
Non-Count Symmetries in Boolean & Multi-Valued Prob. Graphical Models

Ankit Anand1 Ritesh Noothigattu1 Parag Singla and Mausam
Department of CSE

I.I.T Delhi
Machine Learning Department1

Carnegie Mellon University
Department of CSE

I.I.T Delhi

Abstract

Lifted inference algorithms commonly exploit
symmetries in a probabilistic graphical model
(PGM) for efficient inference. However, exis-
ting algorithms for Boolean-valued domains can
identify only those pairs of states as symmetric,
in which the number of ones and zeros match ex-
actly (count symmetries). Moreover, algorithms
for lifted inference in multi-valued domains also
compute a multi-valued extension of count sym-
metries only. These algorithms miss many sym-
metries in a domain.

In this paper, we present first algorithms to
compute non-count symmetries in both Boolean-
valued and multi-valued domains. Our methods
can also find symmetries between multi-valued
variables that have different domain cardinali-
ties. The key insight in the algorithms is that they
change the unit of symmetry computation from a
variable to a variable-value (VV) pair. Our ex-
periments find that exploiting these symmetries
in MCMC can obtain substantial computational
gains over existing algorithms.

1 Introduction
A popular approach for efficient inference in probabilis-
tic graphical models (PGMs) is lifted inference (see [11]),
which identifies repeated sub-structures (symmetries), and
exploits them for computational gains. Lifted inference al-
gorithms typically cluster symmetric states (variables) to-
gether and use these clusters to reduce computation, for
example, by avoiding repeated computation for all mem-
bers of a cluster via a single representative. Lifted ver-
sions of several inference algorithms have been developed

1First two authors contributed equally to the paper. Most of
the work was done while the second author was at IIT Delhi.

Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale,
Florida, USA. JMLR: W&CP volume 54. Copyright 2017 by
the author(s).

such as variable elimination [21, 6], weighted model count-
ing [8], knowledge compilation [26], belief propagation
[23, 10, 24], variational inference [2], linear program-
ming [19, 16] and Markov Chain Monte Carlo (MCMC)
[28, 9, 17, 25, 1].

Unfortunately, to the best of our knowledge, all algorithms
compute a limited notion of symmetries, which we call
count symmetries. A count symmetry in a Boolean-valued
domain is a symmetry between two states where the total
number of zeros and ones exactly match. An illustrative al-
gorithm for Boolean-valued PGMs (which we build upon)
is Orbital MCMC [17]. It first uses graph isomorphism to
compute symmetries and later uses these symmetries in an
MCMC algorithm. Symmetries are represented via permu-
tation groups in which variables interchange values to cre-
ate other symmetric states. Notice, that if a state has k ones
then any permutation of that state will also have k ones;
this algorithm can only compute count symmetries.

Similarly, lifted inference algorithms for multi-valued
PGMs (e.g., [21, 2]), only compute a weak extension of
count symmetries for multi-valued domains – they allow
symmetries only between those sets of variables that have
the same domain. And, the count, i.e. the number of oc-
curences, of any value (from the domain) within this set of
variables remains the same between two symmetric states.

In response, we develop extensions to existing frameworks
to enable computation of non-count symmetries in which
the count of a value between symmetric states can change.
We can also compute a special form of non-count sym-
metries, non-equicardinal symmetries in multi-valued do-
mains, in which two variables that have different domain
sizes may be symmetric. Our key insight is the framework
of symmetry groups over variable-value (VV) pairs, instead
of just variables. It allows interchanging a specific value of
a variable with a different value of a different variable.

Orbital MCMC suffices for downstream inference over
most kinds of symmetries except non-equicardinal ones,
for which a Metropolis Hastings extension is needed. Our
new symmetries lead to substantial computational gains
over Orbital MCMC and vanilla Gibbs Sampling, which
doesn’t exploit any symmetries. We make the following

ar
X

iv
:1

70
7.

08
87

9v
1

 [
cs

.A
I]

 2
7

Ju
l 2

01
7

Non-Count Symmetries in Boolean & Multi-Valued Prob. Graphical Models

contributions:

1. We develop a novel framework for symmetries be-
tween variable-value (VV) pairs, which generalize
existing notions of variable symmetries (Section 3).

2. We develop an extension of this framework, which
can also identify Non-Equicardinal (NEC) symme-
tries, i.e., among variables of different cardinalities
(Section 4).

3. We design a Metropolis Hastings version of Orbital
MCMC called NEC-Orbital MCMC to exploit NEC
symmetries (Section 5).

4. We experimentally show that our proposed algorithms
significantly outperform strong baseline algorithms
(Section 6). We also release the code for wider use2.

2 Background
Let X = {X1, X2, · · · , Xn} denote a set of Boolean val-
ued variables. A state s = {(Xi, vi)}ni=1 is a complete
assignment to variables in X , with values vi ∈ {0, 1}. We
will use the symbol S to denote the entire state space.

A permutation θ of X is a bijection of the set X onto itself.
θ(Xi) denotes the application of θ on the variable Xi. We
will refer to θ as a variable permutation. A permutation θ
applies on state s to produce θ(s), the state obtained by per-
muting the value of each variable Xi in s to that of θ(Xi).
A set of permutations Θ is called a permutation group if it
is closed under composition, contains the identity permuta-
tion, and each θ ∈ Θ has its inverse in the set.

