Ray Tracing

Rendering

Issues

• Visibility
 What objects or parts in the scene are visible?
 Clipping (with respect to the view frustum)
 Done
 Occlusion (with respect to the objects in the scene)
 Hidden surface elimination

• Illumination
 Reflection, Refraction, Transparency, Shadows, etc.
Ray Tracing

Rendering Pipeline (Revisit)

Forward Mapping Approach

Modeling Transformation

Model 1

Model 2

Model n

3D World Scene

Viewing Transformation

V

3D View Scene

2D Image

Rasterization

2D Scene

Projection
Ray Tracing

Forward Ray Tracing

Modeling interaction of light with the objects/surfaces

Problem:
Many rays will not contribute to the image!
Ray Tracing

Backward Ray Tracing

Rays from camera (viewer) through each pixel to the scene

Backward Ray Tracing = Ray Tracing
Ray Tracing

Backward Ray Tracing

Primary and Secondary Rays
Ray Tracing

Backward Ray Tracing

Shadow Rays

Visibility check with respect to the light source
Ray Tracing

Ray Casting

Viewer

View Plane

A

B

C

D

E

F
Ray Tracing

Two Issues

Ray-object intersection
 Visibility test: Closest to the viewer

Pixel color determination (shading)
 Illumination model
Ray Tracing

Ray Object Intersection

Sphere

Ray Origin
\[R_o = [X_o \ Y_o \ Z_o] \]

Ray Direction
\[R_d = [X_d \ Y_d \ Z_d] \]

Parametric Form
\[R(t) = R_o + R_d t \quad t > 0 \]

\[X_d^2 + Y_d^2 + Z_d^2 = 1 \]
Ray Tracing

Ray Object Intersection

Sphere

Implicit Form

Center $S_c = [X_c \ Y_c \ Z_c]$
Radius S_r
Surface Point $[X_s \ Y_s \ Z_s]$

$$(X_s - X_c)^2 + (Y_s - Y_c)^2 + (Z_s - Z_c)^2 = S_r^2$$
Ray Tracing

Ray Object Intersection

Sphere

To solve the intersection problem the ray equation is substituted into the sphere equation and the result is solved for t

That is

$$(X_o + X_d t - X_c)^2 + (Y_o + Y_d t - Y_c)^2 + (Z_o + Z_d t - Z_c)^2 = S_r^2$$
Ray Tracing

Ray Object Intersection

Sphere

\[At^2 + Bt + C = 0 \]

where

\[A = X_d^2 + Y_d^2 + Z_d^2 = 1 \]
\[B = 2(X_d(X_o - X_c) + Y_d(Y_o - Y_c) + Z_d(Z_o - Z_c)) \]
\[C = (X_o - X_c)^2 + (Y_o - Y_c)^2 + (Z_o - Z_c)^2 - S_r^2 \]
Ray Tracing

Ray Object Intersection

Sphere

\[At^2 + Bt + C = 0 \]

\[
t_0 = \frac{-B - \sqrt{B^2 - 4AC}}{2A}
\]

\[
t_1 = \frac{-B + \sqrt{B^2 - 4AC}}{2A}
\]

Smaller positive among \(t_0 \) and \(t_1 \) gives the closest intersection point

\[
[X_i, Y_i, Z_i] = [X_o + X_d t, Y_o + Y_d t, Z_o + Z_d t]
\]
Ray Tracing

Ray Object Intersection

Sphere

Normal

\[n = \begin{bmatrix} \frac{(X_i - X_c)}{S_r}, \frac{(Y_i - Y_c)}{S_r}, \frac{(Z_i - Z_c)}{S_r} \end{bmatrix} \]
Ray Tracing

Ray Sphere Intersection

Sum up

- Calculate A B C
- Compute the discriminant
- Calculate min (t₀, t₁)
- Compute the intersection point
- Compute the normal
Ray Tracing

Ray Object Intersection

Sphere

Geometric Approach

\[R_0 \quad L \quad d \quad r \quad O \quad t_{ca} \quad t_{hc} \quad R_d \]
Ray Tracing

Ray Object Intersection

Sphere

Geometric Approach

\[L = O - R_0 \]
\[t_{ca} = L^T R_d \]
\[t_{ca} < 0 \text{ no intersection} \]
Ray Tracing

Ray Object Intersection

Sphere

Geometric Approach

\[L = O - R_0 \]
\[t_{ca} = L^T R_d \]
\[t_{ca} < 0 \text{ no intersection} \]
\[d = L^T L - t_{ca}^2 \]
if \(d > r \) no intersection
Ray Tracing

Ray Object Intersection

Sphere

Geometric Approach

\[t_{hc} = \sqrt{r^2 - d^2} \]

\[t = t_{ca} - t_{hc} \text{ and } t_{ca} + t_{hc} \]

smaller \(t \)
Ray Tracing

Ray Plane Intersection

Ray

\[
\begin{align*}
R_o &= [X_o \ Y_o \ Z_o] \quad \text{(ray origin)} \\
R_d &= [X_d \ Y_d \ Z_d] \quad \text{(ray direction)} \\
X_d^2 + Y_d^2 + Z_d^2 &= 1 \quad \text{(normalized)} \\
R(t) &= R_o + R_d t \quad t > 0
\end{align*}
\]

