## Image warping

## Image warping

image filtering: change range of image

$$
g(x)=h(f(x))
$$

$$
h(y)=0.5 y+0.5
$$


image warping: change domain of image

$$
g(x)=f(h(x))
$$



$$
h([\mathrm{x}, \mathrm{y}])=[\mathrm{x}, \mathrm{y} / 2]
$$



## Parametric (global) warping

Examples of parametric warps:

translation

affine

perspective

aspect

cylindrical

## Parametric (global) warping


$\mathbf{p}=(\mathrm{x}, \mathrm{y})$

$$
\mathbf{p}^{\prime}=\left(x^{\prime}, y^{\prime}\right)
$$

- Transformation T is a coordinate-changing machine: $\mathrm{p}^{\prime}=T(\mathrm{p})$
- What does it mean that $T$ is global?
- Is the same for any point $p$
- can be described by just a few numbers (parameters)
- Represent $T$ as a matrix: $\mathrm{p}^{\prime}=\mathbf{M}^{*} \mathrm{p}\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\mathbf{M}\left[\begin{array}{l}x \\ y\end{array}\right]$


## Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:



## Scaling

- Non-uniform scaling: different scalars per component:

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=g\left(\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]\right)
$$



## Scaling

- Scaling operation: $\quad x^{\prime}=a x$

$$
y^{\prime}=b y
$$

- Or, in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix } s}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What's inverse of S?

## 2-D Rotation

- This is easy to capture in matrix form:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right], ~\left(\begin{array}{l} 
\\
\sin
\end{array}\right]}_{\mathbf{R}}
$$

- Even though $\sin (\theta)$ and $\cos (\theta)$ are nonlinear to $\theta$,
- $x$ ' is a linear combination of $x$ and $y$
- $y$ ' is a linear combination of $x$ and $y$
- What is the inverse transformation?
- Rotation by - $\theta$
- For rotation matrices, $\operatorname{det}(\mathrm{R})=1$ so $\mathbf{R}^{-1}=\mathbf{R}^{T}$


## 2x2 Matrices

- What types of transformations can be represented with a $2 \times 2$ matrix?

2D Identity?

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Scale around $(0,0)$ ?

$$
\begin{aligned}
& x^{\prime}=s_{x} * x \\
& y^{\prime}=s_{y} * y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

## 2x2 Matrices

- What types of transformations can be represented with a $2 \times 2$ matrix?

2D Rotate around $(0,0)$ ?

$$
\begin{aligned}
& x^{\prime}=\cos \theta^{*} x-\sin \theta^{* y} \\
& y^{\prime}=\sin \theta^{*} x+\cos \theta^{*} y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Shear?

$$
\begin{aligned}
& x^{\prime}=x+s h_{x} * y \\
& y^{\prime}=s h_{y} * x+y
\end{aligned}
$$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & s h_{x} \\
s h_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

## 2x2 Matrices

- What types of transformations can be represented with a $2 \times 2$ matrix?

2D Mirror about Y axis?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Mirror over $(0,0)$ ?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=-y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

## All 2D Linear Transformations

- Linear transformations are combinations of
- Scale,
- Rotation,
- Shear, and
- Mirror
- Properties of linear transformations:
- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$


## 2x2 Matrices

- What types of transformations can not be represented with a $2 \times 2$ matrix?

2D Translation?

$$
\begin{align*}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{align*}
$$

Only linear 2D transformations
can be represented with a $2 x 2$ matrix

## Translation

- Example of translation

Homogeneous Coordinates


$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$




## Affine Transformations

- Affine transformations are combinations of
- Linear transformations, and
- Translations
- Properties of affine transformations:
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition
- Models change of basis

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

## Projective Transformations

- Projective transformations
- Affine transformations, and
- Projective warps
- Properties of projective transformations:
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Models change of basis $\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{c}x \\ y \\ w\end{array}\right]$


## Image warping

- Given a coordinate transform $\boldsymbol{x}^{\prime}=\boldsymbol{T}(\boldsymbol{x})$ and a source image $I(x)$, how do we compute a transformed image $I^{\prime}\left(x^{\prime}\right)=I(T(x))$ ?



