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Abstract. Data cleaning and integration is typically the most expen-
sive step in the KDD process. A key part, known as record linkage or
de-duplication, is identifying which records in a database refer to the
same entities. This problem is traditionally solved separately for each
candidate record pair (followed by transitive closure). We propose to use
instead a multi-relational approach, performing simultaneous inference
for all candidate pairs, and allowing information to propagate from one
candidate match to another via the attributes they have in common. Our
formulation is based on conditional random fields, and allows an optimal
solution to be found in polynomial time using a graph cut algorithm. Pa-
rameters are learned using a voted perceptron algorithm. Experiments
on real and synthetic databases show that multi-relational record linkage
outperforms the standard approach.

1 Introduction

Data cleaning and preparation is the first stage in the KDD process, and in
most cases it is by far the most expensive. Data from relevant sources must
be collected, integrated, scrubbed and pre-processed in a variety of ways before
accurate models can be mined from it. When data from multiple databases is
merged into a single relation, many duplicate records often result. These are
records that, while not syntactically identical, represent the same real-world en-
tity. Correctly merging these records and the information they represent is an
essential step in producing data of sufficient quality for mining. This problem is
known by the name of record linkage, de-duplication, merge/purge, object iden-
tification, identity uncertainty, hardening soft information sources, and others.
In recent years it has received growing attention in the KDD community, with
a related workshop at KDD-2003 and a related task as part of the 2003 KDD
Cup.

Traditionally, the de-duplication problem has been solved by making an in-
dependent match decision for each candidate pair of records. A similarity score
is calculated for each pair, and the pairs whose similarity score is above some



pre-determined threshold are merged. This is followed by taking a transitive
closure over matching pairs. In this paper, we argue that there are several ad-
vantages to making the co-reference decisions together rather than considering
each pair independently. In particular, we propose to introduce an explicit rela-
tion between each pair of records and each pair of attributes appearing in them,
and use this to propagate information among co-reference decisions. To take
an example, consider a bibliography database where each bibliography entry is
represented by a title, a set of authors and a conference in which the paper
appears. Now, determining that two bib-entries in which the conference strings
are “KDD” and “Knowledge Discovery in Databases” refer to the same paper
would lead to the inference that the two conference strings refer to the same
underlying conference. This in turn might provide sufficient additional evidence
to match two other bib-entries containing those strings. This new match would
entail that the respective authors are the same, which in turn might trigger some
other matches, and so on. Note that none of this would have been possible if we
had considered the pair-wise decisions independently.

Our formulation of the problem is based on conditional random fields, which
are undirected graphical models [9]. Conditional random fields are discriminative
models, freeing us from the need to model dependencies in the evidence data. Our
formulation of the problem allows us to perform optimal inference in polynomial
time. This is done by converting the original graph into a network flow graph,
such that the min-cut of the network flow graph corresponds to the optimal
configuration of node labels in the original graph. The parameters of the model
are learned using a voted perceptron algorithm [5]. Experiments on real and semi-
artificial data sets show that our approach performs better than the standard
approach of making pairwise decisions independently.

The organization of this paper is as follows. In Section 2, we describe the
standard approach to record linkage. In Section 3, we describe in detail our
proposed solution to the problem based on conditional random fields, which we
call the collective model. Section 4 describes our experiments on real and semi-
artificial data sets. Section 5 discusses related work. Finally, we conclude and
give directions for future research in Section 6.

2 Standard Model

In this section, we describe the standard approach to record linkage [6]. Con-
sider a database of records which we want to de-duplicate. Let each record be
represented by a set of attributes. Consider a candidate pair decision, denoted
by y, where y can take values from the set {1,—1}. A value of 1 means that the
records in the pair refer to the same entity and a value of —1 means that the
records in the pair refer to different entities. Let x = (21, 22,...,2,) denote a
vector of similarity scores between the attributes corresponding to the records in
the candidate pair. Then, in the standard approach, the probability distribution
of y given x is defined using a naive Bayes or logistic regression model:
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f(x) is known as the discriminant function. \;, for 0 < ¢ < n, are the parameters
of the model. Given these parameters and the attribute similarity vector x, a
candidate pair decision y is predicted to be positive (a match) if f(x) > 0 and
predicted to be negative (non-match) otherwise. The parameters are usually set
by maximum likelihood or maximum conditional likelihood. Gradient descent is
used to find the parameters which maximize the conditional likelihood of y given
x, i.e., Px(y|x) [1].

