Happy Mittal, Shubhankar Suman Singh

Fine Grained Weight Learning in Markov Logic Networks

Dept. of Comp. Sci. & Engg.
I.I.T. Delhi, Hauz Khas
New Delhi, 110016, India
happy.mittal@cse.iitd.ac.in,
shubhankar039Qgmail.com

Abstract

Markov logic networks (MLNs) represent the underlying do-
main using a set of weighted first-order formulas and have
been successfully applied to a variety of real world problems.
A parameter tying assumption is made, i.e., ground formulas
coming from the same first-order logic formula have identical
weights. This assumption may be inaccurate in many scenar-
ios and can lead to high bias during learning. On the other
extreme, one could learn a different weight for each ground-
ing resulting in a model with high variance. In this paper,
we present a principled approach to exploit this trade-off by
modeling each constant coming from a hidden subtype, and
tying the parameters only for those formula groundings which
have the same subtype(s) for the respective arguments. We
propose two different approaches for automatically discover-
ing the subtypes and learning the parameters of the model 1)
a K-means clustering based approach b) a joint learning ap-
proach using an EM based formulation. The two extremes
described above fall out as a special case of our formulation.
Preliminary experiments on a benchmark MLN show that our
algorithm can learn significantly better parameters compared
to available alternatives.

Introduction

Several real world domains such as those in NLP, biol-
ogy and vision need to represent the underlying uncer-
tainty as well as represent the relational structure. Statis-
tical relational models (Getoor and Taskar 2007) achieve
this by combining the power of logical representations with
statistical models. One such powerful model is Markov
logic (Richardson and Domingos 2006) which represents the
domain as a set of weighted first-order formulas and can be
seen as generating templates for generating ground Markov
networks. Despite their popularity, there has been some-
what limited focus on learning the parameters in MLNs,
and most existing algorithms are variants of the early work
proposed by Singla and Domingos (2005) and Lowd and
Domingos (2007). Huynh and Mooney (2009) have looked
at learning the MLN parameters in a max-margin framework
and then extended this further to an online max-margin set-
ting (Huynh and Mooney 2011). Haaren et al. (2015) have
exploited the symmetry in the model to come up with lifted
parameter learning algorithm in MLNSs.

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Vibhav Gogate
Dept. of Comp. Sci.
Univ. of Texas Dallas
Richardson, TX 75080, USA
vgogate@hlt.utdallas.edu

Parag Singla
Dept. of Comp. Sci. & Engg.
I.I.T. Delhi, Hauz Khas
New Delhi, 110016, India

parags@cse.iitd.ac.in

Existing literature for learning the weights makes the pa-
rameter tying assumption, i.e., all groundings of a first-
order logic formula will have the same weight in the ground
Markov network. Though this assumption is important for
generalizing the model to future domains, it can lead to high
bias since all the groundings of a first-order logic formula
may not represent the same statistical regularity. On the
other extreme, a different weight can be learned for each
formula grounding resulting in a classical Markov network
parameter learning problem. In addition to leading to a high
variance model, this alternative approach also has the prob-
lem that it can not generalize to new domains containing
unseen constants.

In this paper, we propose a principled approach for ex-
ploiting this trade-off between bias and variance by learn-
ing identical weights for a subset of formula groundings.
We model the problem by having each constant in the do-
main coming from one of the subtypes. Formula ground-
ings associated with the same subtype signature are forced
to obey the parameter tying (but not otherwise). We propose
two different approaches for automatically discovering the
subtypes from the data and learning the parameters of our
model. In the first approach, we perform k-means clustering
over constants belonging to each type. The feature vector for
each constant is composed of the ground formula weights in
which the constant appears, where the formula weights have
been learned with untied set of parameters. The constants
in each cluster are modeled as belonging to the same sub-
type. Once the subtypes have been discovered, the param-
eters are relearned by tying the parameters over the discov-
ered subtypes. In the second and more principled solution,
each constant subtype is modeled as a hidden variable in the
network. We formulate a joint learning problem where we
discover the hidden subtypes as well as learn the parameters
(with tying enforced across the subtypes) using the EM al-
gorithm. In the latter case, the k-means clustering is used as
an initialization to the EM algorithm.