A graphical model G over the set of variables X is defined
as the set of pairs {fj , wj}mj=1 where fj is a feature func-
tion over a subset of variables in X and wj is the corre-
sponding weight [12]. Drawing parallels from autompor-
phism of a graph where a variable permutation maps the
graph back to itself, we define the notion of automorphism
(referred to as symmetry, henceforth) of a graphical model
as follows [18].

Definition 2.1. A permutation θ of X is a variable symme-
try of G if application of θ on X results back in G itself,
i.e., the same set {fj , wj}mj=1 as in G. We also call such
permutations as variable permutations.

Correspondingly, we define the autormorphism group of a
graphical model.

Definition 2.2. An automorphism group of a graphical
model G is a permutation group Θ such that ∀θ ∈ Θ, θ
is a variable symmetry of G.

Another important concept is the notion of an orbit of a
state resulting from the application of a permutation group.

2https://github.com/dair-iitd/nc-mcmc

Definition 2.3. The orbit (Γ) of a state s under the per-
mutation group Θ, denoted by ΓΘ(s), is the set of states
resulting from application of permutations θ ∈ Θ on s, i.e.,
ΓΘ(s) = {s′|∃θ ∈ Θ, θ(s) = s′}.

Note that orbits form an equivalence partition of the entire
state space. In this work, we are interested in orbits ob-
tained by application of an automorphism group, because
all states in such an orbit have the same joint probability.
Let PG(s) denote the joint probability of a state s under G.

Theorem 2.1. Let Θ be an automorphism group of G.
Then for all states s and permutations θ ∈ Θ: PG(s) =
PG(θ(s)).

2.1 Graph Isomorphism for Computing Symmetries

The procedure for computing an automorphism group [17]
first constructs a colored graph GV (G) from the graphical
model G, in which all features are clausal or all features
are conjunctive.3 In this graph there are two nodes for each
variable, one for each literal, and a node for each feature
in G. There is an edge between two literal nodes of a vari-
able, and between a literal node and a feature if that literal
appears in that feature in the graphical model. Each node
is assigned a color such that all 1 value nodes get the same
color, all 0 value nodes get the same color (but different
from 1 node color), and all feature nodes get a unique color
based on their weight. That is, two feature nodes have the
same color if their weights in G are the same.

A graph isomorphism solver (e.g., Saucy [5]) over GV (G)
outputs the automorphism group of this graph through a
set of permutations. These permutations can be easily con-
verted to variable permutations of G, because any output
permutation always maps a variable’s 0 and 1 nodes to an-
other variable’s 0 and 1 nodes, respectively. These permu-
tations collectively represent an automorphism group of G.

2.2 Orbital Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are one of
most popular methods for inference where exact inference
is hard. In these methods, a Markov chainM is set up over
the state space and samples are generated. Running the
chain for a sufficiently long time, starts generating samples
from the true distribution. Gibbs sampling is one of the
simplest MCMC methods.

Orbital MCMC [17] adapts MCMC to use the given vari-
able symmetries of the graphical model G. Given a Markov
ChainM and starting from state st, Orbital MCMC gener-
ates the next sample st+1 in two steps:

• It first generates an intermediate state s′t by sampling
from the transition distribution ofM starting from st

3Each model can be pre-converted to a new model in which all
features are clausal.

Ankit Anand1, Ritesh Noothigattu1, Parag Singla, Mausam

• It then samples state st+1 uniformly from ΓΘ(s′t), the
orbit of s′t

The Orbital MCMC chain so constructed converges to the
same stationary distribution as original chain M and is
proven to mix faster, because of the orbital moves.

3 Variable-Value (VV) Symmetries
Existing work has defined symmetries in terms of variable
permutations. We observe that these can only represent or-
bits in which all states have exactly the same count of 0s
and 1s. The simple reason is that any variable permuta-
tion only permutes the values in a state and hence the total
count of each value remains the same. We name such type
of symmetries as count symmetries.

We now give a formal definition of count symmetries for a
general multi-valued graphical model, since our work ap-
plies equally to both Boolean-valued as well as any other
discrete valued domains. Let X = {X1, X2, · · · , Xn} de-
note a set of variables where each Xi takes values from
a discrete valued domain Di. A permutation θ of X is a
valid variable permutation if it defines a mapping between
variables having the same domain. Analogously, we define
a valid variable symmetry. We will say that two domains
Di and Dj are equicardinal if |Di| = |Dj |. We call such
variables equicardinal variables.

Definition 3.1. Given a set of variables X ⊆ X sharing
the same domain D and a v ∈ D, countX(s, v) computes
the number of variables in X taking the value v in state s.

Definition 3.2. Given a domain D, let XD denote the
subset of all the variables whose domain is D. A (valid)
variable symmetry θ is a count symmetry if for each such
subset XD ⊆ X , countXD

(s, v) = countXD
(θ(s), v),

∀v ∈ D,∀s ∈ S.

Theorem 3.1. For a graphical model G, every (valid) vari-
able symmetry θ is a count symmetry.