3 Collective Model

The basic difference between the standard model and the collective model is that
the collective model does not make pairwise decisions independently. Rather, it
makes a collective decision for all the candidate pairs, propagating information
through shared attribute values, thereby making a more informed decision about
the potential matches. Our model is based on conditional random fields as de-
scribed in Lafferty et al. [9]. Before we describe the model, we will give a brief
overview of conditional random fields.

3.1 Conditional Random Fields

Conditional random fields are undirected graphical models which define the con-
ditional probability of a set of output variables Y given a set of input or evidence
variables X. Formally,
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where C is the set of cliques in the graph, and y. and x. denote the subset
of variables participating in the clique c. ¢., known as a clique potential, is
a function of the variables involved in the clique c¢. Z, is the normalization
constant. Typically, ¢. is defined as a log-linear combination of features over c,
ie., ¢c(ye,%Xc) = exp Y, Nicfie(Ye, Xc), where fie, known as a feature function,
is a function of variables involved in the clique ¢, and \;. are the feature weights.

In many domains, rather than having different parameters (feature weights)
for each clique in the graph, the parameters of a conditional random field are
tied across repeating clique patterns in the graph. Following the terminology of
Taskar et al. [17], we call each such pattern a relational clique template. Each
clique ¢ matching a clique template ¢ is called an instance of the template. The
probability distribution can then be specified as
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where T is the set of all the templates, C; is the set of cliques which satisfy
the template ¢, and fi;, A\;z are respectively the feature functions and feature
weights pertaining to template ¢. Because of the parameter tying, the feature
functions and the parameters vary over the clique templates and not the indi-
vidual cliques. A conditional random field with parameter tying as defined above
closely matches a relational Markov network as defined by Taskar et al. [17].

3.2 Notation

Before we delve into the model, let us introduce some notation. Consider a
database relation R = {ry,r9,...,7r,}, where r; is the ith record in the relation.
Let A = {A! A2 ... A™} denote the set of attributes. For each attribute A*,
we have a set ASF of corresponding attribute values appearing in the relation,
ASk = {a¥ dk, .. .,afk}. Now, the task at hand is to, given a pair of records
(ri,7j) (and corresponding attribute values), find out if they refer to the same
underlying entity. We will denote the kth attribute value of record r; by r;. A*.
Our formulation of the problem is in terms of undirected graphical models.
For the rest of the paper, we will use the following notation to denote node types,
a specific instance of a node and the node values. A capital letter subscripted
by a “x” will denote a node type, e.g. R.. A capital letter with two subscripted
letters will denote a specific instance of a node type, e.g., R;;. A lower-case letter
with two subscripts will denote a binary or continuous node value, e.g., 7;;.

3.3 Constructing the Graph

Given a database relation which we want to de-duplicate, we construct an undi-
rected graph as follows. For each pairwise question of the form, “Is r; the same as
r;?”, we have a binary node R;; in the graph. Because of the symmetric nature
of the question, R;; and R;; represent the same node. We call these nodes record
nodes. The record node type is denoted by R.. For each record node, we have
a corresponding set of continuous-valued nodes, called attribute nodes. The kth
attribute node for record node R;; is denoted by R;; .AF. The type of these nodes
is denoted by A¥, for each attribute A*. The value of the node R;;.A" is the
similarity score between the corresponding attribute values r;.A* and T AF_ For
example, for textual attributes this could be the TF/IDF similarity score [15].
For numeric attributes, this could be the normalized difference between the two
numerical values. Since the value of these nodes is known beforehand, we also
call them evidence nodes. We interchangeably use the term evidence node and
attribute node to refer to these nodes. We now introduce an edge between each
R, node and each of the the corresponding A* nodes, i.e., an edge between each
record node and the corresponding evidence nodes for each attribute. An edge



in the graph essentially means that values of the two nodes are dependent on
each other. To take an example, consider a relation which contains bibliography
entries for various papers. Let the attributes of the relation be author, title and
venue. Figure 1(a) represents the graph corresponding to candidate pairs b15 and
bog for this relation, where b1o corresponds to asking the question “Is bib-entry
by same as bib-entry b2?”. begz is similarly defined. Sim(b;.A,b;.A) denotes the
similarity score for the authors of the bibliography entries b; and b; for the var-
ious values of ¢ and j. Similarly, Sim(b;.T,b;.T) and Sim(b;.V,b;.V') denote the
similarity scores for title and venue attributes, respectively.