The two extremes described earlier fall out as special
cases of our learning formulation i.e., one with a single sub-
type and the other with a separate subtype for every constant.
The number of subtypes to be discovered depends on the
domain (and the amount of training data available) and can
be determined empirically. Our algorithm can generalize to
unseen constants since we learn the parameters for subtypes

and not for individual constants. These subtypes are inferred
in a joint fashion (along with the query variables) during the
inference procedure. Preliminary experiments on a bench-
mark MLN show that our approach can learn significantly
better parameters compared to available alternatives.

Our approach is motivated by the recent work of Chou
et al. (2016)) for learning the parameters of a Markov net-
work while making the parameter tying assumption. Their
setting is purely propositional and can not generalize to new
domain. Our subtypes can be seen as giving a relational
framework for deciding which formula groundings should
be tied to each other, and helping us generalize to unseen
constants. Further, unlike us, they do not have any EM based
formulation for joint learning.

Our approach also bears similarity to existing structure
learning approaches for MLNs (Kok and Domingos 2007
Kok and Domingos 2009; |Kok and Domingos 2010) where
one of the side effects of learning is an implicit clustering
of the underlying constants. Nevertheless, the end objective
in all these algorithms is to learn the structure of the MLN
which can be a significantly more expensive task. In our
case, we would like to restrict our focus to the problem of
refining the granularity of the learned weights at the level
of subtypes, while the formulas are already provided. Our
proposed approach for weight learning is tailored to this task
and therefore, a direct comparison with structure learning
approaches may not be in line.

We first present some background on Markov logic and
weight learning. We then propose our model for defining an
MLN distribution in presence of subtypes. We present the
two approaches for discovering the subtypes and learning
the parameters. We then describe how to use the learned
model at the prediction time in a joint setting. We present
our preliminary experimental evaluation. We conclude with
directions for future work.

Background

Markov Logic Network (MLN) is a set of pairs (f;,w;),
where f; is a first order formula, and w; is the weight of the
corresponding formula. w; indicates how likely it is that the
formula f; is true in the world. Larger the weight, larger is
the probability of formula being true. In the extreme case, a
weight can be infinite, which means a formula is true for ev-
ery object i.e. the formula becomes pure first order logic for-
mula. An MLN acts as a template for creating a Markov Net-
work, in which each ground atom becomes a node, and each
ground formula defines a feature of the model. Given an as-
signment on a set of ground atoms X (evidence), probabil-
ity distribution on the assignments of the remaining ground
atoms Y (query) is given by

1 n
P(Y =y|lX = zjw) = 7 Xp (Z wzﬂz(fl?7y)>

i=1

where n;(z,y) is the number of satisfied groundings of i*"
first order formula under the assignment (z,y) and Z, is
the normalization constant. When expressed as a function
of the parameters, log of the above probability is referred
to as the likelihood function denoted as LL(w). In a slight

abuse of notation, we will use the term log-likelihood of the
data (given the parameters) to refer to the likelihood function
described above.

Weight Learning

Weights of an MLN can be learned either generatively or
discriminatively. In generative learning, there is no separate
notion of query or evidence atoms. The weights are learned
by maximizing the log-likelihood of the entire set of ground
atoms. Given an assignment (X = z) to the ground atoms,
the gradient of the log-likelihood with respect to a particular
weight w; is given by

0

8wi

LL(w) = ni(x) — E[ni(z)] p(x)

In other words, the gradient is the difference between actual
number of satisfied groundings of i*" formula in the data
and its expected number of satisfied groundings according to
current model. Due to intractability of computing this gradi-
ent, Richardson and Domingos (2006) proposed maximizing
pseudo log-likelihood (Besag 1986) of the data. Suppose
there are n ground atoms in the data, and each ground atom
X has some truth value x;, then pseudo log-likelihood of
the data is given by

log P*(X = x) = » log P(X; =)| MB(X)))
=1

where M B(X;) is the Markov Blanket of the ground
atom X; in the ground Markov Network. So pseudo
log-likelihood of the data is the sum of conditional log-
likelihood of all ground atoms given their Markov Blankets.
Gradient of pseudo log-likelihood with respect to a particu-
lar weight w; is given by