We argue here that count symmetries are restrictive; a lot
more symmetry can be exploited if we simultaneously look
at the values taken by the variables in a state. To illus-
trate this, consider a very simple graphical model G1 with
the following two formulas: (a) w1: a ∨ ¬b (b) w2: ¬a
∨ b. It is easy to see that there is no non-trivial symmetry
here. The permutation θ(a) = b, θ(b) = a results in a dif-
ferent graphical model since the two formulas have differ-
ent weights. On the other hand, if we somehow could per-
mute a with ¬b and b with ¬a, we would get back the same
model. In this section, we will formalize this extended no-
tion of symmetry which we refer to as variable-value sym-
metry (VV symmetry in short).

Definition 3.3. Given a set of variables X =
{X1, · · · , Xn} where each Xi takes values from a domain
Di, a variable-value (VV) set is a set of pairs {(Xi, v

i
l)}

such that each variable Xi appears exactly once with each
vil ∈ Di in this set where vil denotes the lth value inDi. We
will use SX to denote the VV set corresponding to X .

For example, given a set X = {a, b} of Boolean variables,
the VV set is given by {(a, 0), (a, 1), (b, 0), (b, 1)}.
Definition 3.4. A Variable-Value permutation φ over the
VV set SX is a bijection from SX onto itself.

Recall that a variable permutation applied to a state in a
Boolean domain always results in a valid state. However,
that may not be true in multi-valued domains, since if two
variables that have different domains are permuted, it may
not result in a valid state. It is also not true for all VV
permutations. For example, given the state [(a, 0), (b, 0)],
a VV permutation defined as φ(a, 0) = (b, 1), φ(a, 1) =
(a, 1), φ(b, 0) = (b, 0), φ(b, 1) = (a, 0) results in the state
[(b,1), (b,0)] which is inconsistent. Therefore, we need to
impose a restriction on the set of allowed VV permutations
so that they result in only valid states.

Definition 3.5. We say that a VV permutation φ is a valid
VV permutation if each variable Xi ∈ X maps to a unique
variable Xj under φ. In other words, φ is valid if, when-
ever φ(Xi, v

i
l) = (Xj , v

j
l′) and φ(Xi, v

i
t) = (Xk, v

k
t′), then

Xj = Xk, ∀vil , vit ∈ Di. In such a scenario, we say that φ
maps variable Xi to Xj .

It is easy to see that for any valid VV permutation φ, ap-
plying φ on a state s always results in a valid state φ(s). It
also follows that if such a φ maps a variable Xi to Xj , then
Di and Dj must be equicardinal.

Theorem 3.2. The set of all valid VV permutations over
SX forms a group.

Consider a graphical model G specified as a set of pairs
{fj , wj}. Each feature fj can be thought of as a Boolean
function over the variable assignments of the form Xi =
vil . Hence, action of a VV permutation φ on a feature fj
results in a new feature f ′j (with weight wj) obtained by re-
placing the assignment Xi = vil by Xj = vjl′ in the under-
lying functional form of fj where φ(Xi, v

i
l) = (Xj , v

j
l′).

Hence, application of φ on a graphical model G results in
a new graphical model G′ where each feature (wj , fj) is
transformed through application of φ. We are now ready to
define the symmetry of a graphical model under the appli-
cation of VV permutations.

Definition 3.6. We say that a (valid) VV permutation is a
VV symmetry of a graphical model G if application of φ
on G results back in G itself.

All other definitions of the previous section follow analo-
gously. We can define an automorphism group over VV
permutations, and also define an orbit of a state under this
permutation group. VV symmetries strictly generalize the
notion of variable symmetries.

Non-Count Symmetries in Boolean & Multi-Valued Prob. Graphical Models

Figure 1: (a) Variable Symmetry Graph for toy example
G1 (b) VV-Symmetry Graph for G1

Theorem 3.3. Each (valid) variable symmetry θ can be
represented as a VV symmetry φ. There exist valid VV sym-
metries that cannot be represented as a variable symmetry.

Recall that a variable permutation θ is valid if it always
maps between variables that have exactly the same domain.
Say, θ(Xi) = X ′i with both variables having domains
Di. It is easy to see that φ defined such that φ(Xi, v

i
l) =

(X ′i, v
i
l) for all vil ∈ Di, will result in the same sets of

symmetric states.

To prove the second part, consider a PGM G2 with two
Boolean variables X1 and X2. Let there be four fea-
tures f00, f01, f10, f11, one corresponding to each of the
four states, with weights given as ws, wd, wd, ws, re-
spectively. Then, we have a VV symmetry φ such that
φ(X1, 0) = (X2, 1), φ(X1, 1) = (X2, 0), φ(X2, 0) =
(X1, 1) and φ(X2, 1) = (X1, 0). Note that φ maps
the state [(X1, 0), (X2, 0)] to [(X1, 1), (X2, 1)] and re-
verse, and similarly there is a symmetry φ′ which maps
[(X1, 0), (X2, 1)] to [(X1, 1), (X2, 0)] and reverse. There
is no variable symmetry which can capture the symmetries
induced by φ since counts are not preserved. This proves
the theorem. But let us for a moment define a renaming of
the formX ′1 = ¬X1. Variable symmetries will now be able
to capture the symmetries due to φ but will miss out on the
ones due to φ′. This is illustrative because there is no sin-
gle problem formulation which can capture both the state
symmetries above using the notion of variable symmetries
alone.

Theorem 3.4. VV symmetries preserve joint probabili-
ties, i.e., for any VV symmetry φ, and state s: PG(s) =
PG(φ(s)).

