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Abstract

Feature selection is an important task for mining useful information from datasets
in high dimensions, a typical characteristic of biology domains such as microar-
ray datasets. In this paper, we present an altogether new perspective on feature
selection. We pose feature selection as a one class SVM problem of modeling
the space in which features can be represented. We show that finding the support
vectors in our one class formulation is tantamount to performing feature selection.
Further, we show that our formulation reduces to the standard QPFS formulation
in the dual problem space. Not only our formulation gives new insights into the
task of feature selection, solving it directly in the primal space can give significant
computational gains when the number of the samples is much smaller than the
number of features. We validate our thesis by experimenting on three different
microarray datasets.

1 Introduction

DNA microarray technology measures the mRNA level of thousands of genes simultaneously under
certain conditions in a cell (sample). These mRNA levels represent the gene expression values and
are known as gene expression dataset. The analysis of this data is typically carried out through
classification/regression [1]. These datasets are characterized by very large number (thousands) of
features(genes) while the number of samples are very small (hundreds) [2]. It is well known that
the presence of large number of features in a dataset leads to poor generalization accuracy and high
execution time [3].

Several methods have been proposed in the literature to reduce the dimensionality of microarray
data in classification (or regression) tasks. There are mainly two ways of dealing with this curse of
dimensionality. In the first approach, the data is transformed into an entirely new low dimensional
sub-space. PCA, IDA, LDA are examples of this approach [4]. One key problem with this approach
is that the dimensions in the transformed sub-space may not correspond to any physical interpretation
to the domain expert. In the second approach, dimensionality reduction is achieved by selecting a
subset of original features using Feature Selection methods [1, 2, 5, 6, 7, 8]. The objective of
feature selection is to find a minimal subset of non-redundant and relevant features from the data
which maximizes classification/regression accuracy. The features obtained by this approach can
generally be directly interpreted by the domain expert. The quadratic programming feature selection
(QPFS) [7] proposed recently has been shown to outperform existing feature selection methods such
as mRMR, MaxRel and reliefF [6].
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In this paper, we pose the problem of feature selection as a one class SVM problem. One class
SVMs represent the underlying data by finding a hyperplane which maximally separates the data
points from the origin [9, 10]. They have been widely used for outlier detection. Our formulation
strives to separate the set of features from the set of non-features (outliers) in the space where each
feature represents a data point and each example represents a dimension. This can be done by find-
ing a hyperplane which maximally separates the given set of features from the origin. The support
vectors describing the hyperplane boundary are exactly the set of features which are required for
representing the underlying set of features. Hence, the task of feature selection essentially corre-
sponds to finding these support vectors. Under the assumption of unit norm (which is typically the
case for feature selection), the one class SVM formulation using a hyperplane boundary becomes
equivalent to the Support Vector Data Description (SVDD) formulation [10], which tries to find a
hypersphere which most compactly encloses the given set of points.

We show that our formulation corresponds to the QPFS formulation [7] in the dual problem space.
This helps in presenting a principled perspective of feature selection in both the primal as well as
the dual space. When the number of samples is significantly less than the number of features, as is
the case with problems in biology domains such as microarray datasets, it can be computationally
much more efficient to solve the problem directly in the primal space. Experiments on three different
microarray datasets corroborate our claim.

The rest of the paper is organized as follows. We describe our proposed formulation in Section 2.
Experimental results are presented in Section 3. We conclude our work in Section 4.

2 Proposed Framework for Feature Selection

The main goal in feature selection is to select a subset of features which jointly minimize redundancy
and maximize relevance. One way to achieve this goal is to select the subset of features which can
describe the boundary (hyperplane) separating the set of features from the set of non-features (out-
liers). This framework is inspired by the one class Support Vector Machine (SVM) [9] formulation
where we are looking for a hyperplane which separates the given set of points from the outliers. Typ-
ically, there exist a subset of points which is sufficient to describe the separating hyperplane. The
points in this subset are called support vectors [9]. In our formulation, the features (fi, i = 1, ...,M )
represent the data points and examples (xi, i = 1, . . . , N ) correspond to the dimensions. The sup-
port vectors correspond to the set of support (informative) features. One class SVM formulation [9]
for this can be written as:

min
w,b

1

2
wTw + b

subject to

wTφ(fi) + b ≥ 1, ∀i = 1, ...,M ;

(1)

where φ is a transformation in the dot product space and can be computed via a kernel k(xi, xj) =
φ(xi)

Tφ(xj), w is a normal to the separating hyperplane wTφ(xi) + b = 0 and b is the bias term.

In any given feature selection task, the goal is to maximize the relevance and minimize the redun-
dancy [1, 6, 7]. Typically, an explicit relevance vector r (ri, i = 1, . . . ,M ) is computed based on
correlation or mutual information with class labels [7]. In our formulation, we allow each feature
to have a separate margin boundary based on its relevance(ri). Greater the relevance, larger the
margin. Redundancy (similarity) is captured implicitly in our framework. The features lying on
the respective margin boundaries can be considered as non-redundant while those lying beyond the
respective margin boundaries can be considered as redundant. The choice of φ (transformed space)
determines the kind of correlation among the features (more details on this later).

Based on the above artifacts, we present the following primal formulation for feature selection :

min
w,b

1

2
wTw + b

subject to

wTφ(fi) + b ≥ ri, ∀i = 1, ...,M ;

(2)
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Figure 1 illustrates the intuition behind our proposed framework in the linear dot product space. In
the figure, wT f + b = 0 represents the separating hyprplane. The distance of this hyperplane from
the origin is given by −b/||w||. The first term in the objective of (2) tries to minimize wTw i.e.
maximize 1/||w||. The second term in the objective tries to minimize b i.e. maximize −b. Hence,
the overall objective tries to push the plane away from the origin.
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Figure 1: Feature representation in sample space

The ith dashed plane represents the
margin boundary for the ith feature.
The distance of this marginal hy-
perplane from the separating hyper-
plane is given by ri/||w|| where ri
is the pre-computed relevance of the
ith feature. Therefore, minimizing
wTw in the objective also amounts
to maximizing this marginal distance
(ri/||w||). Hence, the objective has
the dual goal of pushing the hyper-
plane away from the origin while also
maximizing the margin for each fea-
ture (weighted by its relevance). The
features which lie on the respective
marginal planes are the support fea-
tures (encircled points).

