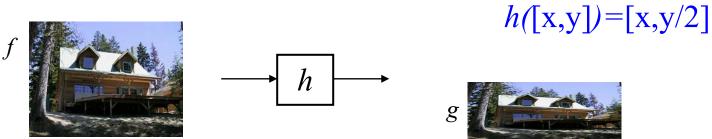
Image warping

Image warping

image warping: change *domain* of image g(x) = f(h(x))



Parametric (global) warping

Examples of parametric warps:

translation

rotation

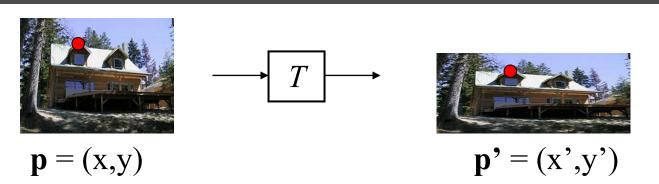
aspect

affine

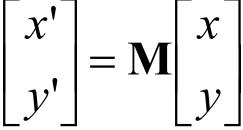
perspective

cylindrical

Parametric (global) warping

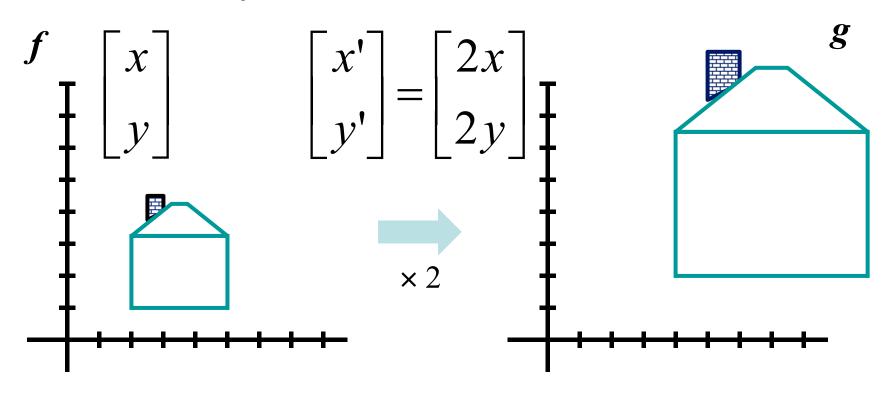


- Transformation T is a coordinate-changing machine: p' = T(p)
- What does it mean that *T* is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Represent T as a matrix: $p' = M^* p [\gamma']$



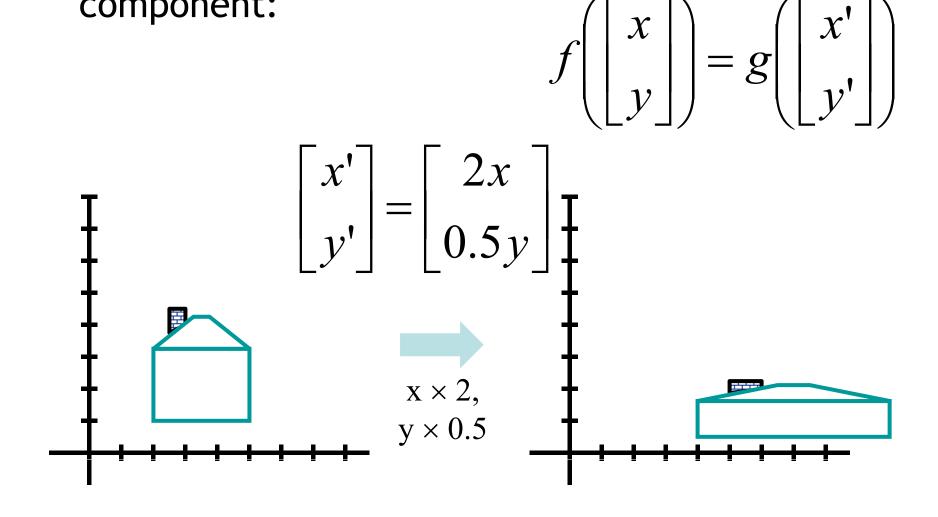
Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:



Scaling

 Non-uniform scaling: different scalars per component:



Scaling

• Scaling operation: x' = ax

$$y' = by$$

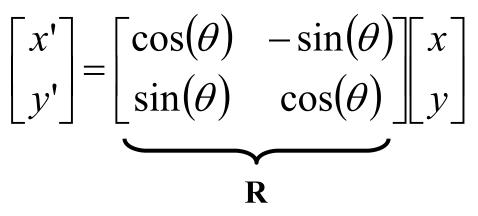
• Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix S

What's inverse of S?