3.1 Computing Variable-Value Symmetries

We now adapt the procedure in Section 2.1 to compute
VV symmetries in multi-valued domains. For a PGM G
with clausal theory or conjunctive theory (as before), we
construct a colored graph GV V (G) with a node for each
variable-value pair. We also have a node for each feature,
which is connected to the specific VV nodes it contains. We
need to additionally impose a mutual exclusivity constraint
to assert that a variable can only take exactly one of its
many values. This is accomplished by adding exactly-one
features with∞weight between all values of each variable.
When assigning colors to each node, we assign all values

Figure 2: (a)Unreduced multi-valued domain G3 (b) Re-
duced multi-valued domain G3

of any variable the same color, as opposed to different val-
ues getting different colors. This allows the isomorphism
solver to attempt discovering symmetries between different
value nodes. As before, all features with the same weight
get the same color. Figure 1 illustrates this on G1 where
Variable symmetry assigns different colors to 0 and 1 while
VV-Symmetry assigns a single color (green) to both 0 and
1 assignments of all variables.

We run Saucy [5] over GV V (G) to compute its automor-
phism group via a set of permutations. These permutations
are valid VV-permutations (by construction of GV V), and,
collectively, represent a VV automorphism group of G.

Theorem 3.5. Any permutation φ that preserves graph iso-
morphism in GV V (G) is a valid VV-permutation for G.

Theorem 3.6. The automorphism group of colored graph
GV V (G) constructed above computes a VV-automorphism
group of graphical model G.

4 Non-Equicardinal (NEC) Symmetries
While VV symmetries can compute non-count symmetries,
they only consider mapping between equicardinal vari-
ables. In this section, we will deal with symmetries which
can be present across variables having different domain
sizes. Consider the following example graphical model G3

with two features: (1)w: a = 1 (2) w: b = 1 ∨ b = 2.
Let a and b have the domains Da and Db, respectively,
specified as Da = {0, 1} and Db = {0, 1, 2}. Clearly,
there is no VV symmetry between a and b since they
have different domain sizes. But intuitively, the two states
given as [(a, 1), (b, 0)] and [(a, 0), (b, 1)] are symmetric to
each other since in each case, exactly one of the two fea-
tures having the same weight is satisfied. Similarly, for
[(a, 1), (b, 0)] and [(a, 0), (b, 2)]. Further, it is easy to see
that the two values of b = 1 and b = 2 are symmetric
to each other in the sense states of the form [(a, v), (b, 1)]
have the same probability as the states [(a, v), (b, 2)] where
v ∈ {0, 1}.

Ankit Anand1, Ritesh Noothigattu1, Parag Singla, Mausam

We will combine the above two ideas together to exploit
symmetries using domain reduction. We first identify all
the equivalent values of each variable and replace them
by a single representative value. In this reduced graphical
model, we then identify VV symmetries and finally trans-
late them back to the original graphical model. In the fol-
lowing, we will assume that we are given a graphical model
G defined over a set of n variables X where each Xi ∈ X
takes values from a domain Di. Further, we will use the
symbol D = D1 ×D2, · · ·Dn to denote the cross product
of the domains.

Definition 4.1. Consider a variableXi ∈ X and let v, v′ ∈
Di. Let φiv↔v′ denote a VV permutation which maps the VV
pair (Xi, v) to (Xi, v

′) and back. For all the remaining VV
pairs (Xk, v

′′), φiv↔v′ maps the pair back to itself. We refer
to φiv↔v′ as a value swap permutation for variable Xi.

In the example above, φb1↔2 is a value swap permutation
for b which permutes the variable assignments b = 1 and
b = 2, and keeps the remaining variable assignments, i.e.,
b = 0 and a = 1, fixed.

Definition 4.2. A value swap permutation φiv↔v′ is a a
value swap symmetry of G if it maps G back to itself.

In our running example, φb1↔2 is a value swap symmetry of
G4. Next, we show that the set of all value swap symmetries
corresponding to a variable Xi divides its domain Di into
equivalence classes.

Definition 4.3. Given a graphical model G, we define a
relation SSi (swap symmetry) over the set Di ×Di as fol-
lows. Given v, v′ ∈ Di, (v, v′) ∈ SSi if φiv↔v′ is a value
swap symmetry of G.

It is easy to see that relation SSi is an equivalence relation
and hence, partitions the domain Di into a set of equiva-
lence classes. Given a value v ∈ Di, we choose a repre-
sentative value from its equivalence class based on some
canonical ordering. We denote this value by repi(v).

Next, we will define a reduced domain DR
i obtained by

considering one value from each equivalence set.

Definition 4.4. Let SSi divide the domain Di into r equiv-
alence classes. We define the reduced domain DR

i as the
r-sized set {v∗j }rj=1 where v∗j is the representative value
for the jth equivalence class. We will use DR = DR

1 ×
DR

2 × · · ·DR
n to denote the cross product of the reduced

domains.

Revisiting our example, the reduced domain for b is given
asDR

b = {0, 1}. Next we define a reduced graphical model
GR over the reduced set of domains {DR

i }ni=1.