OLL* (w 2
oLl lZ [ni(2)—P(X; = 0| M By (X1))ni(2[x,=0))
=1

— P(X) = 1|M B (X1))ni(zrx,-1])

Here n;(x[x,~0]) is the number of true groundings of '
formula when X; is forced to be O (and keeping remaining
data unchanged). Similarly for n;(7[x,-1)).

Singla and Domingos (2005) proposed discriminative
learning for MLN weights, in which weights are found by
maximizing the log-likelihood of the query atoms given the
evidence. The gradient of the conditional log-likelihood is
given by :

0

6wi

LL(w) = ni(z,y) = Elni(z,)] p(vix)

Lowd and Domingos (2007) improved the discriminative
learning by proposing several methods, the most effective
being preconditioned scaled conjugate gradient, which uses
second order information to optimize the conditional log-
likelihood.

Representation

Motivation

In the standard MLN setting, the parameters of the ground-
ings of each first order logic formula are tied to each other
i.e., all the groundings of a formula are constrained to have
the same weight. In many scenarios, this may be a restrictive
assumption since different subsets of the groundings may
represent statistical regularities with differing strengths. In
other words, the assumption of tying all the parameters to-
gether may result in a model with high bias. On the other
extreme, we may want to learn a different weight for each
of the groundings of the formula. The problem then reduces
to the standard Markov network learning problem with fea-
tures having independent (untied) weights. But this requires
a large amount of data to learn each weight separately and
may result in substantial overfitting. In other words, we get
a model with low bias but high variance. Further, the model
may not generalize to new domains (with new constants)
since the template structure of the model is lost in this set-
ting.

In this paper, we propose a framework to deal with this
problem by learning weights which are tied only for a sub-
set of the groundings of the given formula. We propose an
approach to automatically partition the formula groundings
such that the groundings which fall under the same parti-
tion have identical weights and groundings which belong to
different partitions are free to have different weights. Our
approach can be seen as a principled approach for achiev-
ing the right trade-off between bias and variance. To take
an example, consider a Friends and Smokers MLN (Domin-
gos and Lowd 2009) with the formula Smokes(z) —
Cancer(z). Now, under the standard setting, we learn a sin-
gle weight for this formula. On the other hand, the weight
of this constraint may depend on some underlying attributes
such as ethnicity. These parameters may or may not be ex-
plicitly specified in the model. Then, ideally we would like
to a) automatically discover these hidden attributes b) learn
a different weight for each attribute, which is exactly what
our framework can achieve. Next, we present our proposed
solution in detail.

Incorporating SubTypes

In our framework, a natural partition over the formula
groundings can be achieved by partitioning the underlying
set of constants into separate subtypes. Intuitively, all the
formula groundings with the same subtype signature would
then get the same weight. Next, we formalize the notion
of subtyping in an MLN. Consider an MLN M consisting
of set of pairs (f;, w;). For every constant ¢ of some type
t in M, we associate a subtype with it, given by the func-
tion sub(c). Intuitively, subtype of a constant indicates the
hidden attribute of that constant. In our smoking example, it
corresponds to hidden ethnicity of each person. This subtype
sub(c) of constant ¢ can take any one of the subtypes spec-
ified by the set SubTypeSet(t) = {st,s?,...,sN}, where
SubTypeSet(t) is a function specifying all the subtypes a
constant of type ¢ can have.