• This is easy to capture in matrix form:



- Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear to θ ,
 - x' is a linear combination of x and y
 - y' is a linear combination of x and y
- What is the inverse transformation?
 - Rotation by $-\theta$
 - For rotation matrices, det(R) = 1 so $\mathbf{R}^{-1} = \mathbf{R}^{T}$

• What types of transformations can be represented with a 2x2 matrix?

2D Identity?

 $\begin{array}{c} x' = x \\ y' = y \end{array} \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

2D Scale around (0,0)? $x' = s_x * x$ $y' = s_y * y$ $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

• What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos\theta * x - \sin\theta * y$$

$$y' = \sin\theta * x + \cos\theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$

 $y' = sh_y * x + y$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

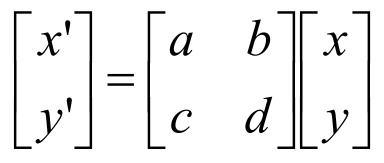
$$\begin{array}{c} x' = -x \\ y' = y \end{array} \qquad \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$\begin{array}{c} x' = -x \\ y' = -y \end{array} \qquad \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

All 2D Linear Transformations

- Linear transformations are combinations of
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror
- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

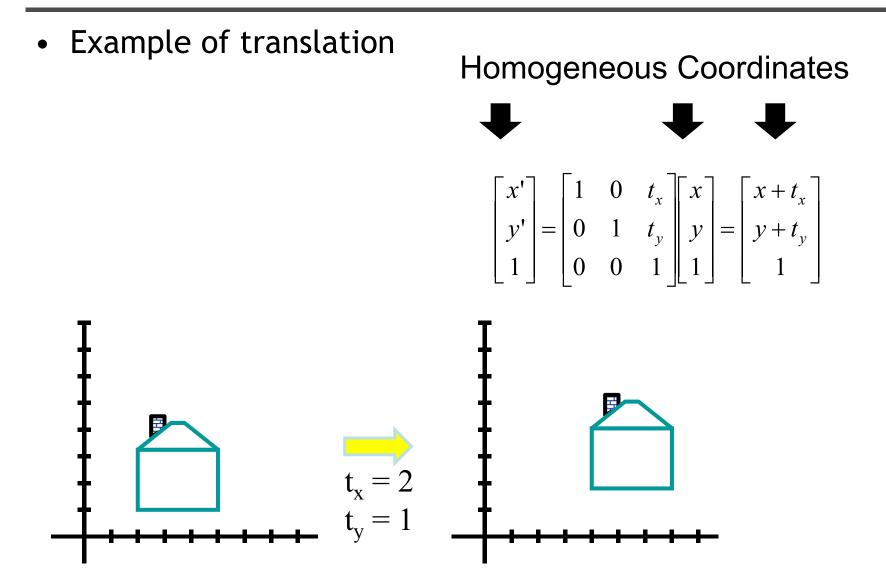


• What types of transformations can not be represented with a 2x2 matrix?

2D Translation? $x' = x + t_x$ NO! $y' = y + t_y$

Only linear 2D transformations can be represented with a 2x2 matrix

Translation



- Affine transformations are combinations of
 - Linear transformations, and
 - Translations
- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition
 - Models change of basis

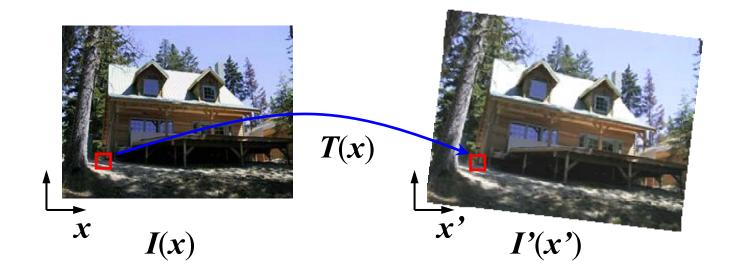
$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Projective Transformations