Definition 4.5. Let G be a graphical model with the set of
weighted features {wj , fj}. Let Xi = v be a variable as-
signment appearing in the Boolean expression for fj . We
construct a new feature f ′j by replacing every such expres-

sion Xi = v by false (and further simplifying the expres-
sion) whenever v 6= repi(v). If v = repi(v), then we leave
the assignment Xi = v in f ′j as is. The reduced GR is the
graphical model having the set of features {wj , f ′j} defined
over the set of variables X withXi having the domainDR

i .

Intuitively, in GR, we restrict each variable Xi to take
only the representative value from each of its equivalence
classes. In our running example, the reduced graphical
model is given as {w: a = 0; w: (b = 1) ∨ false} which
is same as {w: a = 0; w: b = 1}. Since the domains have
been reduced in GR, we may now be able to discover map-
pings which were not possible earlier. For instance in our
running example, we now have a VV symmetry φR which
maps (a, 0) to (b, 1) and back.

Let the joint distributions specified by G and GR be given
by PG and PGR , respectively. The next theorem describes
the relationship between these two distributions.
Theorem 4.1. Let G be a graphical model and let GR be
the corresponding reduced graphical model. Consider a
state s specified as {Xi, vi}ni=1 where each vi ∈ DR

i . By
definition, vi ∈ Di. We claim that PGR(s) = k ∗ PG(s)
where k is some constant k ≥ 1 independent of the specific
state s.
Proof. Note that the reduced graphical model GR is em-
ulating the distribution specified by G where the space of
possible variable assignments is now restricted to those
belonging to the representative set, i.e., for each variable
Xi the allowed set of values is now DR

i = {vi|vi =
repi(v), v ∈ Di}. Therefore, GR can be thought of as
enforcing a conditional distribution over the underlying
space given the fact that assignments can now only come
from cross product set DR. Recall that state s is valid
assignment in the original as well as the reduced graph-
ical model. Therefore, we have PGR(s) = PG(s|s ∈
DR) = PG(s)/PG(s ∈ DR). Here, the denominator term
PG(s ∈ DR) is simply the probability that a randomly cho-
sen state s in the original distribution belongs to the re-
stricted domain set. Clearly, this is independent of the state
s and let this given as 1/k, where k ≥ 1 is a constant inde-
pendent of s. Then, PGR(s) = k ∗ PG(s).

Above theorem gives us a recipe to discover additional
symmetries across variables having different domain
sizes. Let s = {Xi, vi}ni=1 be a state in G. Let
rep(s) denote the representative state for s given as
{(Xi, repi(vi)}ni=1).Following steps describe a procedure
to get a new state s′ symmetric to s using the idea of
domain reduction.

Procedure NonEquiCardinalSym:
• Let u = rep(s) denote the representative state for s.
• Apply a VV symmetry φR(u) over u in the reduced

graphical model. Resulting state u′ is symmetric to u
in GR.

Non-Count Symmetries in Boolean & Multi-Valued Prob. Graphical Models

• Apply a series of n value swap symmetries of the form
φiv′i↔v′′i

over state u′, one for each variable Xi such
that Xi = v′i in u′, v′′i ∈ Di. Resulting state s′ is
symmetric to s in G.

Definition 4.6. Let τ be a permutation over
the state space S of G defined using the Pro-
cedure NonEquiCardinalSym, i.e., τ(s) =
φnv′n↔v′′n (φn−1

vn−1↔v′′n−1
(· · ·φ1

v′1↔v′′1
(φR(rep(s))) · · ·)),

where φR is a VV symmetry of GR and each φiv′i↔v′′i is a
value swap symmetry for variable Xi in G . We refer to τ
as a non-equicardinal symmetry of G.

Unlike VV symmetries whose action is defined over a VV
pair, non-equicardinal symmetries directly operate over the
state space. Their transformation of the underlying graphi-
cal model is implicit in the symmetries that compose them.

Theorem 4.2. The set of all non-equicardinal symmetries
forms a permutation group.

Finally, we need to show that action of non-equicardinal
symmetries indeed results in states which have the same
probability.

Theorem 4.3. Let τ be a non-equicardinal symmetry of a
graphical model G. Then, PG(s) = PG(τ(s)).

Proof. Let s′ = τ(s). Let u = rep(s). Since u′ is ob-
tained by application of VV symmetry φR(u) in GR, we
have PRG (u) = PRG (u′). Using Theorem 4.1, this implies
that PG(u) = (1/k)∗PGR(u) = (1/k)∗PGR(u′) = PG(u′)
for some constant k. Hence, u and u′ have the same prob-
ability under PG .

Since u = rep(s) can be obtained by application of n value
swap symmetries over s (one for each variable), PG(s) =
PG(u). Similarly, since s′ is obtained by an application of n
value swap symmetries over u′, we have PG(u′) = PG(s).
Combining this with the fact that, PG(u) = PG(u′), we get
PG(s) = PG(s′).

4.1 Computing Non-Equicardinal Symmetries

We adapt the procedure in Section 3.1 by running graph
isomorphism over a series of two colored graphs. Our first
colored graph is constructed as in Section 3.1, except that
all features are given different colors. This disallows any
mapping between (Xi, vi) and (Xj , vj) for Xi 6= Xj , and
only allows mapping between different values of a single
variable. For example, in the running example, this would
determine that (b, 1) and (b, 2) are symmetric. We then
retain only the representative value for each equivalent set
of VV pairs, and removes nodes and edges for other values.