Plane

\[
\begin{align*}
P : Ax + By + Cz + D &= 0 \\
A^2 + B^2 + C^2 &= 1 \\
P_{\text{normal}} &= P_n = [A \ B \ C] \\
D : \text{Distance from origin}
\end{align*}
\]
Ray Tracing

Ray Plane Intersection

Substituting ray equation in plane’s equation

\[A (X_o + X_d t) + B (Y_o + Y_d t) + C (Z_o + Z_d t) + D = 0 \]

Solving for \(t \)

\[
t = -\frac{AX_0 + BY_0 + CZ_0 + D}{AX_d + BY_d + CZ_d}
\]

\[
t = -\frac{P_n \cdot R_0 + D}{P_n \cdot R_d}
\]
Ray Tracing

Ray Plane Intersection

Let

\[V_d = P_n \cdot R_d = AX_d + BY_d + CZ_d \]

If \(V_d = 0 \) then the ray is parallel to the plane (no intersection)

\(V_d > 0 \) normal is pointing away from the ray (may be used for back-face culling)
Ray Tracing

Ray Plane Intersection

Let

\[V_0 = -(P_n \cdot R_0 + D) = (AX_0 + BY_0 + CZ_0 + D) \]

\[t = \frac{V_0}{V_d} \]

If \(t < 0 \) then plane is behind ray’s origin
else compute intersection

\[r_i = [X_i, Y_i, Z_i] = [X_o + X_d t, Y_o + Y_d t, Z_o + Z_d t] \]
\[r_{normal} = P_n \]
Ray Tracing

Polygon Intersection

Containment Test

Parity Test: If the number of intersection is odd then point is inside (special case for vertices)
Ray Tracing

Triangle Intersection

Containment Test

Triangle: Barycentric Coordinates

\[P = uV_1 + vV_2 + wV_3 \]
Ray Tracing

Triangle Intersection

Containment Test

Triangle: Barycentric Coordinates

\[P = uV_1 + vV_2 + wV_3 \]
Ray Tracing

Triangle Intersection

Containment Test

Triangle: Barycentric Coordinates

\[u = \frac{A_1}{A}, \quad v = \frac{A_2}{A}, \quad w = \frac{A_3}{A} \]
\[u + v + w = 1 \]
\[u \geq 0, \quad v \geq 0, \quad w \geq 0 \]
\[P = uV_1 + vV_2 + wV_3 \]
Ray Tracing

Ray Quadric Intersection

Quadrics:

Cylinders, Cone, Sphere, Ellipsoids, Paraboloids, Hyperboloids, etc.

Implicit form $f(X, Y, Z) = 0$

$Ax^2 + 2Bxy + 2Cxz + 2Dx + Ey^2 + 2Fyz + 2Gy + Hz^2 + 2lz + J = 0$

Ray: Parametric form

$Ro = [X_o \ Y_o \ Z_o]$ (ray origin)

$Rd = [X_d \ Y_d \ Z_d]$ (ray direction)

$X_d^2 + Y_d^2 + Z_d^2 = 1$ (normalized)

$R(t) = R_o + R_d t \quad t > 0$
Ray Tracing

Ray Quadric Intersection

Matrix Form

\[f(X, Y, Z) = 0 \]

\[
\begin{bmatrix}
X & Y & Z & 1
\end{bmatrix}
\begin{bmatrix}
A & B & C & D \\
B & E & F & G \\
C & F & H & I \\
D & G & I & J
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix} = 0
\]
Ray Tracing

Ray Quadric Intersection

Substituting

\[A_q t^2 + B_q t + C_q = 0 \]

If \(A_q \neq 0 \)

\[
t_0 = \frac{-B_q - \sqrt{B_q^2 - 4A_qC_q}}{2A_q}
\]

\[
t_1 = \frac{-B_q + \sqrt{B_q^2 - 4A_qC_q}}{2A_q}
\]

If \(A_q = 0 \)

\[
t = -\frac{C_q}{B_q}
\]
Ray Tracing

Ray Quadric Intersection

Normal

\[
n = \begin{bmatrix}
\frac{\partial F}{\partial X_i}, & \frac{\partial F}{\partial Y_i}, & \frac{\partial F}{\partial Z_i}
\end{bmatrix}
\]

\[
n_x = 2(AX_i + BY_i + CZ_i + D)
\]

\[
n_y = 2(BX_i + EY_i + FZ_i + G)
\]

\[
n_z = 2(CX_i + FY_i + HZ_i + I)
\]
Ray Tracing

Ray Box Intersection

3D Clipping: Cyrus Beck/Liang Barsky