Introduction to Computers and Programming

CSL 101
Logistics

- **Instructors**
 - Huzur Saran (saran@cse.iitd.ac.in)
 - Parag Singla (parags@cse.iitd.ac.in)

- **Classes**
 - M, Th: 8:00 am - 9:20 am (VI LT 1) – Parag
 - M, Th: 2:00 pm - 3:20 pm (IV LT 3) - Huzur

- **Practical**
 - Every Day – 11 am to 12:50 pm (CSC)
 - Every Day – 3 pm to 4:50 pm (CSC)
 - Based on Group
Teaching Assistants

- A number of them
- Help with practical sessions
- 2 for each lab session
- Get familiarized!
Logistics

- **Website:**
 http://www.cse.iitd.ac.in/~parags/courses/csl101/

- **Class Mailing List**
 - csl101@courses.iitd.ac.in

- **Mail to TAs/Instructors**
 - Should have CSL101 in the subject line

- **References**
 - Lectures Notes on Introduction to Computing
 - Online Material on Python Programming
Computer Usage

- Access in the Computer Services Center
- Operating System – Linux (Unix like)
- Editor – vim
Grading

- 2 Quizzes – 4% each
- Assignments (7) – 27%
- Minor 1, Minor 2 – 15% each
- Major – 35%
Other Policies

- **Attendance**
 - Institute has a minimum attendance requirement
 - Should attend unless there is a reason not to do so
 - Difficult to do make up classes
- **Late Assignments, Make-up Exams**
 - Valid Certificate of illness
Other Policies

- **Attendance**
 - Institute has a minimum attendance requirement
 - Should attend unless there is a reason not to do so
 - Difficult to do make up classes

- **Late Assignments, Make-up Exams**
 - Valid Certificate of illness

- **Proxies!?
Honor Code

- Expect everyone to follow an honor code of conduct
- All assignments must be done individually
 - Discussion is ok – mention in the submission
 - Actual solution to be written by self
- Copying/Cheating
 - May result in fail grade independent of performance
Introduction to Computers and Programming
Why Computer Science?
Why Computer Science?

It's the best part of every one of us, the part that believes anything is possible. Things like a computer that can fit into a single room and hold millions of pieces of information..

- Movie Apollo 13
Who is the course aimed at?

- First year students with no prior background in programming
 - Is it fair to say?
What will the course address?

- **Problem formulation** in a precise and concise fashion independent of language
 - E.g. Create an efficient system for IIT course offering
 - Identify the courses, rooms, timings, students, faculty, various constraints (soft and hard) etc.

- **Design of an algorithm** – correct and efficient
 - How to divide courses in slots, satisfying various constraints *(typically done on a paper)*

- **Write a Program**
 - Create a program to actually do the mapping and assignment
Other Examples

• Minimize the traffic congestion during holiday season (transportation)
• Minimize the heat dissipation from a silicon chip (VLSI - electrical)
• Satisfy the maximum number of mobile users given the fixed bandwidth (telecommunication)
Contents of the Course

- Basics of functional and imperative models
 - Recursive and iterative models
- Data directed programming
 - Strings, lists, arrays, trees, abstract data types
- Design and analysis of simple algorithms
 - Iterative style, divide and conquer, Dynamic programming based, randomized algorithms
What is Computer Science?

Computer Science: “Science of Computers”

A fundamental notion of “Computing”

Input \(x \) \[\rightarrow \] Black Box \[\rightarrow \] Output \(f(x) \)

Computes \(f(x) \)

4

Square Root

2
Various Computing Devices

Input/output has to be in a certain format
Computing Devices

What is inside the black box?