We take this reduced colored graph and recolor all mutual
exclusivity features with a single color. We run graph iso-
morphism again to obtain the VV symmetries of the re-
duced model. These permutations together with the single-

Figure 3: State Partition for Toy Example G3. Same Col-
ored States are in same orbit. Large Ovals show sub-orbits
and representative states of sub-orbits are with dark outline.

variable permutations from the previous step gives the non-
equicardinal symmetries of the original model.

5 MCMC with VV & NEC Symmetries
Recall from Section 2.2 that variable symmetries are used
in approximate inference via the Orbital MCMC algorithm.
It alternates original MCMC move with an orbital move,
which uniformly samples from the orbit of the current state.
We first observe that the same algorithm will work for VV
symmetries computed in Section 3.1, except that the orbital
move will now sample from the orbit induced by VV per-
mutations – we call this algorithm VV-Orbital MCMC.

We now consider the case of non-equicardinal symmetries
in multi-valued PGMs. The main idea from Orbital MCMC
remains valid – we need to alternate between original chain
and orbital move. However, sampling a random state from
an orbit is tricky now, because a non-equicardinal orbit may
have a two-level hierarchical structure – it is an orbit over
suborbits. The top level orbit is in the reduced model and is
an orbit over representative states. At the bottom level, each
representative state may represent multiple states via appli-
cation of a variable number of value-swap symmetries.

As an example, consider the state partition in our running
example, as illustrated in Figure 3. Each orbit is shown by
a unique color, and suborbits by large ovals. The green or-
bit (top level) has two representative states (0,0) and (1,1)
in the reduced model. If we make an orbital move in the
reduced model, we can easily pick a representative state
uniformly at random. However, the state (1,1) has a subor-
bit – it further represents two states in the original model,
(1,1) and (1,2), via value-swap symmetries on variable b.
Our sampling goal is to pick uniformly at random from an
orbit in the original model, which means we need to pick
a representative state in the reduced model proportional to
the size of suborbit it represents. Once a suborbit is picked,
we can easily pick a state uniformly at random from within
it. To pick a representative proportional to the size of the
suborbit, we use Metropolis Hastings in the reduced model
– we name the resulting algorithm NEC-Orbital MCMC.

Let c(s) represent the cardinality of the suborbit of state s,
i.e., the number of states for which the representative state

Ankit Anand1, Ritesh Noothigattu1, Parag Singla, Mausam

(a) (b)

Figure 4: a)VV-Orbital-MCMC outperforms Orbital MCMC and Vanilla MCMC with different sizes of people on ring-
message passing. b) VV-Orbital MCMC has negligible overhead compared to Orbital-MCMC

is the same as that of s: |{s′|rep(s′) = rep(s)}|. Let ci(s)
represent the number of states in the orbit of s which differ
from s at most on the value of Xi , i.e., |{s′|rep(s′) =
rep(s), s.Xj = s′.Xj∀j 6= i}|, where s.Xj represents the
value of Xj in s.

Given a Markov chainM over a graphical model G, a sam-
ple from st to st+1 in NEC-Orbital MCMC is generated:

• Generate s′t by sampling from transition distribution
ofM starting from st.

• Let u′t = rep(s′t). Sample u′′t (in GR) from the or-
bit ΓφR(u′t) via a Metropolis Hastings step using the
uniform proposal distribution q(·) = 1

|ΓΦR (u′t)|
, and

desired distribution p(·) ∝ c(u′′t).

• Apply a series of n value swap symmetries of the form
φi
v′′it ↔vit+1

over state u′′t , one for each variable Xi,

where u′′t .Xi = v′′it , and vit+1 is chosen uniformly
at random from the set of values equivalent with v′′it
with probability 1

ci(u′′t) . This is equivalent to sampling
uniformly from the suborbit of u′′t .

Notice that sampling from the proposal distribution (uni-
form) from an orbit is easily accomplished by Product Re-
placement Algorithm [20]. MH accepts or rejects the sam-
ple with an Acceptance probability A, which can be com-
puted by MH’s detailed balance equation:

A(u′t → u′′t) = min

(
1,
p(u′′t) ∗ q(u′t|u′′t)

p(u′t) ∗ q(u′′t |u′t)

)
= min

(
1,
p(u′′t)

p(u′t)

)
= min

(
1,
c(u′′t)

c(u′t)

)
The second equality above follows form the fact that q(.) is
a uniform proposal.

Theorem 5.1. The Markov Chain constructed by NEC-
Orbital MCMC converges to the unique stationary distri-
bution of original markov chainM.

6 Experiments
We empirically evaluate our extensions of Orbital MCMC
for both Boolean and multi-valued PGMs. In both settings,

we compare against the baselines of vanilla MCMC, and
Orbital MCMC [17]. In all orbital algorithms including
ours, the base Markov chainM is set to Gibbs. We build
our source code on existing code of Orbital MCMC.4 It
uses the Group Theory package Gap [7] for implementing
the group-theoretic operations in the algorithms. We re-
lease our implementations for further research. 5 All our
experiments are performed on Intel core i-7 machine. All
our reported times include the time taken for computing
symmetries.

