COL783: Digital Image Analysis

Assignment 2 (Part a): Face Expression Transfer Deadline: to be declared along with Part (b)

Introduction

In this part of the assignment, we propose to perform face expression transfer from one person to another. Modern-day deep learning algorithms treat this as an image-to-image translation task and propose generative models such as VAEs, GANs, etc. to achieve the same. In this assignment, we take a step back and pose the face expression transfer as a problem of image warping.

Problem statement:

Imagine you have two images I_{1} and I_{2}, one of person P_{1} and the other of person P_{2}, both displaying neutral expressions. Now, consider a third image, I_{3}, where person P_{1} shows an emotion through their facial expression. The challenge is to generate a new image, I_{4}, where person P_{2} exhibits the same emotion and expression as seen in I_{3}, essentially transferring the facial expression from P_{1} to P_{2}.

Algorithm

We pose facial expression transfer as a problem of image warping. The proposed algorithm is summarized in Figure 1. We find the Warp matrix $\left(H_{1}\right)$ between I_{1} and I_{2}. We now warp images I_{1} and I_{3} using H_{1} to obtain I_{1}^{\prime} and I_{3}^{\prime} respectively. Thus, the positions of the facial structures of $I_{1}^{\prime}, I_{3}^{\prime}$, and I_{2} are now the same. Next, we perform image warping $\left(H_{2}\right)$ between I_{1}^{\prime} and I_{3}^{\prime}. H_{2} gives us the information about the list of changes to be done to the face I_{1}^{\prime} to make it look like I_{3}^{\prime}. Therefore, we now warp image I_{2} using H_{2}. The resulting image I_{4} is the expression transferred image.

Task 1: Warp matrix based expression transfer for one traingle

1. Use your mobile camera and capture at least 5 sets of $\left[I_{1}, I_{2}\right.$ and $\left.I_{3}\right]$. Make sure all the images in one set have the same background. If possible, set the background to a monochromatic colour. For each of the sets, do the steps 2-6

Figure 1: Proposed algorithm for facial expression transfer
2. choose 3 anchor points on each of the images, I_{1}, I_{2} and I_{3}. These are the points that you will be using to perform image warping. Choose them carefully. Ensure that point k of I_{1} should semantically correspond to the same point in I_{2} and I_{3}. i.e. if point 1 is at the end of the right eye in I_{1}, it should be at the end of the right eye in I_{2} and I_{3} also.
3. We observe that these three points on each image form a triangle. Perform triangle-totriangle mapping.
4. Find the warp matrix $\left(H_{1}\right)$ between the corresponding triangles of I_{1} and I_{2} and use it to warp $I_{1} . I_{1}^{\prime}$ is obtained after the triangle is warped. Use the same warp matrix H_{1} to warp image I_{3}. You will obtain the image I_{3}^{\prime}
5. Now compute the warp matrix $\left(H_{2}\right)$ between the triangles of I_{1}^{\prime} and I_{3}^{\prime}. Use this information to warp the corresponding triangle of I_{2} and obtain I_{4}
6. Note that in I_{4}, only one triangle is warped.

Task 2: Barycentric coordinate-based expression transfer for one triangle

1. Use same 5 sets of $\left[I_{1}, I_{2}\right.$ and $\left.I_{3}\right]$ captured in Task 1 . Use the same anchor points as chosen there.
2. Use the Barycentric coordinate system and map every pixel inside the triangle of I_{1} such that the corners of the triangle chosen in I_{1} map to the corners of the triangle chosen in I_{2}. Thus, we obtain I_{1}^{\prime} such that the triangle is warped to the corresponding points in I_{2}. Similarly, map every pixel inside the triangle of I_{3} such that the corners of the triangle chosen in I_{3} map to the corners of the triangle chosen in I_{2}. Thus, we obtain I_{3}^{\prime} such that the triangle is warped to the corresponding points in I_{2}.
3. Now again use the Barycentric coordinate system and map every pixel inside the triangle of I_{1}^{\prime} such that the corners of the triangle chosen in I_{1}^{\prime} map to the corners of the triangle chosen in I_{3}^{\prime} and obtain I_{4}.
4. Note that, again in I_{4}, only one triangle is warped. Also, note that in this task of the assignment, we do not find the explicit warp matrix. Instead, we warp it using the barycentric coordinates.

Task 3: Expression transfer over the entire image

1. Use same 5 sets of $\left[I_{1}, I_{2}\right.$ and $\left.I_{3}\right]$ captured in Task 1.
2. choose at least 20 anchor points on $\left[I_{1}, I_{2}\right.$ and $\left.I_{3}\right]$. These are the points that you will be using to perform image warping. Choose them carefully. Ensure that point k of I_{1} should semantically correspond to the same point in I_{2} and I_{3}. i.e. if point 1 is at the end of the right eye in I_{1}, it should be at the end of the right eye in I_{2} and I_{3} also.
3. Perform Delaunay triangulation on each image using the points chosen in the previous step.
4. Now, recursively follow the methodology established in task 1 and task 2 for each of the corresponding triangles to achieve expression transfer. Thus, We will get I_{4} such that the entire image has undergone expression transfer. Note that we obtain I_{4} using two different mechanisms. Critically compare the two results and provide your insights.

Ensure the images I_{1}, I_{2}, and I_{3} are of the same dimension. Perform ablations on the number of points chosen for Delaunay triangulation. Report results using the following set of points $[1,5,10,20,30+]$. Here, by default, we consider the four corners of the image as four points. Therefore, 1 point essentially means one extra point apart from the chosen 4 points.

Note:-

- The assignment is to be done individually or in a group with a maximum of two members.
- You can use the inbuilt opencv functions to read and write the images. You CANNOT use any other inbuilt image processing functions unless explicitly exempted in the description.
- You are required to submit the code, data, and a detailed report for this assignment. The submission can be done using Moodle. Submission instructions will be shared later.
- We shall test the performance of each of your algorithms on a held-out dataset.
- Any sort of plagiarism will lead to serious punishments, depending on the case.