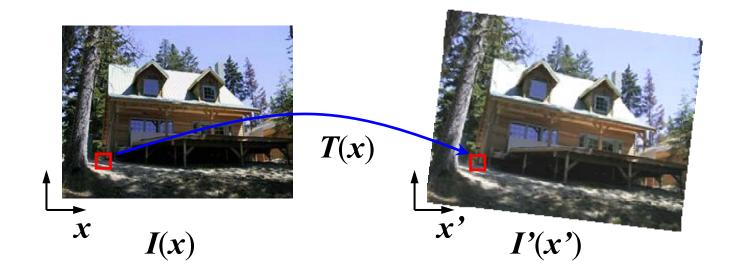
- Projective transformations
 - Affine transformations, and
 - Projective warps
- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition
 - Models change of basis

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

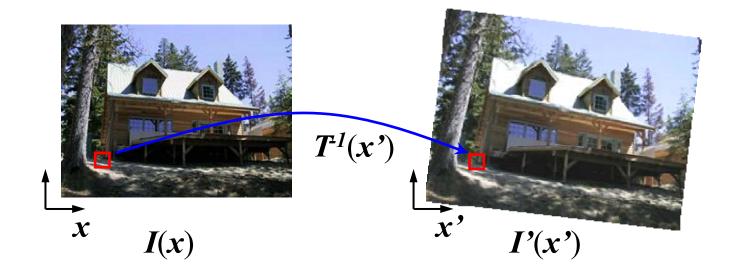
Given a coordinate transform x' = T(x) and a source image I(x), how do we compute a transformed image I'(x') = I(T(x))?



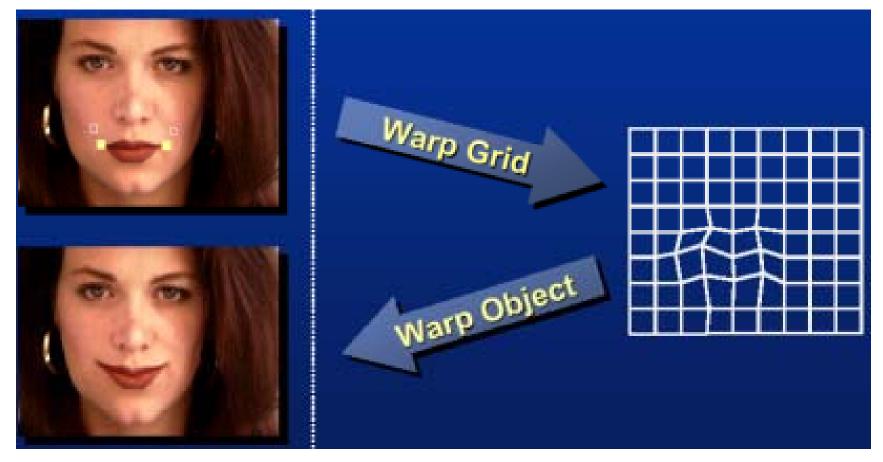
Send each pixel I(x) to its corresponding location x' = T(x) in I'(x')



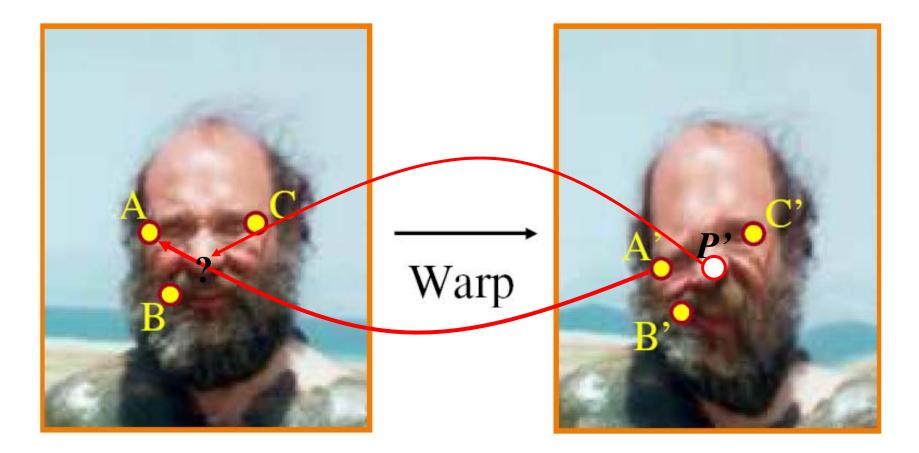
• Get each pixel I'(x') from its corresponding location $x = T^{-1}(x')$ in I(x)



- Specify a more detailed warp function
- Splines, meshes, optical flow (per-pixel motion)



