Raster Graphics

Drawing Algorithms

Rasterization
Pixelization
Scan Conversion

Continuous → Discrete
Raster Graphics

Line Drawing Algorithms

Line Equation:

\[y = mx + B \]

\[m = \frac{dy}{dx} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \]

DDA (Digital Differential Analyzer)
Raster Graphics

Line Drawing Algorithms

DDA (Digital Differential Analyzer)

$y_i = mx_i + B$
$y_{i+1} = mx_{i+1} + B$
$y_{i+1} = m(x_i + \Delta x) + B$
if $\Delta x = 1$

$x_{i+1} = x_i + 1$

$y_{i+1} = y_i + m$
Raster Graphics

Line Drawing Algorithms

DDA (Digital Differential Analyzer)

\[y = y_1 \]

\[\text{for} \ (x = x_1; \ x \leq x_2; \ x++) \]
\[\{ \]
\[\text{Writepixel}(x, \ \text{round} \ (y)); \]
\[y+ = m; \]
\[\} \]
Raster Graphics

Line Drawing Algorithms

DDA (Digital Differential Analyzer)

\[m \leq 1 \quad \text{and} \quad m > 1 \]

Exchange the role of x and y
Raster Graphics

Line Drawing Algorithms

Midpoint Line Algorithm

Find on what side of the line the mid point is:

If below then NE is closer to line
If above then E is closer to line
Raster Graphics

Midpoint Line Algorithm

\[P(x_p, y_p) \]

\[F(x, y) = 0 : (x, y) \text{ on line} \]
\[F(x, y) > 0 : (x, y) \text{ below line} \]
\[F(x, y) < 0 : (x, y) \text{ above line} \]
Raster Graphics

Midpoint Line Algorithm

Consider line

\[y = \frac{dy}{dx} x + B \]

\[F(x, y) = ax + by + c = 0 \]

\[xdy - ydx + Bdx = 0 \]

\[(a = dy, b = -dx, c = Bdx) \]
Raster Graphics

Midpoint Line Algorithm

\[F(M) = F(x_p + 1, y_p + \frac{1}{2}) = d \]

\[d = a(x_p + 1) + b(y_p + \frac{1}{2}) + c \]

if \(d > 0 \) M is below the line, choose NE

if \(d < 0 \) M is above the line, choose E
Midpoint Line Algorithm

When \(E \):

\[
\begin{align*}
 d_{\text{new}} &= F(M') = F(x_p + 2, y_p + \frac{1}{2}) \\
 d_{\text{new}} &= a(x_p + 2) + b(y_p + \frac{1}{2}) + c \\
 d_{\text{old}} &= a(x_p + 1) + b(y_p + \frac{1}{2}) + c \\
 \Delta_E &= d_{\text{new}} - d_{\text{old}} = a = dy
\end{align*}
\]
Midpoint Line Algorithm

When NE:

\[d_{new} = F(M'') = F(x_p + 2, y_p + \frac{3}{2}) \]

\[d_{new} = a(x_p + 2) + b(y_p + \frac{3}{2}) + c \]

\[d_{old} = a(x_p + 1) + b(y_p + \frac{1}{2}) + c \]

\[\Delta_{NE} = d_{new} - d_{old} = a + b = dy - dx \]
Raster Graphics

Midpoint Line Algorithm

At start:

\[d_{start} = F(x_0 + 1, y_0 + \frac{1}{2}) = a(x_0 + 1) + b(y_0 + \frac{1}{2}) + c \]

\[d_{start} = ax_0 + by_0 + c + a + \frac{b}{2} \]

\[d_{start} = a + \frac{b}{2} = dy - \frac{dx}{2} \quad \text{(division)} \]

\[F(x, y) = 2(ax + by + c) \]
Raster Graphics

Midpoint Line Algorithm

dx = x2 - x1; dy = y2 - y1;
d = 2dy - dx; ΔE = 2dy; ΔNE = 2(dy - dx);
x = x1; y = y1;
Writepixel(x, y);
While (x < x2)
if d ≤ 0
 d+ = ΔE; x+ = 1;
else
 d+ = ΔNE; x+ = 1; y+ = 1;
end
Writepixel(x, y);
end While
Raster Graphics

Midpoint Circle Algorithm

\[(x, y)\]

\[x^2 + y^2 = R^2\]
Raster Graphics

Midpoint Circle Algorithm

\(x^2 + y^2 = R^2 \)
Raster Graphics

Midpoint Circle Algorithm

(x, y)
Raster Graphics

Midpoint Circle Algorithm

8-way symmetry: drawing in one octant is enough
Raster Graphics

Midpoint Circle Algorithm

Consider II octant

\[F(x, y) = x^2 + y^2 - R^2 \]

For a given point \((x, y)\):
- \(F(x, y) = 0\) : \((x, y)\) on circle
- \(F(x, y) > 0\) : \((x, y)\) outside circle
- \(F(x, y) < 0\) : \((x, y)\) inside circle
Raster Graphics

Midpoint Circle Algorithm

Consider II octant

Evaluate $F(M)$
If < 0 (M inside circle)
→ Choose E
If > 0 (M outside circle)
→ Choose SE
Raster Graphics

Midpoint Circle Algorithm

Consider II octant

\[d_{\text{old}} = F(M) = F(x_p + 1, y_p - \frac{1}{2}) \]
\[= (x_p + 1)^2 + (y_p - \frac{1}{2})^2 - R^2 \]

When \(E (d_{\text{old}} < 0) \)

\[d_{\text{new}} = F(M') = F(x_p + 2, y_p - \frac{1}{2}) \]
\[= (x_p + 2)^2 + (y_p - \frac{1}{2})^2 - R^2 \]

\[\Delta_E = d_{\text{new}} - d_{\text{old}} = 2x_p + 3 \]
Midpoint Circle Algorithm

Consider II octant

When SE \((d_{\text{old}} \geq 0) \)

\[
d_{\text{new}} = F(M'') = F(x_p + 2, y_p - \frac{3}{2})
\]

\[
= (x_p + 2)^2 + (y_p - \frac{3}{2})^2 - R^2
\]

\[
\Delta_{SE} = d_{\text{new}} - d_{\text{old}} = 2x_p - 2y_p + 5
\]
Raster Graphics

Midpoint Circle Algorithm

Consider II octant

Initial Condition
(0, R) start point,
next mid point = \((1, R - \frac{1}{2})\)

\[F(1, R - \frac{1}{2}) = \frac{5}{4} - R \]
Raster Graphics

Midpoint Circle Algorithm

Consider II octant

\[x = 0; \ y = R; d = \frac{5}{4} - R; \]

Writepixel(x, y);
While (y > x) do
if \(d < 0 \)
\[d+ = 2x + 3; \ x+ = 1; \]
else
\[d+ = 2x - 2y + 5; \ x+ = 1; \ y- = 1; \]
end
Writepixel(x, y);
end While
Raster Graphics

Ellipse Drawing Algorithm

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]