The redundancy is usually captured
using correlation or mutual informa-
tion in feature selection tasks [7]. In
our framework, the dot product space
(kernel) captures the similarity (re-
dundancy) among the features [11]. The required similarity metric can be captured by selecting
the appropriate dot product space. The linear kernel (fT

i fj) represents the correlation among the

features when the features are normalized to zero mean and unit variance1. Since the value of the
correlation ranges between -1 and 1, a degree two homogeneous polynomial kernel defined over nor-

malized data represents the squared correlation (i.e. φ(fi)
T
φ(fj) = (fT

i fj)
2). The choice of this

kernel is quite intuitive for feature selection as it gives equal importance to the positive and negative
correlations. Gaussian kernel can also be used to approximate the mutual information (MI) [12]
which is the key metric for non-linear redundancy measure in feature selection problems [6, 7]. The
dual formulation of (2) using the method of Lagrangians can be described as follows:

max
α

M∑

i=1

αiri −
1

2

M∑

i=1

M∑

j=1

αiαjk(fi, fj)

subject to

αi ≥ 0, ∀i = 1, ...,M ; and

M∑

i=1

αi = 1

(3)

where k(, ) is a suitable kernel function corresponding to the transformation φ such that k(fi, fj) =

φ(fi)
T
φ(fj). Note that the dual precisely represents the QPFS formulation [7] where k(fi, fj)

represents the entries of the similarity matrix Q and ri represents the relevance of ith feature fi.
In (3), the relevance and redundancy have been given equal importance. In order to incorporate a
relative importance (weight) for relevance and redundancy a scalar parameter θ ∈ [0, 1) is introduced

and the first term of the dual objective (
∑M

i=1
αiri) is scaled by θ/(1− θ) [7]. This is equivalent to

scaling the ri’s by θ/(1− θ) in the primal.

Let D be the dimensions of the transformed space φ. Then the number of variables and the number
of constraints in the primal formulation (2) are D + 1 and M , respectively. The corresponding
numbers for the dual are M and M + 1, respectively. Typically in microarray datasets, the number

1It is typical to normalize the data to zero mean and unit variance for feature selection.
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of samples is much less compared to the number of features [1]. When the number of samples in the
mapped space φ is very small compared to the number of features (D<<M ), the primal optimization
will be faster than the dual. Using linear and second degree polynomial transformations the size of
the transformed space (D) will still be very small (assuming D<<M ) compared to the number of
features and therefore, it would be beneficial to solve the primal. For the large values of D (possibly
infinite as in the case of Gaussian kernel) solving the dual will be beneficial.

3 Experiments

3.1 Algorithms and Datasets

In our experiments, we compared the performance of our proposed feature selection approach in
the primal as well as the dual. We used both the linear correlation (LinC) and the squared corre-
lation (SqC) to compute the feature similarity and the feature relevance. We also compared our
methods with QPFS [7] using mutual information. For our experimental study, we used three pub-
licly available benchmark microarray datasets, namely, Lymphoma, Leukemia and Type 2 Diabetes
(T2D) datasets with 4026(45), 7129(72) and 22283(34) features(samples), respectively [2]. These
datasets are binary classification datasets and have been used for feature selection by many re-
searchers [1, 2, 5, 6, 8]. We report the leave-one-out cross-validation (LOOCV) [2] accuracy.

The value of the scale parameter θ was fixed to 0.5 in each of the methods for the purpose of
comparison. After feature selection was done, linear SVM (L2-regularized L2-loss support vector
classification in primal) [13] was used to train a classifier using the optimal set of features output
by each algorithm. The code was implemented in Matlab. All the experiments were run on a Intel
CoreTM i7 3.10GHz with 8GB RAM.

3.2 Results

Table 1 compares the average execution times (in seconds) of solving the feature selection in the
primal and the dual using LinC and SqC. For Lymphoma and Leukemia LinC in the primal is three
orders of magnitude faster than the dual. Using SqC the primal is an order of magnitude faster
than the dual. For the T2D dataset the execution in the dual ran out of memory and could not be
completed whereas the primal had no issues. We also compared the accuracies for both LinC and

Table 1: Average execution time (in seconds)

Dataset LinC SqC
Primal Dual Primal Dual

Lymphoma 1.1 1039.1 25.1 1035.3
Leukemia 1.1 5606.2 375.83 5609.4
T2D 1.3 − 8.4 −

SqC2. As expected SqC performed better than LinC because of flexibility in modeling the decision
boundaries. The best set of accuracies (varying the number of top-K features selected) were as
follows: Lymphoma(LinC:100, SqC:100), Leukemia(LinC:90.27, SqC:97.22) and T2D(LinC:100,
SqC:100). Running QPFS [7] with mutual information as similarity measure gave the same set of
accuracies as that of SqC.

4 Conclusion

In this paper, we have presented a novel framework for feature selection using one class SVM. Our
proposed formulation in the dual space corresponds to the QPFS formulation. Our experiments
show that solving the problem in the primal can be significantly more efficient than solving it in the
dual specially when dealing with the datasets with large number of features and small number of
samples, a characteristic of many problems in the biology domains.

2Note that both the primal and the dual will produce the same set of accuracies.
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