Rules of Computing

Input x → Black Box → Output $f(x)$
Algorithm

- Algorithm: A step by step procedure (sequence of lines) for solving a given computing problem.
- Example: How do you make tea?
 - Take the Pan
 - Heat up Water
 - Add Milk, Sugar and Tea
 - Boil
- How do you find 5*4?
Model of Computation

- Need to specify the primitives
 - $5 \times 4 = ?$
 - $5 \times 4 = 20$ (multiplication as primitive)
 - $5 \times 4 = 5 + 5 + 5 + 5 = 20$ (addition as primitive)

- Given a model of computation, write an algorithm to solve the problem
Correctness and Efficiency

- **Sound:** An algorithm is sound if it always computes the “correct” answer
 - $5*4 = 21$ – not sound

- **Complete:** An algorithm is complete if it calculates “an” answer for every given input
 - $5.1*4.1 = \text{no answer}$ – not complete

- **Correctness = Soundness + Completeness**
Efficient Algorithm

- A notion of how much “space” and “time” algorithm uses given a model of computation

\[5 \times 4 \ (2+3+5) = 20 \times 10 = 200 \ (4 \text{ steps}) \]

\[5 \times 4 \ (2+3+5) = 5 \times 4 \times 2 + 5 \times 4 \times 3 + 5 \times 4 \times 6 = 40 + 60 + 120 = 200 \ (8 \text{ steps}) \]
Program

- Encoding of an algorithm in the syntax of a “programming language”
- Necessary so that machine can execute and given an output
From Problem to Solution

Problem Specification (Concise Definition)
Should be true to original vague formulation

Algorithm (Sequence of Steps)
Should be correct and efficient

Program (Actual Execution Happens)
Should execute exactly what algorithm specifies
Turing Machine

Input Tape

0 0 0 1 1 0 1 0

Read

State Transition Model

Write

0 1 0 1 1 0 1

Output Tape

Can Simulate any Modern Day Computer!

Due to Alan Turing [1948]
Mathematical Preliminaries
Sets

- A set is a collection of different objects
 - Example: Students in the class of CSL101
- Denoted by upper case letters – A, B, S

- Notation:
 \[\text{A} = \{bb5120013, \, \text{me2120796}, \, \text{bb5120021} \ldots \} \]

- A and B are equal if they have the same elements
Sets

• Two different ways to specify a set
 ◦ Explicit Enumeration
 • \{2, 4, 6, 8, 10\}
 ◦ Implicit Definition
 • \{x \mid x \text{ is even positive integer less than equal to 10}\}
 • \{x \mid x \text{ is an Integer and } x \% 2 = 0 \text{ and } 1 \leq x \leq 10\}
 • A way to specify infinite sets
Sets

- A set can have another set as an element
 - $S = \{\{a,b,c\}, d\}$

- $x \in S$ denotes x is an element of set S

- $A \subseteq B$ if $x \in B$ whenever $x \in A$

- Empty set $\emptyset = \{\}$ (also known as null set)
Sets

- Cardinality of a set $S = |S|$ = number of elements in S

- Universe of discourse = U
 - Set of all possible values
 - Every set is a subset of U

Properties
- $\emptyset \subseteq A$, $\forall A$ (\forall - for all symbol)
- $A \subseteq U$, $\forall A$
Sets

- **Union**
 - $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
 - set of all the elements which belong to A or B

- **Intersection**
 - $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
 - Set of all the elements which belong to A and B

- **Properties**
 - $A \cup \emptyset = A$
 - $A \cup U = U$
 - $A \cap \emptyset = \emptyset$
 - $A \cap U = A$
Sets

- Cartesian Product of A and B
 - The set of all ordered pairs \((a, b)\) such that \(a \in A\) and \(b \in B\)
 - \(S = A \times B = \{ (a, b) | a \in A \text{ and } b \in B \}\)

- \(A^n\) is the set of all ordered tuples \((a_1, a_2, a_3, \ldots, a_n)\) such that \(a_i \in A\)
 - \(A^n = A \times A \times A, \ldots, A\) (n times)
Some Useful Sets