The graph corresponding to the full relation would have many such discon-
nected components, each component representing a candidate pair decision. The
above construction essentially corresponds to the way candidate pair decisions
are made in the standard approach, with no information sharing among the var-
ious decisions. Next, we describe how we change the representation to allow for
the exchange of information between candidate pair decisions.

3.4 Merging the Evidence Nodes

We note the fact that the graph construction as described in the previous section,
would in general have many duplicates among the evidence nodes. In other
words, many record pairs would have the same attribute value pair. Using our
notation, we say that nodes RJW.AIC and Ry,.A* are duplicates of each other if
(rg.a® = ry.a® Ary.ab =r,.a%) Vv (rp.a® = rp.ab Arya® = ry,.aF). Ourideais to
merge each such set of duplicates into a single node. Consider the bibliography
example introduced in Section 3.3. Let us suppose that (b12.V,b34.V) are the
duplicate evidence pairs. Then, after merging the duplicate pairs, the graph
would be as shown in Figure 1(b). Since we merge the duplicate pairs, instead
of having a separate attribute node for each r;; we now have an attribute node
for each pair of values af,,a;?, € ASF, for each attribute A*.

Although the formulation above helps to identify the places where informa-
tion is shared between various candidate pairs, it does not facilitate any propa-
gation of information. This is because the shared nodes are the evidence nodes
and hence their values are fixed. The model as described above is thus no better
than the decoupled model (where there is no sharing of evidence nodes) for the
purpose of learning and inference. This sets the stage for the introduction of aux-
iliary nodes, which we also call information nodes. As the name suggests, these
are the nodes which facilitate the exchange of information between candidate
pairs.

3.5 Propagation of Information through Auxiliary Nodes

For each attribute pair node A;-“,j,, we introduce a binary node IZ-’?J-,. The node

type is denoted by I* and we call these information nodes. Semantically, an

information node Iﬁj/ corresponds to asking the question “Is ai-? the same as

k

a?,?”. The binary value of the information node Ii’?j, is denoted by 4;,,, and



Record Node O
Evidence Node |:|

Sim(b1.A,b2.A) ‘ ‘ Sim(b1.V,b2.V) ‘ ‘Sim(b3.V,b4.V) ‘ ‘ Sim(b3.A,b4.A) ‘

Author(A) Venue(V) Venue(V) Author(A)

Sim(b1.T,b2.T) Sim(b3.T,b4.T)

Title(T) Title(T)

(a) Each pairwise decision considered independently

shared evidence
node

Sim(b1.A,b2.A) Sim(b1.V,b2.V) Sim(b3.A,b4.A)
Sim(b3.V,b4.V)

Author(A) Venue(V)
Sim(b3.T,b4.T)

Title(T)

Author(A)

Sim(b1.T,b2.T)

Title(T)

(b) Evidence nodes merged

Fig. 1. Merging the evidence nodes

is 1 iff the answer to the above question is “Yes” and —1 otherwise. While the
attribute node Af, j+ corresponds to the similarity score between the two attribute

values as present in the database, the information node I Z’? j+ corresponds to the
Boolean-valued answer to the question of whether the two attribute values refer

to the same underlying attribute. Each information node I Z’? j+ is connected to

k
ilj
For instance, information node I% j» would be connected to the record node R;;

the corresponding attribute node A}, and the corresponding record nodes R;;.

iff ri.AF = af and r;.AF = af/. Note that the same information node IZ-’?J-,
would in general be shared by several R, nodes. This sharing lies at the heart
of our model. Figure 2(a) shows how our hypothetical bibliography example is
represented using the collective model.