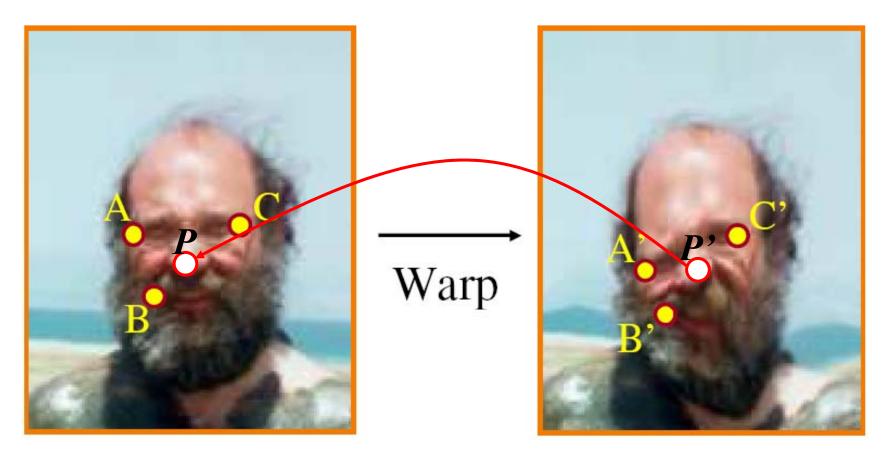
- Mappings implied by correspondences
- Inverse warping



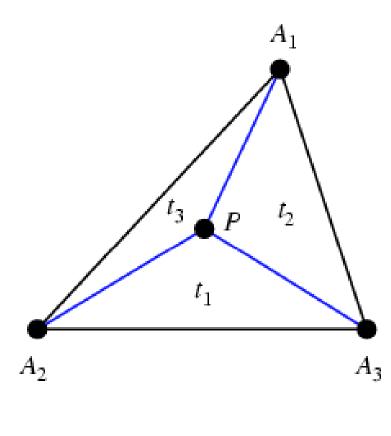
$$P = w_A A + w_B B + w_C C$$

$$P' = w_A A' + w_B B' + w_C C'$$

Barycentric coordinate

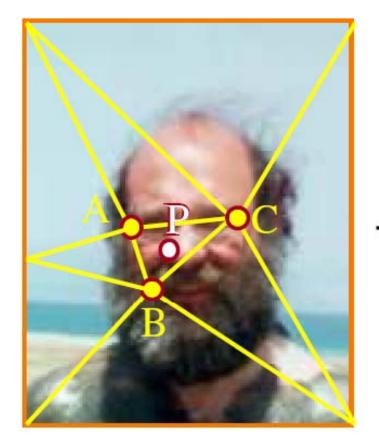


Barycentric coordinates



$$P = t_1 A_1 + t_2 A_2 + t_3 A_3$$
$$t_1 + t_2 + t_3 = 1$$

$$P = w_A A + w_B B + w_C C$$



$$P' = w_A A' + w_B B' + w_C C'$$

Barycentric coordinate

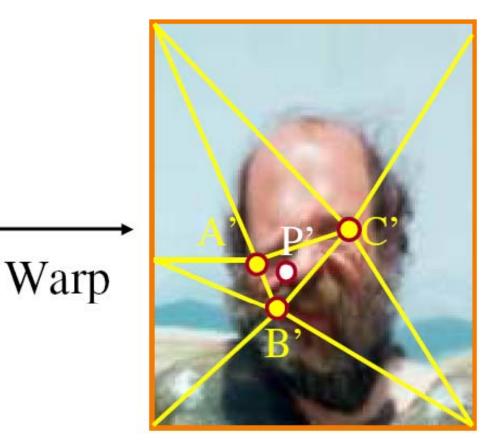


Image morphing

image #2

- The goal is to synthesize a fluid transformation from one image to another.
- Cross dissolving is a common transition between cuts, but it is not good for morphing because of the ghosting effects.

