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Abstract

Several works have explored the use of CRFs as a post-processing step at the
end of a neural model to explicitly impose structure in the output space. This
has resulted in improved performance in many domains with inherent structure
over the output variables e.g., labels over pixels in an image. As an extension,
joint training of neural-CRF models has also been explored albeit with limited
success. This is due to the high cost of CRF inference which becomes a bottleneck
in each iteration of back-propagation. On the other side of the spectrum, there
has been tremendous progress in the graphical models community on the topic of
lifted inference. Lifted inference algorithms exploit symmetry of the underlying
model to significantly reduce the computational cost of graphical model inference.
In this paper, we set out to explore the following question: Can the advances in
lifted inference be leveraged to speed up the joint training of neural-CRF models?
Answering in affirmative, our analysis shows that while pure lifted inference does
not help in reducing the cost of training (without compromising the quality), a
hybrid approach does the job where we gradually refine the level of lifting as
the learning proceeds. As the main contribution of our paper, we present LIFT:
Lifted Inference for Faster Training, a generic algorithm for faster joint training
of neural-CRF models. Experiments in stereo-vision show that our approach can
result in up to 50% reduction in training time without any loss in accuracy.

1 Introduction

Neural models have demonstrated impressive performance gains in a large number of applications
including those in NLP, vision, speech and biology. Despite their ability to automatically construct
useful features from raw data, e.g., words in a document or pixels in an image, they still suffer from
the lack of ability to explicitly model dependency in the output space. Though one could argue that
with enough amount of data these could automatically be learned, an alternate approach directly tries
to capture these dependencies in the modeling phase itself. Graphical models such as CRFs, naturally
do this by explicitly modeling a joint distribution over the complete output space. Naturally, existing
literature has explored a combination of the two where either (1) a CRF is used as a post-processing
step with the neural model to impose structure on the output, e.g. Chen et al. [2018] or (2) a
neural-CRF model is jointly trained in an end-to-end fashion where the neural model parameters get
fine-tuned based on the feedback from the downstream CRF inference, e.g. Zheng et al. [2015].

While both of the above approaches have resulted in improved performance for a large number of
tasks, with the latter giving even more benefits, a significant challenge remains. The cost of joint
training becomes prohibitively expensive primarily due to the high cost of CRF inference which
is required during each step of the learning in the back-propagation algorithm. As a temporary

∗First two authors contributed equally to the paper

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



remedy, existing literature has explored the use of specialized inference techniques such as DualMM
(Shekhovtsov et al. [2016]) or ad-hoc heuristics such as running the inference only for a small number
of steps (Zheng et al. [2015]), or a combination of the two (Knöbelreiter et al. [2017]). But to the best
of our knowledge, there has not been a concrete solution to reduce the cost of training by tackling
the issue of costly CRF inference. On the other hand, there has been a lot of progress in the lifted
inference community, which has independently tried to exploit the underlying symmetry resulting in
significant speed ups in the cost of graphical model inference (Kimmig et al. [2015]). The key idea is
to reduce the size of the underlying CRF graph by merging nodes (variables) that behave similar to
each other for the task of inference.

In this paper, we set out to explore whether we can leverage the progress in lifted inference to speed
up the end-to-end training of neural-CRF models, by making the CRF inference step more efficient.
Our analysis shows that vanilla lifting may not be effective for faster training due to loss in quality
of the learned parameters. Inspired by the ideas of Habeeb et al. [2017], which refined the lifted
partitions in a coarse-to-fine manner during inference, we propose a similar scheme for coarse-to-fine
training where the refinement takes place over different learning iterations. Specifically, while in
each learning iteration we fix the level of lifting, we gradually refine it as the learning proceeds. This
has the advantage of roughly moving in the direction of gradient in the beginning at a faster pace,
while being more precise as learning converges.

As the main contribution of our paper, we present LIFT: Lifted Inference for Faster Training, which
is a generic coarse-to-fine lifting algorithm for faster training of neural-CRF models. Our algorithm
can achieve almost an order of magnitude speed-up in the initial learning epochs, without any loss
in quality of final parameters. We demonstrate the usefulness of our approach on a Stereo-Vision
dataset Kitti2015 (Menze et al. [2018]) where our approach can reduce the training time up to 50%.
In the rest of the paper, we will explain our ideas in the context of computer vision problems where
coarse-to-fine lifting seems very natural and that is where we have done most of our experimentation.
But we believe these ideas can be extended to other tasks where complex CRF inference is needed.