Table 1. An example bibliography relation

Record Title Author Venue
b1 “Record Linkage using CRFs” “Linda Stewart” “KDD-2003”
ba “Record Linkage using CRFs” “Linda Stewart” |“9th SIGKDD?”
b3 “Learning Boolean Formulas” “Bill Johnson” “KDD-2003"
bs |“Learning of Boolean Expressions”|“William Johnson” |“9th SIGKDD”

3.6 An Example

Consider the subset of a bibliography relation shown in Table 1. Each bibli-
ography entry is represented by three string attributes: title (T), author (A)
and venue (V). Consider the corresponding undirected graph constructed as de-
scribed in Section 3.5. We would have R, nodes for pairwise binary decisions
of the form “Does bib-entry b; refer to the same paper as bib-entry b;7”, for
each pair (¢, j). Correspondingly, we would have evidence nodes for each pair of
attribute values for each of the three attributes. We would also have I* nodes
for each attribute. For example, I* nodes for the author attribute would corre-
spond to the pairwise decisions of the form “Does the string a; refer to same
author as the string a;7”, where a; and a; are some author strings appearing in
the database. Similarly, we would have I* nodes for venue and title attributes.
Each record node R;; would have edges linking it to the corresponding author,
title and venue information nodes, denoted by I i’?j,, where k varies over author,

title and venue. In addition, each information node I% ;~ would be connected to

corresponding evidence node A% -

The corresponding graphical representation as described by the collective
model is given by Figure 2(b). The figure shows only a part of the complete graph
which is relevant to the following discussion. Note how dependencies flow through
information nodes. To take an example, consider the bib-entry pair consisting
of by and by. The titles and authors for the two bib-entries are essentially the
same string, giving sufficient evidence to infer that the two bib-entries refer to the
same underlying paper. This in turn leads to the inference that the corresponding
venue strings, “KDD-2003" and “9th SIGKDD?”, refer to the same venue. Now,
since this venue pair is shared by the bib-entry pair (bs, b4), the additional piece
of information that “KDD-2003” and “9th SIGKDD” refer to the same venue
might give sufficient evidence to merge b3 and b4, when added to the fact that
the corresponding title and author pairs have high similarity scores. This in
turn would lead to the inference that the strings “William Johnson” and “Bill
Johnson” refer to the same underlying author, which might start another chain
of inferences somewhere else in the database.

Although the example above focused on a case when positive influence is
propagated through attribute values, i.e., a match somewhere in the graph results
in more matches, we can easily think of an example where negative influences
are propagated through the attribute values, i.e., a non-match somewhere in the
graph results in a chain of non-matches. In fact, our model is able to capture



complex interactions of positive and negative influences, resulting in an overall
most likely configuration.

3.7 The Model and its Parameters

We have a singleton clique template for R, nodes and another for I, nodes.
Also, we have a two-way clique template for an edge linking an R, node to an I*
node. Additionally, we have a clique template for edges linking I* and A* nodes.
Hence, the probability of a particular assignment r to the R, and I, nodes, given
that the attribute (evidence) node values are a, can be specified as

Plra) = 7-exp Y {Z WICHEDS
a i,j l k

+ Z Yigi(rij, rig I%) + Z b (rij 1% 7. A)
] ]

> owfilriy I*)
l

} (4)

where: (4,7) varies over all the candidate pairs; r;;.1F denotes the binary value
of the pairwise information node for the kth attribute pair corresponding to the
node R;;, and r;; .A¥ denotes the corresponding evidence value; A\; and ¢y; denote
the feature weights for singleton cliques; vx; denotes the feature weights for two
way cliques involving binary variables; and dz; denotes the feature weights for two
way cliques involving evidence variables. For the singleton cliques and two-way
cliques involving binary variables, we have a feature function for each possible
configuration of the arguments, i.e., f;(x) is non-zero for x = 1, 0 < 1 < 1.
Similarly, g;(z,y) = gap(z,y) is non-zero for x = a,y = b, 0 < a,b < 1. For
two-way cliques involving a binary variable r and a continuous variable e, we
use two features: hg is non-zero for r = 0 and is defined as ho(r,e) = 1 — ¢;
similarly, h; is non-zero for r = 1 and is defined as hy(r,e) = e.