## Forward warping

- Send each pixel $I(x)$ to its corresponding location $x^{\prime}=\boldsymbol{T}(x)$ in $l^{\prime}\left(x^{\prime}\right)$



## Inverse warping

- Get each pixel I'( $x^{\prime}$ ) from its corresponding location $x=\boldsymbol{T}^{-1}\left(\boldsymbol{x}^{\prime}\right)$ in $I(\boldsymbol{x})$



## Non-parametric image warping

- Specify a more detailed warp function
- Splines, meshes, optical flow (per-pixel motion)



## Non-parametric image warping

- Mappings implied by correspondences
- Inverse warping



## Non-parametric image warping

$$
P=w_{A} A+w_{B} B+w_{C} C
$$

$$
P^{\prime}=w_{A} A^{\prime}+w_{B} B^{\prime}+w_{C} C^{\prime}
$$

Barycentric coordinate


## Barycentric coordinates



$$
\begin{aligned}
& P=t_{1} A_{1}+t_{2} A_{2}+t_{3} A_{3} \\
& t_{1}+t_{2}+t_{3}=1
\end{aligned}
$$

## Non-parametric image warping

$$
P=w_{A} A+w_{B} B+w_{C} C
$$

$$
P^{\prime}=w_{A} A^{\prime}+w_{B} B^{\prime}+w_{C} C^{\prime}
$$

Barycentric coordinate


## Image morphing

## Image morphing

- The goal is to synthesize a fluid transformation from one image to another.
- Cross dissolving is a common transition between cuts, but it is not good for morphing because of the ghosting effects.

image \#1

dissolving


## Image morphing

- Why ghosting?
- Morphing $=$ warping + cross-dissolving


color
(photometric)


## Image morphing



## Warp specification (mesh warping)

- How can we specify the warp?

1. Specify corresponding spline control points interpolate to a complete warping function

easy to implement, but less expressive

## Warp specification

- How can we specify the warp

2. Specify corresponding points

- interpolate to a complete warping function



## Solution: convert to mesh warping



1. Define a triangular mesh over the points

- Same mesh in both images!
- Now we have triangle-to-triangle correspondences

2. Warp each triangle separately from source to destination

- How do we warp a triangle?
- 3 points = affine warp!
- Just like texture mapping


## Warp specification (field warping)

- How can we specify the warp?

3. Specify corresponding vectors

- interpolate to a complete warping function
- The Beier \& Neely Algorithm



## Beier\&Neely (SIGGRAPH 1992)

- Single line-pair PQ to P'Q':


$$
\begin{gather*}
\boldsymbol{u}=\frac{(\boldsymbol{X}-\boldsymbol{P}) \cdot(\boldsymbol{Q}-\boldsymbol{P})}{\|\boldsymbol{Q}-\boldsymbol{P}\|^{2}} \\
\boldsymbol{v}=\frac{(\boldsymbol{X}-\boldsymbol{P}) \cdot \text { Perpendicular }(\boldsymbol{Q}-\boldsymbol{P})}{\|\boldsymbol{Q}-\boldsymbol{P}\|} \\
\boldsymbol{X}^{\prime}=\boldsymbol{P}^{\prime}+\boldsymbol{u} \cdot\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)+\frac{\boldsymbol{v} \cdot \text { Perpendicular }\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)}{\left\|\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right\|} \tag{3}
\end{gather*}
$$

## Algorithm (single line-pair)

- For each $X$ in the destination image:

1. Find the corresponding $u, v$
2. Find $X^{\prime}$ in the source image for that $u, v$
3. destinationlmage $(X)=$ sourcelmage $\left(X^{\prime}\right)$

- Examples:


Affine transformation


## Multiple Lines

$$
D_{i}=X_{i}^{\prime}-X_{i}
$$


weight $[i]=\left(\frac{\text { length }[i]^{p}}{a+\operatorname{dist}[i]}\right)^{b}$
length $=$ length of the line segment,
dist $=$ distance to line segment
The influence of $a, p, b$. The same as the average of $X_{i}{ }^{\prime}$

## Full Algorithm

```
WarpImage(SourceImage, L'[...], L[...])
begin
    foreach destination pixel X do
        XSum = (0,0)
        WeightSum = 0
        foreach line L[i] in destination do
        X'[i]= X transformed by (L[i],L'[i])
        weight[i] = weight assigned to }\mp@subsup{X}{}{\prime}[i
        XSum = Xsum + X'[i] * weight[i]
        WeightSum += weight[i]
    end
    X' = XSum/WeightSum
    DestinationImage(X) = SourceImage( }\mp@subsup{\textrm{X}}{}{\prime}\mathrm{ )
    end
    return Destination
end
```


## Resulting warp



## Results



Michael Jackson's MTV "Black or White"