Our experiments are aimed to assess the comparative value
of our algorithms against baselines in those domains where
a large number of symmetries (beyond count symmetries)
are present. To this end, we construct two such domains.
The first is a simple Boolean domain that shows how simple
value renaming can affect baseline algorithms. The second
is a multi-valued domain showcasing the potential benefits
of non-equicardinal symmetries. The domains are:

Value-Renamed Ring Message Passing Domain: In this
simple domain, N people with equal number of males and
females are placed in a ring structure alternately with every
male followed by a female, and they pass a bit of message
to their immediate neighbor over a noisy channel. If Xi

denoted the bit received by the ith person, then we would
have a formula for PGM Xi → Xi+1 with weight w1 if i
is a male and weight w2 if i is female. As a small modi-
fication to this domain, we randomly rename some Xis to
mean ¬bit received by that agent, and change all formulas
analogously. All the symmetries in the original ring should
remain after this renaming. Our experiments test the degree
to which the various algorithms are able to identify these.

Student-Curriculum Domain: In this multi-valued do-
main, there are K students taking courses from |A| areas
(e.g., theory, architecture, etc.). Each area a ∈ A has
a variable number of N(a) courses numbered 1 to N(a).
Each student has to fulfill their breadth requirements by
passing one course each from any two areas. A student
has no specific preference to which of the N(a) courses
they take in an area. However, each student has a prior se-

4https://code.google.com/archive/p/lifted-mcmc/
5Available at https://github.com/dair-iitd/nc-mcmc

Non-Count Symmetries in Boolean & Multi-Valued Prob. Graphical Models

Figure 5: NEC-Orbital MCMC outperforms VV-Orbital
MCMC and Vanilla-MCMC on student-curriculum do-
main.

riousness level, which determines whether they will pass
any course. This scenario is modeled by defining a random
variable Psa, which is a multi-valued variable where value
0 denotes that student s failed the course in the area a, and
value i ∈ {1 : N(a)} denotes which course they passed.
The weight for failing depends on the student but not on
area. Finally, the variable Csaa′ denotes that s completed
their requirements by passing courses from areas a and a′.

The Curriculum domain is interesting, because, for a given
s, various values of Psa other than 0 are all symmetric for
all areas. And once, all Psas are converted to a representa-
tive value in the reduced model, all areas become symmet-
ric for a student.

We compare different algorithms by plotting the KL-
divergence of true marginals and an algorithm’s marginals
with time. True marginals are calculated by running Gibbs
sampling for a sufficiently large duration of time. Figure
5 compares VV-Orbital MCMC with baselines on the mes-
sage passing domain. The dramatic speedups obtained by
VV-Orbital MCMC underscores Orbital MCMC’s inability
to identify the huge number of variable-renamed symme-
tries present in this domain, whereas VV-Orbital MCMC is
able to benefit from these tremendously.

Before describing results on Curriculum domain, we first
highlight that, out of the box, Orbital MCMC cannot run
on this domain, because both its theory and implementa-
tion have only been developed for Boolean-valued PGMs.
To meaningfully compare against Orbital MCMC, we first
binarize the domain, by converting each multi-valued ran-
dom variable Psa into many Boolean variables Psac, one
for each value c. We need to add an infinite-weighted
exactly-one constraint for each original variable before giv-
ing it to Orbital MCMC. A careful reader may observe that
this binarization is already very similar to the VV construc-

tion of Section 3, but without non-equicardinal symmetries.
Thus, this is already a much stronger baseline than cur-
rently found in literature.

Figure 5 shows the results on this domain. NEC-Orbital
MCMC outperforms both baselines by wide margins. Or-
bital MCMC does improve upon vanilla Gibbs since it is
able to find that all Psacs for different cs are equivalent,
however, it is unable to combine them across areas.

In domains where symmetries beyond count symmetries
are not found, the overhead of our algorithms is not signifi-
cant, and they perform almost as well as (binarized) Orbital
MCMC (e.g., see Figure 4(b)). This is also corroborated
by the fact that the time for finding symmetries is relatively
small compared to the time taken for actual inference on
both the domains. Specifically, this time is 0.250 sec and
0.009 sec for curriculum and ring domains, respectively.

In summary, both VV-Orbital MCMC and NEC-Orbital
MCMC are useful advances over Orbital MCMC.

7 Conclusion and Future Directions
Existing lifted inference algorithms capture only a re-
stricted set of symmetries, which we define as count sym-
metries. To the best of our knowledge, this is the first work
that computes symmetries beyond count symmetries. To
compute these non-count symmetries, we introduce the idea
of computation over variable-value (VV) pairs. We develop
a theory of VV automorphism groups, and provide an al-
gorithm to compute these. These can compute equicar-
dinal non-count symmetries, i.e., between variables that
have the same cardinality. An extension to this allows us
to also compute non-equicardinal symmetries. Finally, we
provide MCMC procedures for using these computed sym-
metries for approximate inference. In particular, the algo-
rithm to use non-equicardinal symmetries requires a novel
Metropolis Hastings extension to existing Orbital MCMC.
Experiments on two domains illustrate that exploiting these
additional symmetries can provide a huge boost to conver-
gence of MCMC algorithms.

We believe that many real world settings exhibit VV sym-
metries. For example, in the standard Potts model used
in Computer Vision [12], the energy function depends on
whether the two neighboring particles take the same value
or not, and not on the specific values themselves (hence, 00
would be symmetric to 11). Exploring VV symmetries in
the context of specific applications is an important direction
for future research.