- N = Natural Numbers = \{0, 1, 2, 3, \ldots\}
- P = Positive Integers = \{1, 2, 3, 4, 5, \ldots\}
- Z = Integers = \{\ldots -2, -1, 0, 1, 2\ldots\}
- R = Real Numbers
- B = Boolean Set = \{true, false\}
Relations and Functions

- Binary relation R over sets A, B is a subset of $A \times B$
 - $R = \{(a_1, b_1), (a_2, b_2) \ldots (a_k, b_k)\}$
 - Example: Binary relations over natural numbers
 - $=, \neq, <, >$, ‘square’
Relations and Functions

- Binary relation R over sets A, B is a subset of $A \times B$
 - $R = \{(a_1, b_1), (a_2, b_2) \ldots (a_k, b_k)\}$
 - Example: Binary relations over natural numbers
 - $=, \neq, <, >$, ‘square’
- Example: $\{(0,0), (1,1), (2,2), (3,3) \ldots\}$ are the elements of $=$ relation
Relations and Functions

- Binary relation R over sets A, B is a subset of $A \times B$
 - $R = \{(a_1, b_1), (a_2, b_2), \ldots, (a_k, b_k)\}$
 - Example: Binary relations over natural numbers
 - $=, \neq, <, >$, ‘square’
 - Example: $\{(0,0), (1,1), (2,2), (3,3)\ldots\}$ are the elements of $=\text{ relation}$
 - Example: $\{(1,1), (2,4), (3,9)\ldots\}$ are elements of the ‘square’ relation
Relations and Functions

- Binary relation R over sets A, B is a subset of A x B
 - R = {(a₁, b₁), (a₂,b₂)… (aₖ,bₖ)}
 - Example: Binary relations over natural numbers
 - =, ≠, <, > , ‘square’
 - Example: {(0,0), (1,1), (2,2), (3,3)…} are the elements of = relation
 - Example: {(1,1),(2,4), (3,9)…} are elements of the ‘square’ relation
- N-ary relation defined over n sets A₁,A₂, A₃,…,Aₙ is a subset of A₁xA₂xA₃..xAₙ
Functions

- Function $R : A \rightarrow B$ is a binary relation over A, B such that
 - $\forall a \in A, \exists$ a unique $b \in B$ such that $(a, b) \in R$
 - $R(a) = b$
- A is domain of R
- B is co-domain of R
- Range (R) = $\{ b \in B | \exists a, R(a) = b \}$
 (\exists is there exists symbol)
Functions

- ‘square’ is a function from \(\mathbb{Z} \rightarrow \mathbb{N} \)
- Addition and multiplication are functions over natural numbers.
 - \(+ : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \)
 - \(\ast : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \)
- Any binary relation \(R \) on \(A, B \) can be seen as defining a function
 - \(f_R : A \times B \rightarrow \{ \text{true, false} \} \)
 - \(f_R(a, b) = \text{true if } (a, b) \in R, \text{false otherwise} \)
 - Example: \(=, \neq, <, > \)
 - \((5=3)\) is false, whereas \((5=5)\) is true
Mathematical Induction
Inductive Argument

- Generalizes a property from a finite set of instances to the whole set
Mathematical Induction – A Tool

- Defining functions and relations over natural numbers

- Proving correctness of theorems defined over natural numbers as arguments

- Useful for proving correctness of programs
Defining Functions

- **Function f**
- **Basis Step:**
 - $f(0) = k$
- **Induction Step:**
 - $f(n+1) = g(f, n)$

A finite definition structure!

Second order function
Defining Functions

- Factorial function
 - \(\text{fac}: \mathbb{N} \rightarrow \mathbb{N} \) (written as \(\text{fac}(n) = n! \))

- **Basis Step:**
 - \(\text{fac}(0) = 1 \)

- **Induction Step:**
 - \(\text{fac}(n+1) = (n+1) \times \text{fac}(n), \; \forall \; n \geq 0 \)
Composition

- Let \(R, S \) be binary relations defined on \(A \times A \)
 \[R \circ S = \{(a,c) \mid \exists b, (a,b) \in R \text{ and } (b,c) \in S\} \]
- \(N \)-fold composition
- Basis:
 \[R^1 = R \]
- Induction Step:
 \[R^{n+1} = R \circ R^n \]
- Useful for finding nodes \(n \)-hopes away in a graph
Proof by Induction

• Version 1:

• To Prove:
 ◦ A property P holds for all natural numbers.

