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Abstract

Many prediction tasks, especially in computer vision, are often inherently ambigu-
ous. For example, the output of semantic segmentation may depend on the scale
one is looking at. Similarly, image saliency or video summarization is often user
or context dependent. Arguably, in such scenarios, exploiting instance specific
evidence, such as scale or user context, can help resolve the underlying ambiguity
leading to the improved predictions. While existing literature has considered incor-
porating such evidence in classical models such as probabilistic graphical models
(PGMs), there is limited (or no) prior work looking at this problem in the context of
deep neural network (DNN) models. In this paper, we present a generic multi-task
learning (MTL) based framework which handles the evidence as the output of
one or more secondary tasks, while modeling the original problem as the primary
task of interest. Our training phase is identical to the one used by standard MTL
architectures. During prediction, we back-propagate the loss on secondary task(s)
such that network weights are re-adjusted to match the evidence. An early stopping
or two norm based regularizer ensures weights do not deviate significantly from
the ones learned originally. Implementation in a scenario of predicting semantic
segmentation given the image level tags clearly demonstrates the effectiveness of
our proposed approach.

1 Introduction

Over the last decade, Deep Neural Networks (DNNs) have become a leading technique for solving
variety of problems in Artificial Intelligence. Often, such networks are designed and trained for
a specific task at hand. When multiple correlated tasks are given, Multi-Task Learning (MTL)
[3] framework can be used to allow a DNN to jointly learn shared features from multiple tasks
simultaneously. Usually, in an MTL framework, one is interested in the output of all the tasks at hand.
However, researchers have also looked at the scenarios, when only a subset of tasks (called ‘principal’
task(s)) are of interest and the other tasks (called ‘auxiliary’ task(s)) are merely to help learn the
shared generic representation [9, 2, 14]. In such cases, auxiliary tasks are generally derived from
the easily available side information about the data. For example, one can use an MTL framework
for semantic segmentation of an image as a principal task, with an auxiliary task to predict types of
object present in the image.

One significant limitation of the MTL frameworks suggested so far is that they make use of auxiliary
information only during the training process. This is despite the fact that, many times such information
is also available at the test time e.g., tags on a Facebook image. Arguably, exploiting this information
at test time can significantly boost up prediction accuracy by resolving the underlying ambiguity
and/or correcting modelling errors. We will henceforth refer to the instance specific auxiliary
information as evidence.
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A natural question to ask is, whether there is a way to incorporate similar instance specific additional
clues in modern deep neural network models. Similar works in classical machine learning literature
such as PGMs [7] have used conditional inference to achieve this objective. A closely related research
area that incorporates additional features from auxiliary information is multi-modal learning [11].
Practically designing a network when the auxiliary information comes from a highly sparse source
can be quite difficult. E.g., improving segmentation using image level tags seems non-trivial due to
the varied kinds of features in the two cases. There has been some recent work on doing this [15],
albeit with marginal improvements. FiLM [13] proposes a general architecture for conditioning on
available information, but do not explicitly deal with auxiliary information as evidence. Another
limitation of multi-modal based approaches is that they require jointly annotated data for training.

Some recent works [12, 17, 10] have proposed constraining the output of DNN at training time,
to help regularize the output and reduce the amount of training data required. Lee et al. [8] have
proposed to enforce test time constraints on a DNN output. However, while their idea is to enforce
‘prior hard (or soft) constraints’ arising out of natural rule based processing, our framework is inspired
from using any easily available and arbitrary type of auxiliary information.

We model our task of interest, e.g., semantic segmentation, as the primary task in the MTL framework.
The evidence is modelled as the output of one or more secondary tasks, e.g., image tags. While our
training process is identical to the one used by standard MTL architectures, our testing phase is quite
different. Instead of simply doing a forward propagation during prediction, we back-propagate the
loss on the output of the secondary tasks (evidence) and re-adjust the weights learned to match the
evidence. In order to avoid over-fitting the observed evidence, we employ a regularizer in the form
of two norm penalty or early stopping, so that the weights do not deviate significantly from their
originally learned values. Notably, our approach does not require jointly annotated data for training.

The specific contributions of this work are as follows: (1) We propose a novel adaptation of the MTL
framework which can incorporate evidence at test time to improve predictions of a DNN. (2) We
suggest two approaches to re-adjust the weights of the deep network so as to match the network output
to evidence. (3) We demonstrate the efficacy of proposed framework by improving state-of-the-art
results on semantic segmentation problem.

The work is under-progress. This is a preliminary version of our work for quick dissemination.