2 Background
One of the popular approaches for the joint training of a neural-CRF model is based on maximizing
the margin loss in a Structured SVM framework. Specifically, we follow the framework used
by Knöbelreiter et al. [2017]. Given an image I having N pixels, each having possible labels
{1, 2, · · · , L}, let xg be the ground truth labeling and X be the set of all labelings. The maximum-
margin loss for structured output spaces is as follows:

minU,H,λ l(x∗, xg) s.t x∗ ∈ arg min
x∈X

E(x) (1)

where E(x) is the energy of a labeling x, given by E(x) =
N∑
i=1

U(xi) + λ
∑
xc∈C

H(xc). Here, U is

unary energy for each pixel while H represents higher order energies defined over cliques C capturing
smoothness constraints among neighbouring pixels. λ parameter captures the trade-off between two
energies. Typically, unary energies are learnt from neural networks, while higher order energies
are manually defined. The loss function defined above is non-differentiable and hence requires the
use of sub-gradients. The sub-gradient of loss w.r.t. U is given by δ(xg)− δ(x̄) where δ(xg) is an
N × L matrix, each row being a 1-hot encoding of the ground truth label of that pixel and x̄ is the
solution to the loss-augmented inference (details in Knöbelreiter et al. [2017]). The sub-gradient of
loss w.r.t. U is backpropagated through the neural network during end-to-end training. The central
issue in this optimization is that each sub-gradient computation includes a computationally expensive
CRF inference as a sub-routine. While the backpropagation through the whole network is quick, the
costly CRF inference discourages one to use CRF in an end-to-end training framework. A typical
neural-CRF training procedure is shown in Algorithm 1.

Lifted Inference: On the other hand, there has been a lot of progress towards improving the efficiency
of CRF inference algorithms by exploiting symmetries. Many recent works works, e.g. Habeeb et al.
[2017]; Jernite et al. [2015]; Nath and Domingos [2016], have used approximate lifted inference for
speeding up prediction in computer vision and natural language processing applications. Habeeb et al.
[2017] merge image pixels using a top-K labels heuristic and the color passing algorithm ( Kersting
et al. [2009]) to obtain smaller networks of different granularities. These lifted networks are then
used to speedup inference in a coarse-to-fine algorithm. Inspired from these works, we intend to
leverage the advances in lifted inference to improve the training efficiency of neural-CRF models.
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3 LIFT framework
We set out to answer the question: can the power of lifting be used to make the CRF inference step
faster in the end-to-end training of neural-CRF models? It turns out that though vanilla (approximate)
lifting may not give much benefit without a loss in the quality of training, a more involved approach
where we gradually refine the lifting partitions as we proceed through learning iterations results
in desired gains without any loss in quality. The key idea is motivated by the fact that during the
first few iterations of learning, we only care about the rough gradient direction, whereas we would
like to be more precise as the learning proceeds. We name the framework based on this insight as:
LIFT: Lifted Inference for Faster Training. It is a generic procedure for faster training in neural-CRF
models. While Habeeb et al. [2017] use coarse-to-fine for efficient inference in graphical models,
LIFT uses the coarse-to-fine refinement across different learning iterations and the level of lifting is
kept constant for solving inference during any given learning iteration.

Algorithm 2 describes LIFT in detail. The lines that differ from Algorithm 1 (standard method for
joint training) are highlighted in bold. LIFT takes an additional parameter Lift_Sched to specify
the coarse-to-fine lifting schedule. In step 6, lifting algorithm, Lift_Unaries, returns lifted loss
augmented unaries based on the schedule for that epoch as specified by Lift_Sched. Step 7 runs the
inference algorithm A as in Algorithm 1, but on a reduced CRF graph LUL. In step 8, the solution
obtained for the lifted network is mapped back to the original ground network by assigning the same
label to the pixels which fall in the same lifting cluster. Rest of the learning proceeds as earlier using
the modified gradients.

Algorithm 1 Base Algorithm
Training(Training Set IT, Inf-Algo A)

1 Initialize W
2 for i ∈ {1, 2 · · ·num_epochs} do
3 forall I ∈ IT do
4 U← NN(W, I)
5 UL ← GetLossAugUnaries(U, xg)
6 x̄ = Inference(A,UL, H)
7 SubGrad← F (x̄, xg)
8 Update W

end
end

9 return Model Weights W

Algorithm 2 LIFT Algorithm
Lifted Training(Training Set IT, Inf-AlgoA, Lift-
ing_Schedule Lift_Sched)

1 Initialize W
2 for i ∈ {1, 2 · · ·num_epochs} do
3 forall I ∈ IT do
4 U← NN(W, I)
5 UL ← GetLossAugUnaries(U, xg)
6 LUL ← Lift_Unaries(UL,Lift_Sched[i])
7 l̄x← Inference(A,LUL, H)
8 x̄← Ground_Labels(l̄x,Lift_Sched[i])
9 SubGrad← F (x̄, xg)

10 Update W
end

end
11 return Model Weights W

4 Experiments on Stereo-Vision

Figure 1: LIFT is anytime better than baseline.