• Basis Step:
 ◦ Property holds for $n = 0$

• Induction Step:
 ◦ If P holds for an arbitrary $n \geq 0$, then P holds for $n+1$

A finite proof structure!
Example

- **To Prove:**
 - $g(n) = (n^3 + 2n)$ is divisible by 3

- **Proof:**

- **Basis Step:**
 - $n = 0 \implies g(0) = 0$ is divisible by 3.

- **Induction Hypothesis:**
 - $g(n)$ is divisible by 3 ($n \geq 0$)
Example

Induction Step:

\[g(n+1) = (n+1)^3 + 2 \times (n+1) \]
\[= (n^3 + 1 + 3n^2 + 3n) + (2n + 2) \]
\[= (n^3 + 2n) + (3n^2 + 3n + 1 + 2) \]
\[= (n^3 + 2n) + 3(n^2 + 3n + 1) \]

Divisible by 3 due to induction hypothesis

\[\Rightarrow g(n+1) \text{ is divisible by 3} \]
Example

- **Induction Step:**
 - $g(n+1) = (n+1)^3 + 2 \cdot (n+1)$
 - $= (n^3 + 1 + 3n^2 + 3n) + (2n + 2)$
 - $= (n^3 + 2n) + (3n^2 + 3n + 1 + 2)$
 - $= (n^3 + 2n) + 3(n^2 + 3n + 1)$

$\Rightarrow g(n+1)$ is divisible by 3

How??

Divisible by 3 due to induction hypothesis

Divisible by 3
Proof by Induction

- Version 2:
- To Prove:
 - A property P holds for all natural numbers.
- Basis Step:
 - Property holds for \(n = k \) (\(k \geq 0 \))
- Induction Step:
 - If P holds for an arbitrary \(n \) (\(n \geq k \)), then P holds for \(n+1 \)

Version 1 – A special case (\(k = 0 \))
Example

- **To Prove:**
 - Two stamp denominations of Rs 3 and Rs 5.
 - Any stamp value ≥ 8 can be constructed using them.
 - Formally: $\forall n \geq 8$, $n = 3i + 5j$, for some $i, j \geq 0$

- **Proof:**

- **Basis Step:**
 - $n = 8 \Rightarrow 8 = 3*1 + 5*1$ ($i = 1, j = 1$)

- **Induction Hypothesis:**
 - $n = 3i + 5j$, $n \geq 8$, $i, j \geq 0$
Example

• **Induction Step:**
 • \(n + 1 = 3i + 5j + 1 \)
 • **If** \((j > 0)\)
 ◦ \(3i + 5j + 1 = 3i + 5(j - 1) + 5 + 1\)
 \[= 3i + 3 \cdot 2 + 5(j-1)\]
 \[= 3i + 6 + 5(j-1)\]
 \[= 3(i + 2) + 5(j-1)\]
 • **If** \((j = 0)\)
 ◦ \(3i + 5j + 1 = 3i + 1\) (\(i \geq 3\), since \(n \geq 8\))
 \[= 3(i - 3) + 9 + 1\]
 \[= 3(i-3) + 5 \cdot 2\]
 \[= 3(i-3) + 5j\) (where \(j=2)\)
Example