The way the collective model is constructed, a single information node in
the graph would in general correspond to many record pairs. But semantically
this single information node represents an aggregate of a number of nodes which
have been merged together because they would always have the same value in our
model. Therefore, for Equation 4 to be a correct model of the underlying graph,
each information node (and the corresponding cliques with the evidence nodes)
should be treated not as a single clique, but as an aggregate of cliques whose
nodes always have the same values. Equation 4 takes this fact into account by
summing the weighted features of the cliques for each candidate pair separately.

3.8 The Standard Model Revisited

If the information nodes are removed, and the corresponding edges are merged
into direct edges between the R, and A* nodes, the probability distribution
given by Equation 4 reduces to
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Fig. 2. Collective model
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P(r|a) = —expz Z/\lfl Tij +Zzwklhl rij, rij-A) (5)

where wy; denotes the feature weights for two-way variables. The remaining sym-
bols are as described before. This formulation in terms of a conditional random
field is very closely related to the standard model. Since in the absence of in-
formation nodes each pairwise decision is made independently of all others, we
have P(rla) = []; ; P(rij|a). When Vk, wyo = wy1 = wg, for some wy, we have

P(r;; = 1|a)
1 Ny T T / 2 :
og——"————= P, =) =N+ Z wirij. A (6)

where A = A1 — A9 — wg. This equation is in fact the standard model for making
candidate pair decisions.

3.9 Inference

Inference corresponds to finding the configuration r* such that P(r*|a) given
the learned parameters is maximized. For the case of conditional random fields
where all non-evidence nodes and features are binary-valued and all cliques are
singleton or two-way (as is our case), this problem can be reduced to a graph
min-cut problem, provided certain constraints on the parameters are satisfied [7].
The idea is to map each node in the conditional random field to a corresponding
node in a network-flow graph.

Consider a conditional random field with binary-valued nodes and having
only one-way and two-way cliques. For the moment, we assume that there are
no evidence variables. Further, we assume binary-valued feature functions f(z)
and g(z,y) for singleton and two-way cliques respectively, as specified in the
collective model. Then the expression for the log-likelihood of the probability
distribution for assignment y to the nodes is given by

n

L) = Y P10+ Xl + 5 37 D lonios (1= 91— 33)

i=1 i=1 j=1
HYijor (L= ya)ys 4+ ij o Ui (L — y5) + i, vivi]l + C (7)

where the first term varies over all the nodes in the graph taking the singleton
cliques into account, and the second term varies over all the pairs of the nodes in
the graph taking the two-way cliques into account. We assume the parameters for
non-existent cliques to be zero. Now, ignoring the constant term and rearranging
the terms, we obtain

n 1 n n
—L(y) = Z —(Nyi) + 3 Z Z(aijyi + Bijyi — 27%iYiy;) (8)
i=1

i=1 j=1
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where A; = >\i1 - /\iO’ Yij = %(Fyijoo +Yijy ~ Vidox _’yijm)7 Qij = Yijoo — Vijio and
Bij = Vijgy — Vijy, - Now, if ;; > 0 then the above equation can be rewritten as

L) = 3~ + 3 3 i — ) o)

i=1 i=1 j=1

for some )\;, 1 < i < n, given the fact that y? = y;, since the y;’s are binary-
valued.

Now, consider a capacitated network with n+ 2 nodes. For each node 7 in the
original graph, we have a corresponding node in the network graph. Additionally,
we have a source node (denoted by s) and a sink node (denoted by t). For each
node i, there is a directed edge (s,%) of capacity cg; = )\; if )\; > 0, else there a
directed edge (i,t) of capacity ¢;+ = —)\;. Also, for each ordered pair (i, j), there
is a directed edge of capacity c;; = %%j. For any partition of the network into
sets Band W, B={s}U{i:y; =1} and W = {t} U {i : y; = 0}, the capacity
of the cut C(y) = >,cp 2 icw Cri is precisely the negative of the probability of
the induced configuration on the original graph, offset by a constant. Hence, the
partition induced by the min-cut corresponds to the most likely configuration
in the original graph. The details can be found in Greig et al. [7]. We know
that an exact solution to min-cut can be found in polynomial time. Hence, the
exact inference in our model takes time polynomial in the size of the conditional
random field.