Once we have subtype information about each constant,
we can use that information to tie the appropriate ground
formulas. For this, we define subtype signature of a ground
formula. Let (f,w) be a first order formula f with weight
w. Let (v, va,...,v;) be an [-tuple of variables appearing
in f. Let (¢1,t9, ...t be their corresponding types. Now
consider any grounding f, of f. Let {ci,c2,...,¢;) be an
l-tuple of constants appearing in f, i.e. instantiations of the
variables {(vq,vs,...,v;). Then subtype signature of f, is
an [-tuple {sub(cy), sub(cz),. .., sub(c;)). We tie weights
of all ground formulas which have same subtype signature.
In other words, we partition the set of ground formulas of
a first order formula such that in each partition, all ground
formulas have same subtype signature. Possible number of
such partitions is the number of different subtype signatures
a ground formula can have. We define granularity g; of a
formula f as the number of possible partitions of that for-
mula, which is given by g; = Hé‘=1 |SubTypeSet(t;)|. So
the granularity g of a formula f tells the number of parti-
tions of that formula, and for each partition, we have to learn
a separate weight. For each formula f in the MLN, we have
to learn gy different weights {w', w?,..., w9 }. Now we
describe how to add subtype information in MLN M, and
how to partition the first order formulas.

Modifying MLN
In an MLN M, we add subtype information of each constant
by creating a predicate HasSubTypet(subtype, const),
where t is the type of the constant. A grounding
HasSubTypet (ST, c) of this predicate is True if sub(c) =
ST, otherwise False. Note that a constant ¢ can have exactly
one subtype, hence for each constant c, exactly one ground-
ing of the predicate HasSubType! (subtype, c) is True. Let
s denote a truth assignment to all the groundings of the pred-
icates of the form HasSubType! (subtype, const).

ModifyMLN procedure in Algorithm [I] describes how to
modify MLN M to partition each first order formula. For
every formula f in M, we create gy new formulas (one for
each partition). Each new formula encodes subtype of ev-
ery variable appearing in f by conjunction of HasSubType
predicates. A '+’ in front of variable st denotes per-
constant learning. For example, if a formula f has variables
{vy,va,...,u) of types {(t1,ta,...,t;), then the formula
HasSubTypett (+st,v1) A HasSubTypet?(+st,v3) A
... A HasSubTypet (+st,v;) A f specifies all new formu-
las of f with all possible subtype configurations of variables
i.e. all possible partitions of f. Each new formula is allowed
to have a separate weight of its own.

Now given evidence X = x, the probability distribution
over the modified MLN becomes :

n 9f;
1 i
PY=yS=sX=2x)= 7 ©XP (Z Z wlnl(z,y,s)

i=1j=1
_ (1)
Here n}(x,y, s) is the the number of satisfied groundings

of formula f] under the assignment X = z,Y = y, 5 =
s. It is not difficult to see that above formulation results
in a partition of the ground formulas where the formulas in

each partition element are exactly those which have the same
subtype signature.

Algorithm 1 Learning fine grained weights in an MLN

FGLearn(MLN M, Data D, Type t)
M’ < ModifyMLN(M, t)
Mpag < LearnWts(M')
return Mrq

ModifyMLN(MLN M, Type t)

M =¢

for each (f,w) in M do
for each variable v of type ¢ in f do

f < f A HasSubTypet (+st,v)

end for
Add (f,w) to M’

end for

return M’

Learning Weights

Let us first deal with the case when the subtype informa-
tion is available in the domain. Then we can find weights
of the modified MLN by maximizing the conditional log-
likelihood LL(w) of probability distribution given in equa-
tion |1} Gradient of this LL(w) with respect to a particular
weight w! is given by

OLL(w)

J
ow]

= n{(l’,y, S) - E[ni(mvyv S)]P(Y,S\X) 2

We can use standard discriminative weight learning meth-
ods(Lowd and Domingos 2007) to find best weights which
maximize CLL of data.

For many applications, the subtypes for constants in the
domain may be implicit (hidden). In such scenarios, we
need to model the subtypes as hidden predicates. Below we
describe two different methods to deal with such scenarios.