- $n + 1 = 3i + 5j + 1$
- If $(j > 0)$
 - $3i + 5j + 1 = 3i + 5(j - 1) + 5 + 1$
 - $= 3i + 3 * 2 + 5(j - 1)$
 - $= 3i + 6 + 5(j - 1)$
 - $= 3(i + 2) + 5(j - 1)$
- If $(j = 0)$
 - $3i + 5j + 1 = 3i + 1$ (i ≥ 3, since n ≥ 8)
 - $= 3(i - 3) + 9 + 1$
 - $= 3(i - 3) + 5 * 2$
 - $= 3(i - 3) + 5j$ (where j = 2)
Example

- \(n + 1 = 3i + 5j + 1 \)
- **If** \((j > 0) \)
 - \(3i + 5j + 1 = 3i + 5(j - 1) + 5 + 1 \)
 - \(= 3i + 3*2 + 5(j-1) \)
 - \(= 3i + 6 + 5(j-1) \)
 - \(= 3(i + 2) + 5(j-1) \)
- **If** \((j = 0) \)
 - \(3i + 5j + 1 = 3i + 1 \) (\(i \geq 3 \), since \(n \geq 8 \))
 - \(= 3(i -3) + 9 + 1 \)
 - \(= 3(i-3) + 5*2 \)
 - \(= 3(i-3) + 5j \) (where \(j=2 \))

How??

Base Case
Proof by Induction

- **Version 3:**
- **To Prove:**
 - A property P holds for all natural numbers.
- **Basis Step:**
 - Property holds for \(n = k \) (\(k \geq 0 \))
- **Induction Step:**
 - If P holds for all \(m, k \leq m \leq n \) for an arbitrary \(n \) (\(n \geq k \)), then P holds for \(n+1 \)

Version 1, 2 – Special cases
Example

- Let $F_0=0$, $F_1=1$, $F_2=1$... be the Fibonacci sequence where $F_n = F_{n-1} + F_{n-2}$
 - $\Phi = (1 + \sqrt{5})/2$

To Prove:

- $F_n \leq \Phi^{n-1}$ for $n > 0$

Proof:

Basis:

- $F_1 = 1 = \Phi^0$
Example

- Induction Hypothesis:
 \(F_m \leq \Phi^{m-1}, \forall 1 \leq m \leq n \)

- Induction Step:
 \(F_{n+1} = F_n + F_{n-1} \leq \Phi^{n-1} + \Phi^{n-2} \leq \Phi^{n-2}(1 + \Phi) \)

 \(1 + \Phi = 1 + (1 + \sqrt{5})/2 = (3 + \sqrt{5})/2 \)

 \(\Phi^2 = (1+\sqrt{5})^2/4 = (6+2\sqrt{5})/4 = (3 + \sqrt{5})/2 = 1 + \Phi \)

 \(\Rightarrow F_{n+1} \leq \Phi^{n-2}(1 + \Phi) = \Phi^{n-2} \Phi^2 = \Phi^n \)
Example

- **Induction Hypothesis:**
 \[F_n \leq \Phi^{n-1}, \forall 1 \leq m \leq n \]

- **Induction Step:**
 \[F_{n+1} = F_n + F_{n-1} \leq \Phi^{n-1} + \Phi^{n-1} \leq \Phi^{n-2}(1 + \Phi) \]

 \[1 + \Phi = 1 + (1 + \sqrt{5})/2 = (3 + \sqrt{5})/2 \]
 \[\Phi^2 = (1 + \sqrt{5})^2/4 = (6 + 2*\sqrt{5})/4 = \]
 \[= (3 + \sqrt{5})/2 = 1 + \Phi \]

 \[\Rightarrow F_{n+1} \leq \Phi^{n-2}(1 + \Phi) = \Phi^{n-2} \cdot \Phi^2 = \Phi^n \]
Proof by Induction

- **Version 0:**
 - A property P can be thought of as defining a set S such that
 - $S = \{x \mid x \text{ satisfies } P\}$

- **To Prove:**
 - A property P holds for the set of natural numbers.