2 Proposed Framework for Back-propagating Evidence
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Figure 1: Proposed Architecture for incorporating
evidence during both train and prediction times.

In this section, we present our approach for
boosting up the accuracy of a given task of in-
terest by incorporating evidence. Our solution
employs a generic MTL [16] based architecture
which consists of a main (primary) task of in-
terest, and another auxiliary task whose desired
output (label) represents the evidence in the net-
work. The key contribution of our framework
is its ability to back-propagate the loss on the
auxiliary task during prediction time, such that
weights are re-adjusted to match the output of
the auxiliary task with given evidence. In this process, as we will see, the shared weights (in MTL)
also get re-adjusted producing a better output on the primary task. This is what we refer to as
back-propagating evidence through the network (at prediction time).

Notation We will use P to denote the primary task of interest. Similarly, let A denote the auxiliary
task in the network. x(i) is input feature vector, y(i) is desired output (label) of the primary task,
and a(i) denotes the desired output (label) of the auxiliary task for the ith training example, .
Correspondingly, let ŷ(i) and â(i) denote the output produced by the network for the primary task
and auxiliary tasks, respectively.

Model Figure 1 shows the MTL based architecture [16] for this set-up. There is a common set of
layers shared between the two tasks, followed by the task specific layers. z represents the common
hidden feature representation fed to the two task specific parts of the architecture. For ease of notation,
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we will refer to the shared set of layers as trunk. The network has three sets of weights. The weights
in the trunk are denoted by Wzx. Weights in the two task specific branches are denoted by Wyz

and Waz , respectively. The total loss LTrain(·) is a function of these weight parameters and can be
defined as:

LTrain(·) =
m∑
i=1

(
LP (y

(i), ŷ(i))
)
+ λ

m∑
i=1

(
LA(a

(i), â(i))
)

Here, LP (·) and LA(·) denote the loss for the primary and auxiliary tasks, respectively. λ is the
importance weight for the auxiliary task. The sum is taken over the m examples in the training set.
LP is a function of the shared set of weights Wzx, and the task specific weights Wyz . Similarly, and
LA is a function of the shared weights Wzx and task specific weights Waz , respectively.

Training Training process is identical to the one used by standard MTL, where the goal of training
is to find the weights which minimize the total loss over the training data. Note that the weights in
the task specific branches, i.e., Wyz and Waz , can only affect losses defined over the respective tasks.
On the other hand, weights Wzx in the trunk affect the losses defined over both the primary as well
as the auxiliary tasks. The weights are learned using standard the back-propagation algorithm. Next,
we describe our approach of back-propagating the loss over the evidence at test time.

Prediction time During test time, we are given additional information about the output of the
auxiliary task. Let us denote this by e (evidence) to distinguish it from the auxiliary outputs during
training time. Then, for the inference, instead of directly proceeding with the forward propagation,
we instead first decide to adjust the weights of the network such that the network is forced to match
the evidence e on the auxiliary task. Since the two tasks are correlated, we expect that this process
will adjust the weights of the network in a manner such that resolving the ambiguity over the auxiliary
output will also result in an improved prediction over the primary task of interest.

This feat can be achieved by defining a loss in terms of LA(â, e) and then back-propagating its
gradient through the network. Note that this loss only depends on the set of weights Waz in the
auxiliary branch, and the weights Wzx in the trunk. In particular, the weights Wyx remain untouched
during this process. Finally, we would also like to make sure that our weights do not deviate too
much from the originally learned weights. This is to avoid over-fitting over evidence. This can be
achieved by adding a two-norm based regularizer which discourages weights which are far from the
originally learned weights. The corresponding weight update equations can be derived using the
following gradients:

1. ∇Waz
LTest(·) = ∇Waz

LA(â, e) + α||Waz −W ∗az||2

2. ∇Wzx
LTest(·) = ∇zLA(â, e)∇Wzx

(z) + α||Wzx −W ∗zx||2

Here, W ∗az and W ∗zx denote the weights learned during training and α is the regularization parameter.
These equations are similar to the ones which would be used during training, with the differences that
(1) The loss is now computed with respect to the single test example (2) Effect of the term dependent
on primary loss has been zeroed out (3) A regularizer term has been added. In our experiments, we
also experimented with early stopping instead of adding the norm based regularizer. Figure 1 explains
the weight update during test time pictorially. Once the new weights are obtained, they can be used
in the forward propagation to obtain the desired value ŷ on the primary task.