image #1

dissolving

Image morphing

- Why ghosting?
- Morphing = warping + cross-dissolving

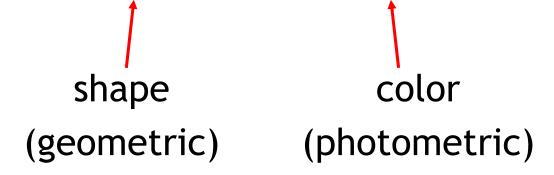
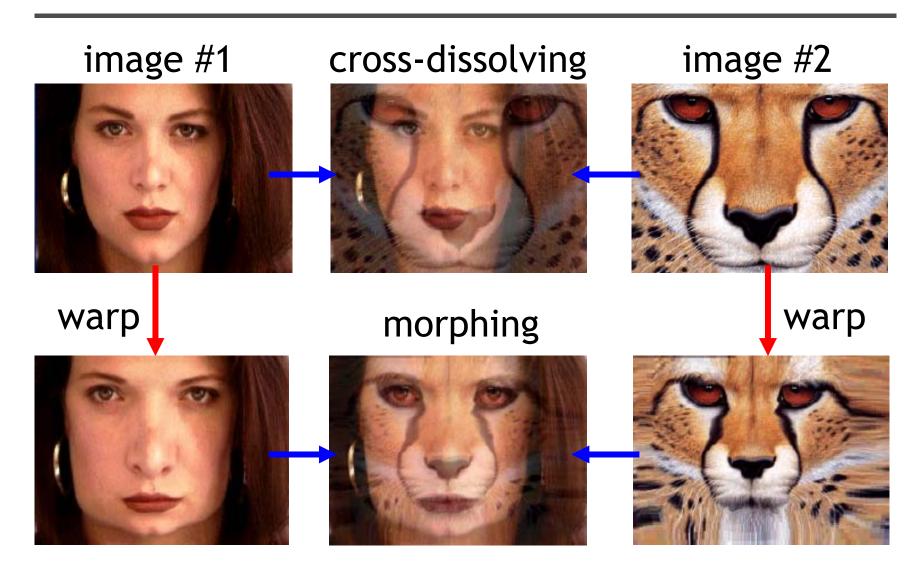


Image morphing



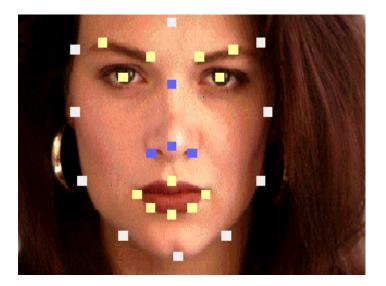
Warp specification (mesh warping)

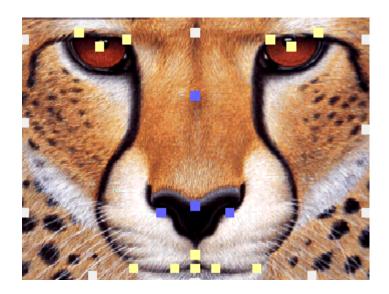
- How can we specify the warp?
 - 1. Specify corresponding *spline control points interpolate* to a complete warping function

easy to implement, but less expressive

Warp specification

- How can we specify the warp
 - 2. Specify corresponding *points*
 - *interpolate* to a complete warping function





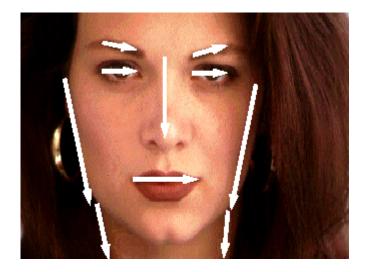
Solution: convert to mesh warping

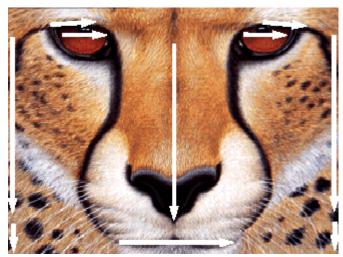


- 1. Define a triangular mesh over the points
 - Same mesh in both images!
 - Now we have triangle-to-triangle correspondences
- 2. Warp each triangle separately from source to destination
 - How do we warp a triangle?
 - 3 points = affine warp!
 - Just like texture mapping

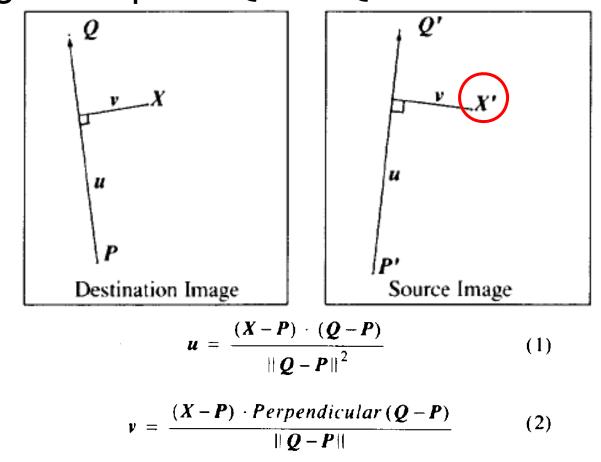
Warp specification (field warping)