It remains to see how to handle evidence nodes. This is straightforward.
Notice that a clique involving an evidence node would account for an additional
term of the form we in the log likelihood, where e is the value of the evidence
node. Let y; be the binary node in the clique. Since e is known beforehand,
the above term can simply be taken into account by adding we to the singleton
parameter N in Equation 9 corresponding to y;.

3.10 Learning

Learning involves finding the maximum likelihood parameters (i.e., the param-
eters that maximize the probability of observing the training data). Instead
of maximizing P(r|a), we maximize its logarithm (the log likelihood), using
the standard approach of gradient descent. The partial derivative of the log-
likelihood L given by Equation 4 with respect to the parameter \; is

g—fl = Zfl(mj) - ZPA(r/|a) Zfl(rgj) (10)

where r’ varies over all possible configurations of the nodes in the graph and
P,(r'|a) denotes the probability distribution with respect to current set of pa-
rameters. This expression has an intuitive meaning: it is the difference between
the observed feature counts and the expected ones. The derivative with respect
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to other parameters can be found in the same way. Notice that, for our in-
ference to work, a constraint on the parameters of the two-way binary-valued
cliques must be satisfied: yo9 + 711 — Y01 — Y10 = 0. To ensure this, instead of
learning the original parameters, we perform the following substitution on the
parameters and learn the new parameters: voo = ¢(61) + d2, y11 = g(1) — 02,
Yo1 = —g(03) + 4, Y10 = —g(d3) — d4 where g(z) = log(1 + €®). It can be easily
seen that, for any values of the parameters d;, the required constraint is satisfied
on the original parameters. The derivative expression is modified appropriately
for the substituted parameters.

The second term in the derivative expression involves the expected value
over an exponential number of configurations. Hence finding this term would be
intractable for any practical problem. Like McCallum and Wellner [11], we use
a voted perceptron algorithm as proposed by Collins [5]. The expected value in
the second term is approximated by the feature counts of the most likely con-
figuration. The most likely configuration based on the current set of parameters
can be found using our polynomial-time inference algorithm. At each iteration,
the algorithm updates the parameters by the current gradient and then finds
the gradient for the updated parameters. The final parameters are the average
of the parameters learned during each iteration.

We initialize each A parameter to the log odds of the corresponding feature
being true in the data, which is the parameter value that would be obtained if all
features were independent of each other. Notice that the value of the information
nodes is not available in the training data. We initialize them as follows. An
information node is initialized to 1 if there is at least one record node linked
to the information node whose value is 1, otherwise we initialize it to 0. This
reflects the notion that, if two records are the same, all of their corresponding
fields should also be the same.

3.11 Canopies

If we consider each possible pair of records for a match, the potential number
of matches becomes O(n?), which is a very large number even for databases of
moderate size. Therefore, we use the technique of first clustering the database
into possibly-overlapping canopies as described by [10], and then applying our
learning/inference algorithms only to record pairs which fall in the same canopy.
This reduces the potential number of matches by a large factor. For example, for
a 650-record database we obtained on the order of 15000 potential matches after
forming the canopies. In our experiments we used this technique with both our
model and the standard one. The basic intuition behind the use of canopies and
related techniques in de-duplication is that most record pairs are very clearly
non-matches, and the plausible candidate matches can be found very efficiently
using a simple distance measure based on an inverted index.
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Table 2. Performance of the two models on the Cora database

Model |F-measure(%)|Recall(%)|Precision(%)
Standard 84.4 81.5 88.5
Collective 87.0 89.0 85.8

Table 3. Performance comparison after taking the transitive closure

Model |F-measure(%)|Recall(%)|Precision(%)
Standard 80.7 92.0 73.7
Collective 87.0 90.9 84.2

4 Experiments

To evaluate our model, we performed experiments on real and semi-artificial
databases. This section describes the databases, methodology and results. The
results that we report are inclusive of the canopy process, i.e., they are over
all the possible O(n?) candidate match pairs. The evidence node values were
computed using cosine similarity with TF/IDF [15].

