Beziers Curves
(Pierre Bezier - Renault Automobiles)

Mathematically

\[P(t) = \sum_{i=0}^{n} b_i J_{i}^n(t) \quad 0 \leq t \leq 1 \]

\(J_{n,i} \) are called the Bernstein basis/blending functions
Bezier Curves

Burnstein Polynomials

\[
J_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}
\]

\[
\binom{n}{i} = \frac{n!}{i!(n-i)!}
\]

\[
J_{0,0}(t) = 1
\]

\[
J_i^n(t) = 0 \text{ for } i \not\in \{0,\ldots,n\}
\]

\[
\sum_{i=0}^{n} J_i^n(t) = 1
\]

\[
J_i^n(t) : \text{non-negative for } t \in [0,1]
\]
Bezier Curves

Cubic

\[P(t) = b_0 J_0^3 + b_1 J_1^3 + b_2 J_2^3 + b_3 J_3^3 \]

\[J_0^3(t) = t^0 (1 - t)^3 = (1 - t)^3 \]
\[J_1^3(t) = 3t(1 - t)^2 \]
\[J_2^3(t) = 3t^2 (1 - t) \]
\[J_3^3(t) = t^3 \]
Bezier Curves

Cubic

\[P(t) = \begin{bmatrix} (1 - t)^3 & 3t(1 - t)^2 & 3t^2(1 - t) & t^3 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} \]
Bezier Curves

Cubic Examples

\[
P(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3
\]
Curves

Bezier Curves

Examples

Degree = 10
Bezier Curves

Properties

End Point Interpolation

At $t=0$

\[i = 0, J_0^n(0) = \frac{n!}{n!(1)} (1)(1 - 0)^{n-0} = 1 \]

\[i \neq 0, J_0^n(0) = \frac{n!}{i!(n - i)!} (0)^i (1 - 0)^{n-i} = 0 \]

\[\Rightarrow P(0) = b_0 J_0^n(0) = b_0 \]
Bezier Curves

Properties

End Point Interpolation

At $t=1$

$$i = n, J_n^n(1) = \frac{n!}{n!(1)} (1)^n (0)^{n-n} = 1$$

$$i \neq n, J_i^n(1) = \frac{n!}{i!(n-i)!} (1)^i (1-1)^{n-i} = 0$$

$$\Rightarrow P(1) = b_n J_{n,n}(1) = b_n$$
Bezier Curves

Properties

Affine Invariance

Applying an affine transformation to the curve is equivalent to applying the transformation to the control points.
Beziers Curves

Properties

Affine Invariance

\[\varphi x = Ax + v \]

\[\varphi \left(\sum_i \alpha_i b_i \right) = A \left(\sum_i \alpha_i b_i \right) + v \]

\[= \sum_i \alpha_i Ab_i + \sum_i \alpha_i v \]

\[= \sum_i \alpha_i (Ab_i + v) = \sum_i \alpha_i \varphi b_i \]
Bezier Curves

Properties

Convex hull

The curve lies in the convex hull of the control points.
Beziers Curves

Properties

Convex hull

The curve lies in the convex hull of the control points

\[P(t) \]

\[b_0, b_1, b_2, b_3 \]

\[\sum_{i=0}^{n} J_i^n(t) = 1 \]

\[J_i^n(t) : \text{non-negative for} \quad t \in [0,1] \]
Bezier Curves

Properties

Symmetry

$P(t)$ defined by b_0, b_1, \ldots, b_n is equal to $P(1-t)$ defined by $b_n, b_{n-1}, \ldots, b_0$

$$
\sum_{i=0}^{n} b_i \mathcal{J}_i^n(t) = \sum_{i=0}^{n} b_{n-i} \mathcal{J}_i^n(1-t)
$$
Bezier Curves

Properties

Domain Parameter Transformation

\[
t \in [0, 1] \\
u \in [a, b] \\
t = \frac{u - a}{b - a}
\]

\[
\sum_{i=0}^{n} b_i J_i^n(t) = \sum_{i=0}^{n} b_i J_i^n\left(\frac{u - a}{b - a}\right)
\]
Bezier Curves

Properties

Pseudo-local Control

\[J_i^n (t) \] has one maximum at

\[t = \frac{i}{n} \]
Curves

Bezier Curves

Properties

Pseudo-local Control
Bezier Curves

Properties

Variation Diminishing

No straight line intersects a Bézier curve more times than it intersects the curve's control polyline.
Curves

Bezier Curves

Properties

Variation Diminishing
Beziers Curves

Properties

Tangent Vectors: Derivatives

\[
\frac{d}{dt} P(t) = \sum_{i=0}^{n} \frac{d}{dt} J_i^n b_i \quad \Rightarrow \quad \frac{d}{dt} J_i^n(t) = \frac{d}{dt} \binom{n}{i} t^i (1-t)^{n-i}
\]

\[
\frac{d}{dt} J_i^n(t) = \binom{n}{i} it^{i-1}(1-t)^{n-i} - \binom{n}{i} (n-i)t^i (1-t)^{n-i-1}
\]

\[
= n \binom{n-1}{i-1} t^{i-1}(1-t)^{n-i} - n \binom{n-1}{i} t^i (1-t)^{n-i-1}
\]

\[
= n(J_{i-1}^n - J_i^n)
\]
Beziers Curves

Properties

Tangent Vectors: Derivatives

\[
\frac{d}{dt} P(t) = n \sum_{i=0}^{n} (J_{i-1}^{n-1} - J_{i}^{n-1}) b_i = n \sum_{i=1}^{n} J_{i-1}^{n-1} b_i - n \sum_{i=0}^{n-i} J_{i}^{n-1} b_i \\
= n \sum_{i=0}^{n-1} J_{i}^{n-1} b_{i+1} - n \sum_{i=0}^{n-i} J_{i}^{n-1} b_i = n \sum_{i=0}^{n-1} (b_{i+1} - b_i) J_{i}^{n-1}
\]
Beziers Curves

Properties

Tangent Vectors: Derivatives

\[P'(0) = n(b_1 - b_0)J_0^{n-1} = n(b_1 - b_0) \]
\[P'(1) = n(b_n - b_{n-1})J_{n-1}^{n-1} = n(b_n - b_{n-1}) \]

Tangent Vectors at the ends of the curve have the same direction as the first and last polygon spans.
Bezier Curves

Properties

Tangent Vectors: Derivatives

\[\Delta b_0 \quad \Delta b_1 \quad \Delta b_2 \]

Origin