K-means Clustering

The idea in k-means clustering is to define a feature vector
for each constant (with the same type) and then cluster the
given constants into a set of k clusters (subtypes) using k-
means. Let us assume that our MLN has been standardized
apart (Mittal et al. 2014)), i.e., the variables are renamed in a
manner such that each formula has a set of variables which
are disjoint from the variables appearing in the other formu-
las. We first propose to learn a different weight for each of
the formula groundings i.e., we create the ground Markov
network where each feature (ground formula) has a differ-
ent weight and we learn it using the standard MLN weight
learning (see Background). We will use the weights learned
in this manner for defining the feature vectors as follows.
Consider a constant ¢ with type ¢ = type(c). Let
v1,V2, - ,v, be the variables in the MLN with type t.
Let w; be the average weight of the ground formulas in
which ¢ appears as an instantiation of variable v;. Then,
the feature vector for constant c is defined as the r-tuple

{wy,wa, -+ ,wyy. Intuitively, w; captures the average
strength of the constraints in which constant ¢ appears as
an instantiation of the variable v,;. For example, consider an
MLN with two formulas P(xz) — Q(y) and P(z). Let z, z
be of type ¢ and let y come from a different type. Then, the
feature vector for a constant ¢ of type ¢ is given by the tu-
ple (w1, ws) where w; is the average weight of the ground
formulas of the form P(c) — Q(y) (for different substitu-
tions of y) and ws is the weight of the ground formula P(c)
(there is only one formula with constant c in this case). Once
feature vector has been constructed we can apply k-means
algorithm over it to get the desired clusters (subtypes).

We should note that our idea bears some similarity to the
parameter tying framework of Chou et al. (2016). But there
are some important differences. In their case, they are ty-
ing the parameters for the features (referred to as formulas
below) of a Markov network. Their approach discovers a
clustering over the formulas in the model as opposed to a
clustering over the constants in our case, which in turn leads
to a partition over the formula groundings. Further, they use
a single dimensional feature vector for every formula during
the k-means clustering (i.e. its weight when the parameters
are untied). In our case, we have to deal with an r-sized
feature vector where r depends on the number of variables
of the given type. More importantly, since we partition the
constants into subtypes, we can generalize our approach to
new domains by jointly inferring hidden types of new con-
stants (see the Section on Generalization to new Domains).
This is not possible in case of Chou et al.

Also, there have been other approaches for clustering the
constants in an MLN which could potentially be used for our
task. In their structure learning algorithm (Kok and Domin-
20s 2009), authors cluster the constants based on gain in pos-
terior probability of the data using a greedy agglomerative
approach. Venugopal et al. (2014) use k-means algorithm
similar to ours but use a slightly different criteria for con-
structing the feature vector based on the number of satisfied
groundings each constant is involved in. Broeck and Dar-
wiche (2013) have proposed an approach for approximating
binary evidence using low rank boolean matrix factorization
and the resulting approximation can be seen as inducing a
clustering over constants involved in the evidence. Exper-
imenting with these alternate clustering approaches for our
fine-grained learning is a direction for future work.

Joint Learning of SubTypes

Rather than following a pipelined approach as described
above, a more principled approach to learn the parameters
would be to formulate the problem in a joint learning set-
ting. More specifically, we can treat the subtypes of con-
stants as hidden variables in the data, and then maximize
the log likelihood of the data by summing over hidden (sub-
type) variables. Using equation[I] the conditional likelihood
P(Y = y|X = z) can be written as:

PY=ylX=2)= Z%exp <Z Z w{n{(x,y,s))

i=1j=1
(3

This can be optimized using the standard EM formulation.
The E-step corresponds to filling in the s (hidden) values
under the distribution P(S = s|Y = y, X = x) given
the current weight vector w. The conditional distribution
P(S = s]Y =y, X = z) can be computed from Equation[I]
replacing the normalization constant Z, by Z,, (since both
y and x are given now). M-step corresponds to finding the
maximum likelihood parameters of the model using filled
in s values. Gradient expression is as described in Equa-
tion |2 with the difference that n} (x,y, s) are now replaced
by counts computed using values filled in the E-step.
Alternatively, we can try to directly optimize the log-
likelihood (log of the expression in Equation [3), denoted by
LL(w) using gradient descent. The expression of the gra-

dient of LL(w) with respect to the weight w;] can be given
as:

OLL(w)

J
ow;

Moving along this gradient bears a very close similarity to
the EM based optimization. The first term in the above ex-
pression corresponds to the expected counts computed un-
der the distribution P(S|Y, X) and hence, can be seen as
the E step of the EM algorithm. The second term repre-
sents the expected counts computed under the distribution
P(Y,S|X) and is identical to the corresponding term in the
gradient based optimization when s values are known (see
Equation [Z). Hence, gradient descent above is analogous to
performing M-step in EM with filled in values. The differ-
ence is : In EM, the E step is done once for an entire run
of maximization, whereas in the explicit gradient based ap-
proach, the E step computation is done for every update of
the weight vector w. In principle, we can have a combina-
tion of the two algorithms where the E' step computation is
done after every few updates of the weight vector and ex-
ploring this in detail is a direction for future work. Note
that either of the algorithms above will result in discovery
of the subtypes (treated as soft assignments) as well as si-
multaneous learning of the parameters. We can initialize the
parameters of the model using the k-means clustering ap-
proach proposed in the previous section. For more details
on the relative merits of the two approaches, see Koller and
Friedman (2009)).

Our method can be seen as a principled way to find a
trade-off between bias and variance. Choosing the right
number of subtypes will result in finding the sweet spot.
We can also come up with PAC learning bounds for our
framework as a function of the number of subtypes used.
Extending earlier work on Markov networks in coming up
with such bounds (Bradley and Guestrin 2012) is a future
direction. It is worthwhile to note that in our joint formula-
tion above, gy copies of each ground formula (for a first-
logic formula f) will be created as we discover the hid-
den subtypes. This may complicate the underlying infer-
ence and learning. We propose to use existing methods such
as Approximation by Quantization (Gogate and Domingos
2012) and Structured Message Passing (Gogate and Domin-
gos 2013) to deal with this blow up. Exploring them in detail
is a direction for future work.

= E[n!1psv.x) — Elnl]pev.s1x)

Generalize to New Domains

Once the weights have been learned, we need to be able to
apply the learned model to new domains with unseen con-
stants. This can be achieved in a straightforward manner by
simply treating the subtypes of the new constants as hidden
and inferring them jointly along with the target variables as
done in the E step above. Note that this kind of general-
ization is not possible in the parameter tying approach of
Chou et al. (2016) since the parameter learning is done for
the propositional network. This ability to generalize is an
important advantage of our MLN based approach over ear-
lier work.

Experiments

To demonstrate efficacy of our approach, we performed
some preliminary experiments on the IMDB datasetm It
contains information about movies, actors, directors, and
who worked under whom. The actors and directors belong
to the type person, and the movies have their own type. The
dataset contains information about 20 movies and 278 per-
sons distributed across five different databases. F| Table
lists all the rules we have in our MLN. Our inference task
here was to predict whether a person is an actor or director,
whether he/she has acted in a particular movie, and whether
he/she has worked under some other person. We randomly
set a subset of the ground atoms as evidence. We used
Alchemy (Kok et al. 2008) system for learning and doing in-
ference. All our experiments were run on 2.20 GHz Xeon(R)
E5-2660 v2 server with 40 cores and 128 GB RAM.

Methodology

There are two types of constants in this dataset : person and
movie. For our experiments, we focused on using subtyping
information about constants of type person only. Intuitively,
it makes sense because in general, we expect a group of ac-
tors to work with a certain group of directors more often than
others. Subtyping of persons captures this characteristic of
the domain. We found the subtype of each constant by us-
ing the k-means algorithm as described earlier. We varied k
from 1 to 10. Note that k£ = 1 refers to default MLN setting,
in which all ground formulas of a first order formula are tied.
We learned the weights by generative learning (which max-
imizes pseudo log-likelihood of the data). For inference, we
randomly selected % of evidence from the data, and per-
formed inference with rest of the data as query. We varied
r from 10-90%. As an evaluation measure, we calculated
area under the precision-recall curve (AUC) of our predi-
cated values. We performed 5-fold cross validation, and av-
eraged out the AUCs. We performed all these experiments
on 3 sets of randomly selected evidence to further smoothen
out the results.