- How can we specify the warp?
 - 3. Specify corresponding vectors
 - *interpolate* to a complete warping function
 - The Beier & Neely Algorithm



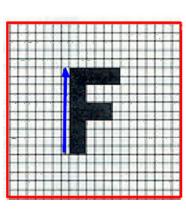


• Single line-pair PQ to P'Q':

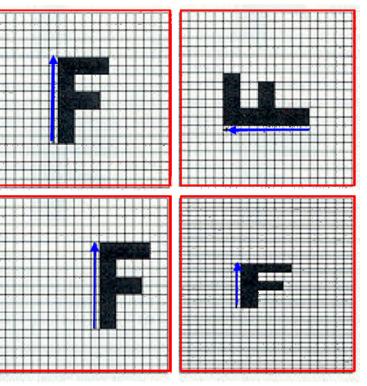


$$X' = P' + u \cdot (Q' - P') + \frac{v \cdot Perpendicular(Q' - P')}{\|Q' - P'\|}$$
(3)

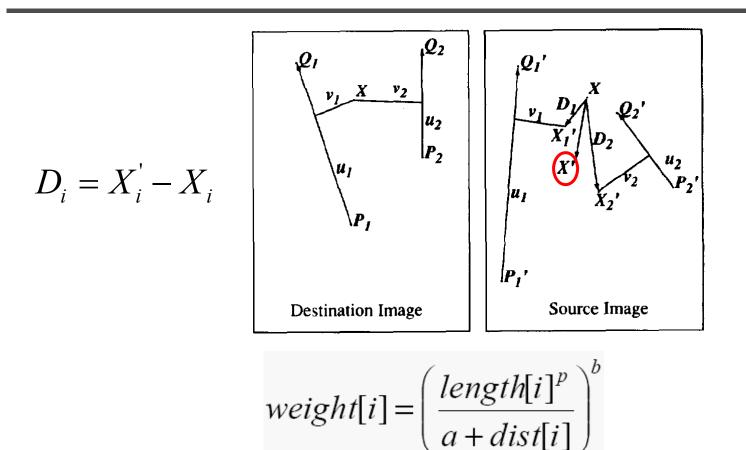
- For each X in the destination image:
 - 1. Find the corresponding u,v
 - 2. Find X' in the source image for that u,v
 - 3. destinationImage(X) = sourceImage(X')
- Examples:



Affine transformation



Multiple Lines

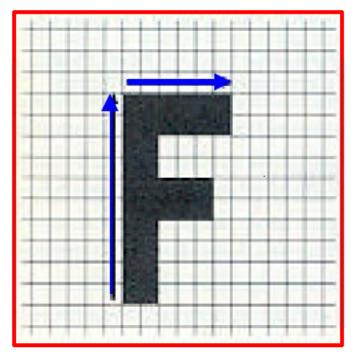


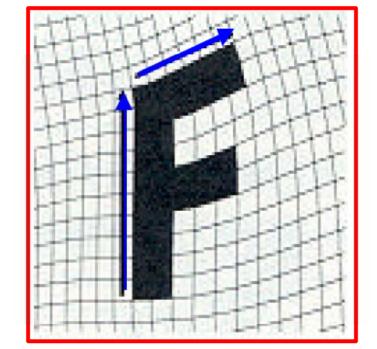
length = length of the line segment, *dist* = distance to line segment The influence of *a*, *p*, *b*. The same as the average of X_i '

Full Algorithm

```
WarpImage(SourceImage, L'[...], L[...])
begin
    foreach destination pixel X do
         XSum = (0,0)
         WeightSum = 0
         foreach line L[i] in destination do
              X'[i] = X transformed by (L[i], L'[i])
              weight[i] = weight assigned to X'[i]
              XSum = Xsum + X'[i] * weight[i]
              WeightSum += weight[i]
         end
         X' = XSum/WeightSum
         DestinationImage(X) = SourceImage(X')
    end
    return Destination
end
```


Resulting warp





Results

Michael Jackson's MTV "Black or White"