4.1 Real-World Data

Our primary source of data was the hand-labeled subset of the Cora database
provided by Andrew McCallum and previously used by Bilenko and Mooney [2]
and others.! This dataset is a collection of 1295 different citations to 112 com-
puter science research papers from the Cora Computer Science Research Paper
Engine. The original data set contains only unsegmented citation strings. Bilenko
and Mooney [2] used a segmented version of the data for their experiments, with
each bibliographic reference split into its constituent fields (author, venue, title,
publisher, year, etc.) using an information extraction system. We used this pro-
cessed version of the Cora dataset for our experiments. We used only the three
most informative attributes: author, title and venue (with venue encompassing
different types of publication venue, such as conferences, journals,workshops,
etc.).

We divided the data into equal-sized training and test sets, ensuring that no
true set of matching records was split among the two, to avoid contamination
of the test data by the training set. We performed two-fold cross-validation,
and report the average F-measure, recall and precision [15] over twenty different
random splits. We trained the models using a number of iterations that was
first determined using a validation subset of the data. The “optimal” number
of iterations was 125 for the collective model and 17 for the standard one. The
results are shown in Table 2. The collective model gives an F-measure gain of
about 2.5% over the standard model, which is the result of a large gain in recall

! http://www.cs.umass.edu/~mccallum/data/cora-refs.tar.gz
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that outweighs a smaller loss in precision. Next, we took the transitive closure
over the matches produced by each model as a post-processing step to remove
any inconsistent decisions. Table 3 compares the performance of the standard
and the collective model after this step. The recall of the standard model is
greatly improved, but the precision is reduced even more drastically, resulting
in a substantial deterioration in F-measure. This points to the fact that the
standard model makes a lot of decisions which are inconsistent with each other.
On the other hand, the collective model is relatively stable with respect to the
transitive closure step, with its F-measure remaining the same as a result of a
small increase in recall and a small loss in precision. The net F-measure gain
of the collective model over the standard model after transitive closure is about
6.2%. This relative stability of the collective model leads us to infer that the
flow of information it facilitates not only improves predictive performance but
also helps to produce overall consistent decisions.

We hypothesize that as we move to larger databases (in number of records and
number of attributes) the advantage of our model will become more pronounced,
because there will be many more interactions between sets of candidate pairs
which our model can potentially benefit from.

4.2 Semi-Artificial Data

To further observe the behavior of the algorithms, we generated variants of
the Cora database by taking distinct field values from the original database
and randomly combining them to generate distinct papers. The semi-artificial
data has the advantage that we can control various factors like the number
of clusters, level of distortion, etc., and observe how these factors affect the
performance of our algorithm. To generate the semi-artificial database, we first
made a list of author, title and venue field values. In particular, we had 80
distinct titles, 40 different venues and 20 different authors. Then, for each field
value, we created a fixed number of distorted duplicates of the string value (in
our current experiments, we created 8 different distorted duplicates for each field
value). The number of distortions within each duplicate was chosen according
to a binomial distribution whose Bernoulli parameter (success probability) we
varied in our experiments. A single Bernoulli trial corresponds to the distortion
of a single word in the original string. For each word that we decided to perturb,
we randomly chose between one of the following: introduce a spelling mistake,
replace by a word from another field value, or delete the word. To generate the
records in the database, we first decided the total number of clusters the database
would have. We varied this number in our experiments. The total number of
documents was kept constant at 1000 across all the experiments we carried out
with semi-artificial data. For each cluster to be generated, we randomly chose a
combination of original field values. This uniquely determines a cluster. To create
the duplicate records within each cluster, we randomly chose, for each field value
assigned to the cluster, one of the corresponding distorted field duplicates.

In the first set of experiments on the semi-artificial databases, our aim was to
analyze the relative performances of the standard model and the collective model
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as we vary the number of clusters. We used 50, 100, 200, 300 and 400 clusters.
The average number of records per cluster was varied inversely, to keep the total
number of records in the database constant (at 1000). The distortion parameter
was kept at 0.4. Figures 3(a), 3(c) and 3(e) show the results. Each data point
was obtained by performing two-fold cross validation over five random splits of
the data. All the results reported are before taking the transitive closure over the
matching pairs. The F-measure (Figure 3(a)) drops as the number of clusters is
increased, but the collective model always outperforms the standard model. The
recall curve (Figure 3(c)) shows similar behavior. Precision (Figure 3(e)) seems
to drop with increasing number of clusters, with neither of the models emerging
as the clear winner.