We experimentally answer the question: does LIFT give any performance benefits compared to
the baseline (Algorithm 1) for end-to-end learning in the task of stereo-vision. Here, the goal is to
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Splitup of Total Training Time

Algorithm Type of
Inference Epochs

Time per
Epoch
(mins)

Baseline Ground 10 196

LIFT K = 1,
CPIter = 0 6 22

Ground 3 187

Table 1: Detailed train time and lift schedule

Model bad3 (%) Total
Time (mins)

CNN-7 19.95 494
CNN-7 + CRF
(Post-process) 12.34 494

CNN-7 + CRF
(End-to-End) 8.58 2454

CNN-7 + CRF
(LIFT) 8.60 1187

Table 2: Train time & accuracy comparison

estimate the depth of each pixel in an image given the left and the right images of a scene. We use the
architecture proposed by Knöbelreiter et al. [2017], which achieves near state-of-the-art accuracy
using a very simple neural model followed by a CRF trained in an end-to-end fashion. Knöbelreiter
et al. [2017] use a highly specialized inference technique called Dual-MM, which exploits the grid
structure of the graph, and, hence, can be parallelized on a GPU. Since the goal of our paper is to
work with a more generic inference algorithm applicable across a variety of domains, we replace
their Dual-MM with a generic off-the-shelf Alpha-Expansion Fusion algorithm (Ishikawa [2009],
implemented in OpenGM library (Andres et al. [2012]).

Methodology and Dataset: Due to non-availability of training code by Knöbelreiter et al. [2017],
we use our own implementation. We use a 7-layered CNN network for learning the unaries. Further,
we use the Potts based pairwise potentials in the CRF. We set the parameter λ (see background), to
0.2. As described in Knöbelreiter et al. [2017], we learn the parameters using a 2-stage training. In
the first phase, a neural network is trained to learn the unaries without the use of a CRF. In the second
phase, these unaries are fine-tuned in an end-to-end fashion using a neural-CRF model as described
above. Note that first phase of training is identical for LIFT as well the baseline and takes 8.37 hours.
We use the benchmark Kitti2015 (Menze et al. [2018]) dataset for evaluation. The dataset is split
into about 80% training and 20% validation set, obtaining 161 train and 39 validation images. We
measure our performance using the standard error metric of bad3 (for stereo-vision), which computes
the percentage of pixels with the difference from true label > 3.

Results: Figure 1 compares the learning curves for LIFT and the baseline in the second stage of
training where we plot bad3 error on Y-axis with the training time on X-axis. We observe that LIFT
reaches the same bad3 error as achieved by the baseline algorithm but in much less time. Further,
at any given time, LIFT significantly outperforms the baseline algorithm. To our surprise, running
LIFT further in fact improved the error rate to 8.20% from 8.6% achieved by the baseline. Table 1
shows the detailed training time during different epochs of training. In this case, LIFT has used two
lifting levels: (1) (K = 1, CPIter = 0) for 6 training epochs, followed by (2) completely ground
network for last 3 epochs. Observe that time per epoch for the ground network is slightly different for
both algorithms - this is due to the fact that we run inference algorithm till the energy of the network
plateaus, which may take different number of iterations depending upon unaries. As can be seen,
training is extremely fast during the first (coarse) level of lifting where each epoch takes an average of
22 minutes compared to average of 196 per epoch for the baseline. Table 2 compares the total training
time for various methods. We observe that adding CRF at the post-processing stage significantly
reduces the error, which clearly illustrates the efficacy of using CRF. Further, there is a significant
improvement with end-to-end training but it increases the training time by 6x. LIFT maintains the
error rate of end-to-end training which is 8.6% and at the same time obtains 50% reduction in training
time compared to the baseline.

5 Conclusion and Future Directions
In this work, we have provided a novel application of lifted inference for speeding-up end-to-end
training of neural-CRF models. Our idea is based on the fact that during initial learning iterations,
it suffices to work with an approximate gradient direction (computed using lifted inference), which
can be refined as the learning proceeds. We have demonstrated the applicability of our approach
on the task of stereo-vision. Our initial experiments have shown a lot of promise, which paves
the way for some interesting future work directions. Some of these include whether we can come
up with theoretical guarantees for our learning procedure, how well our results generalize to other
applications and finally, whether we can exploit lifting even in the presence of highly specialized
inference algorithms, which are customized to specific tasks.
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