3 Experiments on Image Segmentation

The task of semantic segmentation involves assigning a label to each pixel in the image from a fixed
set of object categories. In many semantic segmentation applications, image level tags are often easily
available. We explore the use of such tags as auxiliary information at test time for improving the
prediction accuracy.

Our Implementation Our implementation builds on DeepLabv3+ [4] which in one of the state of
the art segmentation models. For ease of notation, we will refer the DeepLabv3+ model as ‘DeepLab’.
To use our framework, we have extended the DeepLab architecture1 to simultaneously solve the

1https://github.com/tensorflow/models/tree/master/research/deeplab.

3

https://github.com/tensorflow/models/tree/master/research/deeplab


image tag prediction task in an MTL setting. Starting with the original DeepLab architecture (top part
in the figure), we branch off after the encoder module to solve the classification task. The resultant
feature map is passed through an average pooling layer, a fully connected layer, and then finally a
sigmoid activation function to get the probability for each of the image tags (except background).

For training, we make use of cross-entropy based loss for the primary, and binary cross entropy
loss for the secondary task. We use pre-trained Deeplab model [1] to initialize the weights in the
MTL based architecture (for the segmentation branch). The weights in the classification branch are
randomly initialized. This is followed by a joint training of the MTL architecture. During prediction
time, for each image, we back-propagate the binary cross entropy loss based on observed evidence
over the auxiliary task (for test image) resulting in weights re-adjusted to fit the evidence. These
weights are used to make the final prediction (per-image).

Method mIoU
Without MS With MS

DL 82.45 83.58
DL-MT 82.59 83.54
DL-MT-Pr 84.23 84.84
DL-BP-L2 85.97 86.88
DL-BP-ES 86.01 86.84
DL-BP-L2-Pr 86.10 87.00
DL-BP-ES-Pr 86.22 87.03

Table 1: Comparison of results for seman-
tic segmentation on PASCAL VOC.

Methodology and Dataset We compare the perfor-
mance of following seven models in our experiments:
(a) DL (b) DL-MT (c) DL-MT-Pr (d) DL-BP-ES (f) DL-
BP-ES-Pr (g) DL-BP-L2 (h) DL-BP-L2-Pr. The first
model (DL) uses vanilla DeepLab based architecture.
The second (DL-MT) is trained using an MTL frame-
work as described above. These are our baseline models
without use of any auxiliary information. The suffix ‘Pr’
in the model name refers to post-processing step of prun-
ing the output classes at each pixel using the given image
tags. The probability of each label which is not present
in the tag set is forced to be zero at each pixel. This
is a very simple model using the auxiliary information.
Models with prefix DL-BP refers our proposed approach

where we back-propagate the auxiliary information at prediction time. These can be combined with
the Pr based model. We experiment with two variations based on the choice of regularizer during
prediction: DL-BP-ES uses early stopping and DL-BP-L2 uses an L2-norm based penalty.

Input Image Ground Truth DL-MT DL-MT-Pr DL-BP-ES-PrImage Tags

Person
Dining-table

Dog
Cat
Sofa

Figure 2: Comparison of visual results on semantic
segmentation problem using image level tags as
the test time auxiliary information.

Similar to original DeepLab paper [4] we also
experiment with inputting the images at mul-
tiple scales. We refer to this as multi-scaling
(MS) based approach. For our evaluation, we
make use of augmented PASCAL VOC 2012
segmentation benchmark [6, 5]. It consists of 20
foreground object classes and one background
class. The dataset contains 10582 training and
1449 validation images. We use mean intersec-
tion over union (mIOU) as our evaluation metric
which is a standard for segmentation tasks.

Results Table 1 presents the results comparing the performance of various models. We see some
improvement in prediction accuracy due to use of pruning the output over the baseline models.
However, using our backpropagation based approach results in further significant improvement over
the baselines. Additional pruning on top of our models results in marginal improvements. The gain is
as much as 3.45 mIoU points compared to vanilla DeepLab and more than 2.19 points compared to
the MTL based architecture with pruning (with MS). Figure 2 shows the visual comparison of results
for a set of hand picked examples. The first row shows improvement in segmentation of ‘dining
table’, second row shows the detection of a new object ‘sofa’ by our technique using test time tags.

4 Conclusion

We have presented a novel approach to incorporate evidence into deep networks at prediction time.
Our key idea is to model the evidence as auxiliary information in an MTL architecture and then
modify the weights at prediction time such that output of auxiliary task(s) matches the evidence.
The approach is generic and can be used to improve the accuracy of existing diverse neural network
architectures for variety of tasks, using easily available auxiliary information at test time.
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