In the second set of experiments on the semi-artificial databases, our aim was
to analyze the relative performances of the standard model and the collective
model as we vary the level of distortion in the data. We varied the distortion
parameter from 0 to 1, at intervals of 0.2. 0 means no distortion and 1 means
that every word in the string is distorted. The number of clusters in the database
was kept constant at 100, the total number of documents in the database being
1000. Figures 3(b), 3(d) and 3(f) show the results. Each data point was obtained
by performing two-fold cross validation over five random splits of the data. All
the results reported are before taking the transitive closure over the matching
pairs. As expected, the F-measure (Figure 3(b)) drops as the level of distortion
in the data is increased. The collective model outperforms the standard model
at all levels of distortion. The recall curve (Figure 3(d)) shows similar behavior.
Precision (Figure 3(f)) initially drops with increasing distortion, but then partly
recovers. The collective model performs as well as or better than the standard
model until the distortion level reaches 0.4, after which the standard model takes
over.

In summary, these experiments support the hypothesis that the collective
model yields improved predictive performance relative to the standard model. It
improves F-measure as a result of a substantial gain in recall while reducing pre-
cision by a smaller amount. Investigating these effects and trading off precision
and recall in our framework are significant items for future work.

5 Related Work

Most work on the record linkage problem to date has been based on comput-
ing pairwise distances and collapsing two records if their distance falls below a
certain threshold. This is typically followed by taking a transitive closure over
the matching pairs. The problem of record linkage was originally proposed by
Newcombe [13], and placed into a rigorous statistical framework by Fellegi and
Sunter [6]. Winkler [19] provides an overview of systems for record linkage. There
is a substantial literature on record linkage within the KDD community ([8], [3],
[12], [4],[16], [18], [2], etc.).

Recently, Pasula et al. proposed a multi-relational approach to the related
problem of reference matching [14]. This approach is based on directed graphi-
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cal models and a different representation of the matching problem, also includes
parsing of the references into fields, and is quite complex. In particular, it is
a generative rather than discriminative approach, requiring modeling of all de-
pendencies among all variables, and the learning task is correspondingly more
difficult. A multi-relational discriminative approach has been proposed by Mc-
Callum and Wellner [11]. The only inference performed across candidate pairs,
however, is the transitive closure that is traditionally done as a post-processing
step. While our approach borrows much of the conditional machinery developed
by McCallum et al., its representation of the problem and propagation of infor-
mation through shared attribute values are new.

Taskar et al. [17] introduced relational Markov networks, which are condi-
tional random fields with templates for cliques as described in Section 3.1, and
applied them to a Web mining task. Each template constructs a set of simi-
lar cliques via a conjunctive query over the database of interest. Our model is
very similar to a relational Markov network, except that it cannot be directly
constructed by such queries; rather, the cliques are over nodes for the relevant
record and attribute pairs that must first be created.

6 Conclusion and Future Work

Record linkage or de-duplication is a key problem in KDD. With few exceptions,
current approaches solve the problem for each candidate pair independently. In
this paper, we argued that a potentially more accurate approach to the problem is
to set up a network with a node for each record pair and each attribute pair, and
use it to infer matches for all the pairs simultaneously. We designed a framework
for collective inference where information is propagated through shared attribute
values of record pairs. Our experiments confirm that our approach outperforms
the standard approach.

We plan to apply our approach to a variety of domains other than the bib-
liography domain. So far, we have experimented with relations involving only a
few attributes. We envisage that as the number of attributes increases, there will
be potentially more sharing among attribute values, and our approach should
be able to take advantage of it.

In the current model, we use only cliques of size two. Although this has
the advantage of allowing for polynomial-time exact inference, it is a strong
restriction on the types of dependencies that can be modeled. In the future we
would like to experiment with introducing larger cliques in our model, which will
entail moving to approximate inference.
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