
to true edges are much more likely to be connected directly to strong edges.

Edge tracking can be implemented by BLOB-analysis (Binary Large OBject). The edge pixels
are divided into connected BLOB’s using 8-connected neighbourhood. BLOB’s containing at
least one strong edge pixel are then preserved, while other BLOB’s are suppressed. The effect
of edge tracking on the test image is shown in Figure 7.

(a) Double thresholding (b) Edge tracking by hysteresis (c) Final output

Figure 7: Edge tracking and final output. The middle image shows strong edges in white, weak edges
connected to strong edges in blue, and other weak edges in red.

3 Implementation of Canny Edge Detection

As noted in Section 1, all images in this worksheet (except the original) are produced by our
implementation. A few things should be noted with regards to this:

1. The (source) image and the thresholds can be chosen arbitrarily.

2. Only a smoothing filter with a standard deviation of o = 1.4 is supported (the one shown
in Equation 1).

3. The implementation uses the “correct” Euclidean measure for the edge strengths, described
in Section 2.2.

4. The different filters cannot be applied to edge pixels. This causes the output image to be
8 pixels smaller in each direction.

The last step in the algorithm known as edge tracking can be implemented as either iterative
or recursive BLOB analysis [4]. A recursive implementation can use the grass-fire algorithm.
However, our implementation uses the iterative approach. First all weak edges are scanned
for neighbour edges and joined into groups. At the same time it is marked which groups are
adjacent. Then all of these markings are examined to determine which groups of weak edges are

connected to strong edges (directly or indirectly). All weak edges that are connected to strong
edges are marked as strong edges themselves. The rest of the weak edges are suppressed. This
can be interpreted as BLOB analysis where only BLOB’s containing strong edges are preserved
(and considered as one BLOB).

Figure 8 shows the complete edge detection process on the test image including all intermediate
results.

(a) Original (b) Smoothed (c) Gradient magnitudes (d) Edges after non-
maximum suppression

(e) Double thresholding (f) Edge tracking by hys- (g) Final output
teresis

Figure 8: All steps of the edge detection.

References

[1] Sergei Azernikov. Sweeping solids on manifolds. In Symposium on Solid and Physical Mod-
eling, pages 249-255, 2008.

[2] John Canny. A computational approach to edge detection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, PAMI-8(6):679-698, Nov. 1986.

[3] F. Mai, Y. Hung, H. Zhong, and W. Sze. A hierarchical approach for fast and robust ellipse
extraction. Pattern Recognition, 41(8):2512-2524, August 2008.

[4] Thomas B. Moeslund. Image and Video Processing. August 2008.

	Introduction
	Test Image

	The Canny Edge Detection Algorithm
	Smoothing
	Finding gradients
	Non-maximum suppression
	Double thresholding
	Edge tracking by hysteresis

	Implementation of Canny Edge Detection