We will also work on extending the theoretical guarantees
of variable symmetries [17] to VV symmetries. Several
notions of symmetries already exist in the Constraint Sat-
isfaction literature [3]. It will be interesting to see how our
approach can be incorporated into the existing framework
of symmetries in CSPs.

Ankit Anand1, Ritesh Noothigattu1, Parag Singla, Mausam

Acknowledgements

We thank Mathias Niepert for his help with the orbital-
MCMC code. Ankit Anand is being supported by the TCS
Research Scholars Program. Mausam is being supported
by grants from Google and Bloomberg. Both Mausam
and Parag Singla are being supported by the Visvesvaraya
Young Faculty Fellowships by Govt. of India.

References

[1] Ankit Anand, Aditya Grover, Mausam, and Parag
Singla. Contextual Symmetries in Probabilistic
Graphical Models. In IJCAI, 2016.

[2] H. Bui, T. Huynh, and S. Riedel. Automorphism
Groups of Graphical Models and Lifted Variational
Inference. In UAI, 2013.

[3] David Cohen, Peter Jeavons, Christopher Jefferson,
Karen E. Petrie, and Barbara M. Smith. Symme-
try Definitions for Constraint Satisfaction Problems.
Constraints, 11(2):115–137, 2006.

[4] James Crawford, Matthew Ginsberg, Eugene Luks,
and Amitabha Roy. Symmetry-breaking predicates
for search problems. KR, 96:148–159, 1996.

[5] Paul T Darga, Karem A Sakallah, and Igor L Markov.
Faster symmetry discovery using sparsity of symme-
tries. In Design Automation Conference, 2008.

[6] R. de Salvo Braz, E. Amir, and D. Roth. Lifted First-
Order Probabilistic Inference. In IJCAI, 2005.

[7] The GAP Group. GAP – Groups, Algorithms, and
Programming, Version 4.7.9, 2015.

[8] V. Gogate and P. Domingos. Probabilisitic Theorem
Proving. In UAI, 2011.

[9] V. Gogate, A. Jha, and D. Venugopal. Advances in
Lifted Importance Sampling. In AAAI, 2012.

[10] K. Kersting, B. Ahmadi, and S. Natarajan. Counting
Belief Propagation. In UAI, 2009.

[11] A. Kimmig, L. Mihalkova, and L. Getoor. Lifted
Graphical Models: A Survey. Machine Learning,
99(1):1–45, 2015.

[12] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

[13] Timothy Kopp, Parag Singla, and Henry Kautz.
Lifted Symmetry Detection and Breaking for MAP
Inference. In NIPS, 2015.

[14] H. Mittal, P. Goyal, V. Gogate, and P. Singla. New
Rules for Domain Independent Lifted MAP Infer-
ence. In Proc. of NIPS-14, pages 649–657, 2014.

[15] M. Mladenov, B. Ahmadi, and K. Kersting. Lifted
Linear Programming. In AISTATS, 2012.

[16] M. Mladenov, K. Kersting, and A. Globerson. Ef-
ficient Lifting of MAP LP Relaxations Using k-
Locality. In AISTATS, 2014.

[17] Mathias Niepert. Markov Chains on Orbits of Permu-
tation Groups. In UAI, 2012.

[18] Mathias Niepert. Symmetry-Aware Marginal Density
Estimation. In AAAI, 2013.

[19] J. Noessner, M. Niepert, and H. Stuckenschmidt.
RockIt: Exploiting Parallelism and Symmetry for
MAP Inference in Statistical Relational Models. In
AAAI, 2013.

[20] I. Pak. The Product Replacement Algorithm is Poly-
nomial. In Foundations of Computer Science, 2000.

[21] D. Poole. First-Order Probabilistic Inference. In IJ-
CAI, 2003.

[22] S. Sarkhel, D. Venugopal, P. Singla, and V. Gogate.
Lifted MAP inference for Markov Logic Networks.
In AISTATS, 2014.

[23] P. Singla and P. Domingos. Lifted First-Order Belief
Propagation. In AAAI, 2008.

[24] P. Singla, A. Nath, and P. Domingos. Approximate
Lifting Techniques for Belief Propagation. In AAAI,
2014.

[25] G. Van den Broeck and M. Niepert. Lifted proba-
bilistic inference for asymmetric graphical models. In
AAAI, 2015.

[26] G. Van den Broeck, N. Taghipour, W. Meert, J. Davis,
and L. De Raedt. Lifted Probabilistic Inference by
First-order Knowledge Compilation. In IJCAI, 2011.

[27] Guy Van den Broeck and Adnan Darwiche. On the
complexity and approximation of binary evidence in
lifted inference. In NIPS, 2013.

[28] D. Venugopal and V. Gogate. On Lifting the Gibbs
Sampling Algorithm. In NIPS, 2012.

	1 Introduction
	2 Background
	2.1 Graph Isomorphism for Computing Symmetries
	2.2 Orbital Markov Chain Monte Carlo

	3 Variable-Value (VV) Symmetries
	3.1 Computing Variable-Value Symmetries

	4 Non-Equicardinal (NEC) Symmetries
	4.1 Computing Non-Equicardinal Symmetries

	5 MCMC with VV & NEC Symmetries
	6 Experiments
	7 Conclusion and Future Directions