"Dataset available at Alchemy website https://alchemy.
cs.washington.edu/data/

“A few persons which appeared in multiple databases had to
be removed since the available software implementation crashed
when constants were shared across databases. The number given
here is after these constants were removed.

https://alchemy.cs.washington.edu/data/
https://alchemy.cs.washington.edu/data/

WorkedUnder(pl, p2) — Actor(pl)
WorkedUnder(pl, p2) — Director(pl)
Director(pl) n Actor(p2) A Movie(m,pl) A Movie(m,p2) — WorkedUnder(p2, pl)

) A WorkedUnder(p2,pl) — Movie(m, pl)
A Movie(m,pl) A WorkedUnder(p2,pl) — Movie(m, p2)
— WorkedUnder(p2, pl)

Director(pl) n Actor

(
(p1) (p2
Director(pl) n Actor(p2
(p1) (

A Movie(m, p2

Director(pl) A Actor(p2

Table 1: Rules of IMDB dataset

Results

Figure shows AUCs when £ i.e. cluster size was varied
from 1 — 10 with fixed evidence r = 50%. We see that the
default setting of MLN in which £ = 1 has lowest AUC.
k = 2 achieves highest AUC and after that, as we increase
the number of clusters, AUC decreases (but never goes be-
low AUC of k = 1). Figure shows AUCs for 4 different
cluster sizes (k = 1, 2,5 and 10) when evidence percentage
was varied from 10 — 90%. It can be clearly seen that k = 2
dominates other cluster results for every evidence percent-
age except 10 where larger number of clusters seem to do
somewhat better. Our experiments clearly show that there
are actually hidden features of constants through which we
can group constants, and tie only the appropriate ground for-
mulas. Learning these hidden features (in form of subtypes)
always seems to benefit over the standard MLN formulation.
Automatically discovering the right number of clusters (ei-
ther by cross-validation or using some other technique) is a
direction for future exploration.

Conclusion and Future Work

In this paper, we proposed a novel framework for learning
the parameters of an MLN where the weights of only a sub-
set of the ground formulas are tied to each other, lying be-
tween the two extremes of tying all or none of the ground
formula weights. We introduced the notion of the subtype of
a constant, which captures the hidden trait of that constant,
and enables us to partition the formula groundings based on
their type signatures. We proposed two different algorithms
for discovering the subtype information (a) k-means based
clustering algorithm, (b) a joint EM based formulation. Our
preliminary experiments demonstrated the efficacy of our
approach.

There are several directions for future work. Current ex-
periments only test the k-means based algorithm for discov-
ering subtypes. We would like to examine how well the EM
based joint learning method performs. We would also like to
do a more comprehensive experimental study to test the effi-
cacy of our proposed model on a variety of domains. Other
directions include coming up with an automatic method for
deciding the right number of subtypes and coming up with
PAC bounds for our learning framework.

Acknowledgements

Happy Mittal was supported by the TCS Research Scholar
Program and the IJCAI travel grant. Vibhav Gogate was par-
tially supported by the DARPA Probabilistic Programming
for Advanced Machine Learning Program under AFRL

0.6

cluster-AUC —a—

05

[©)
-]
<
1 2 3 4 5 6 7 8 9 10
Number of clusters
(a) No. of clusters vs AUC
o
-]
<

10 20 30 40 50 60 70 80 90
Evidence %
(b) AUC for different clusters with varying evidence

Figure 1: Results for k-means on IMDB

prime contract number FA8750-14-C-0005 and by the NSF
award 1528037.

References

[Besag 1986] Besag, J. 1986. On the statistical analysis of
dirty pictures. Journal of the Royal Statistical Society. Series
B (Methodological) 259-302.

[Bradley and Guestrin 2012] Bradley, J. K., and Guestrin, C.
2012. Sample complexity of composite likelihood. In Inter-
national Conference on Artificial Intelligence and Statistics,
136-160.

