Representation and Description
• **Representation** and Description

 – Representing regions in 2 ways:

 • Based on their external characteristics (its boundary):
 – Shape characteristics

 • Based on their internal characteristics (its region):
 – Regional properties: color, texture, and ...

 • Both
• Freeman Chain Code:
 – Code the 4 or 8 connectivity
Example:
- Resampling
- 4 and 8 chain codes
• Shape Number

 - Smallest integers of first difference circular chain code.
Chain code: 0 0 0 3 0 0 3 2 2 2 2 2 1 2 1 1
Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0
Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3
- **Polygon Approximation:**
 - **Splitting:**
 - Segments to two parts based on a criteria (e.g. maximum internal distance)
 - Check each segment for splitting based on another criteria (e.g. linearity error)
 -
Signatures:

- A 1-D functional representation of a boundary
 - Distance vs. Angle (in the polar representation):
 - Invariant to translation
 - Non-Invariant to rotation (may be achieved by start point selection)
 » Farthest point from centroid
 » The point on eigen axis
 » Use chain code solution for the start point

- Line tangent angle
- Histogram of tangent angle
Example:
• Boundary Segments:

• Skeletonization / Thinning:
 – Medial Axis Transform (MAT)
 • Point p is belong to medial (Region R and Border B):
 – Has more than one closest neighbor in B
 – Chapter 9 and Page 813
Fourier Descriptors:

\[s(k) = x(k) + j y(k) \]

\[a(u) = \sum_{k=0}^{K-1} s(k) \exp\left(-j 2\pi \frac{uk}{K}\right) \]

\[s(k) = \frac{1}{K} \sum_{u=0}^{K-1} a(u) \exp\left(+j 2\pi \frac{uk}{K}\right) \]

\[\hat{s}(k) = \frac{1}{P} \sum_{u=0}^{P-1} a(u) \exp\left(+j 2\pi \frac{uk}{K}\right) \]
- **Regional Descriptor:**
 - The simple one:
 - Area (Number of pixels)
 - Perimeter (Length of boundary)
 - Compactness (Perimeter2/Area)
 - Circularity: Ratio of the area to the area of a circle with same perimeter
 - Mean, median, max, min, ratio pixels above/below ... from intensity data.
• **Texture:**

 - No formal definition
• Statistical Approaches
 – 1st order grey level statistics
 • From normalised histogram
 – One pixel gray level repeat n times
 – 2nd order grey level statistics
 • From GLCM (Grey Level Co-occurrence Matrix)
 – Repetation of two pixels in a pre-defined neighbourhood
 • Needs:
 – A Positioning Operator, \textbf{P}.
 – GLCM(i,j): # of times that points with gray level Z_i occure relative to points with gray level Z_j
• Texture feature from 1st order statistics:

\[\mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n P(z_i), \quad m = \sum_{i=0}^{L-1} z_i P(z_i) \]

\[R(z) = 1 - \frac{1}{1 + \sigma_z^2} : \text{Gray Level Contrast (Normalized)} \]

\[\mu_3(z) : \text{Skewness} \]

\[\mu_4(z) : \text{Kurtosis, Flatness} \]

\[U(z) = \sum_{i=0}^{L-1} p^2(z_i) : \text{Uniformity} \]

\[e(z) = -\sum_{i=0}^{L-1} p(z_i) \log(p(z_i)) : \text{Entropy} \]
Gray Level Co-Occurrence Matrix (GLCM):