- **Basis Step:**
 - $0 \in S$

- **Induction Step:**
 - If $n \in S$, then $n+1 \in S$
Programming Language
Syntax, Semantics, Debugging

- **Syntax**
 - The rules to write the program
 - \(a = 5 + 3 \)
 - `print a`
 - `print(a)`

- **Semantics**
 - What does the program actually accomplish?
 - The program prints the result of adding 5 and 3

- **Debugging**
 - Correcting the syntax and semantics
Python

- A high level language (vs low level)
 - C, C++, Java
- Interpreted (vs compiled)
Modes of Operation

- **Interactive Mode**
 - `[Terminal@] python`
 - `>>>>>print 5`
 - `5`

- **Script mode**
 - Create “myfile.py”
 - `a=5`
 - `print a`
 - `[Terminal@] python myfile.py`
 - `5`
Printing a String

- >>>>> print ‘Hello World’
- >>>>>> Hello World
Variables and Constants

- **Variables**
 - Can hold any value
 - Example: a, b, x2, y4, myvar

- **Constant**
 - Has a fixed value
 - 5, 6, ‘Hello’, 5.4
Data Types

- **int**
 - Integer valued numbers
- **float**
 - Floating point numbers (decimal numbers)
- **str**
 - Characters, Strings
- **bool**
 - {True, False}

```
>>> a=3
>>> type(a)
<type, 'int'>
```

Loosely typed language
Operators

- >>>>>> 2 + 3
- >>>>>> 5
- >>>>>> 5 * 7
- >>>>>> 35
- >>>>>> 8 / 5
- >>>>>> 1
- >>>>>> 8 % 5
- >>>>>>> 3
Precedence

- >>>>> 5*8+4/2=42
- Precedence order:
 - /, *, +, -
- Use of Brackets
 - >>>>> (5*8)+(4/2)
Assignment

- >>>>> n = 2+3
- >>>>> print n
- >>>>> 5
- >>>>> a = 2
- >>>>> b = 3
- >>>>> c = a + b
- >>>>> print c
- >>>>> 5
- >>>>> c = c + 1
- print c
Assignment

- >>>>> n = 2 + 3
- >>>>> print n
- >>>>> 5
- >>>>> a = 2
- >>>>> b = 3
- >>>>> c = a + b
- >>>>> print c
- >>>>> 5
- >>>>> c = c + 1
- print c
- 6
Program

- Write a program to print the number of hours, minutes and seconds in the year 2012.
Input Function

- >>>>> n = input('Please input a number:')
 5
- >>>>> print 'n is ', n
- >>>>> n is 5
Comparison Operators

- >, <, <=, >=, ==, !=
- Return ‘True’ or ‘False’ (Boolean type)
- >>>>> a = 5
- >>>>> a == 5
- True
Boolean Type

- Two values: True, False
- >>>>> a = (5 > 3)
- >>>>> print a
- >>>>> True

Boolean Operators
- and
 - >>>>> a = (5 > 3) and (5 > 6)
 - >>>>> print a
 - >>>>> False

- or
 - >>>>> a = (5 > 3) or (5 > 6)
 - >>>>> print a
 - >>>>> True
Boolean Type

- **not**
 - >>>>> not (5 == 5)
 - >>>>> True
 - >>>>> a = 6
 - >>>>> b = not (a == 6)
 - >>>>> print b
Boolean Type

- `not`
 - `>>> not (5 == 5)`
 - `True`
 - `>>> a = 6`
 - `>>> b = not (a == 6)`
 - `>>> print b`
 - `>>> False`
Conditionals

- Defined over Boolean variables
- If `< condition >` :
 - `<Code>`
- else:
 - `<Code>`
- Indentation is the key
Conditionals

- Example Program (script mode)

- a = input('Input a number: ')
- if (a == 3) :
 - print 'a is equal to 3'
- else:
 - print 'a is not equal to 3'
Program

- Write a program which takes as input an year and prints the number of hours, minutes and seconds in it (Remember to correctly handle the case for a leap year).