[Chou et al. 2016] Chou, L.; Sarkhel, S.; Ruozzi, N.; and
Gogate, V. 2016. On parameter tying by quantization.

[Domingos and Lowd 2009] Domingos, P., and Lowd, D.
2009. Markov Logic: An Interface Layer for Artificial In-
telligence. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers.

[Getoor and Taskar 2007] Getoor, L., and Taskar, B., eds.
2007. Introduction to Statistical Relational Learning. MIT
Press.

[Gogate and Domingos 2012] Gogate, V., and Domingos, P.
2012. Approximation by quantization. arXiv preprint
arXiv:1202.3723.

[Gogate and Domingos 2013] Gogate, V., and Domingos,

P. 2013. Structured message passing. arXiv preprint
arXiv:1309.6832.

[Huynh and Mooney 2009] Huynh, T. N., and Mooney, R. J.
2009. Max-margin weight learning for Markov logic net-
works. In Machine Learning and Knowledge Discovery in
Databases. Springer. 564-579.

[Huynh and Mooney 2011] Huynh, T. N., and Mooney, R. J.
2011. Online max-margin weight learning for Markov logic
networks. In SDM, 642—-651. SIAM.

[Kok and Domingos 2007] Kok, S., and Domingos, P. 2007.
Statistical predicate invention. In Proceedings of the 24th
international conference on Machine learning, 433—440.
ACM.

[Kok and Domingos 2009] Kok, S., and Domingos, P. 2009.
Learning Markov logic network structure via hypergraph
lifting. In Proceedings of the 26th annual international con-
ference on machine learning, 505-512. ACM.

[Kok and Domingos 2010] Kok, S., and Domingos, P. 2010.
Learning Markov logic networks using structural motifs. In
Proceedings of the 27th international conference on ma-
chine learning (ICML-10), 551-558.

[Kok et al. 2008] Kok, S.; Sumner, M.; Richardson, M.;
Singla, P.; Poon, H.; Lowd, D.; Wang, J.; and Domin-
gos, P. 2008. The Alchemy system for statistical re-
lational AI. Technical report, University of Washington.
http://alchemy.cs.washington.edu.

[Koller and Friedman 2009] Koller, D., and Friedman, N.
2009. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press.

[Lowd and Domingos 2007] Lowd, D., and Domingos, P.
2007. Efficient weight learning for Markov logic net-
works. In Knowledge discovery in databases: PKDD 2007.
Springer. 200-211.

[Mittal et al. 2014] Mittal, H.; Goyal, P.; Gogate, V.; and
Singla, P. 2014. New rules for domain independent lifted
MAP inference. In Proc. of NIPS-14, 649—657.

[Richardson and Domingos 2006] Richardson, M., and
Domingos, P. 2006. Markov logic networks. Machine
Learning 62.

[Singla and Domingos 2005] Singla, P., and Domingos, P.
2005. Discriminative Training of Markov Logic Networks.
In Proc. of AAAI-05.

[Van den Broeck and Darwiche 2013] Van den Broeck, G.,
and Darwiche, A. 2013. On the complexity and approxi-
mation of binary evidence in lifted inference. In Advances
in Neural Information Processing Systems, 2868—2876.

[Van Haaren et al. 2015] Van Haaren, J.; Van den Broeck,
G.; Meert, W.; and Davis, J. 2015. Lifted generative learning
of Markov logic networks. Machine Learning 103(1):27-55.

[Venugopal and Gogate 2014] Venugopal, D., and Gogate,
V. 2014. Evidence-based clustering for scalable inference
in Markov logic. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, 258-273.
Springer.

	Introduction
	Background
	Weight Learning

	Representation
	Motivation
	Incorporating SubTypes
	Modifying MLN

	Learning Weights
	K-means Clustering
	Joint Learning of SubTypes
	Generalize to New Domains

	Experiments
	Methodology
	Results

	Conclusion and Future Work
	Acknowledgements

