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Abstract

Domains such as vision, bioinformatics, web search and
web rankings involve datasets where number of features is
very large. Feature selection is commonly employed to deal
with high dimensional data. Recently, Quadratic Program-
ming Feature Selection (QPFS) has been shown to outper-
form many of the existing feature selection methods for a va-
riety of datasets. In this paper, we propose a Sequential Min-
imal Optimization (SMO) based framework for QPFS. This
helps in reducing the cubic computational time (in terms of
data dimension) of the standard QPFS to quadratic time in
practice. Further, our approach has significantly less memory
requirement than QPFS. This memory saving can be critical
for doing feature selection in high dimensions. The perfor-
mance of our approach is demonstrated using three publicly
available benchmark datasets from bioinformatics domain.

Introduction
Recently, a new filter based quadratic programming feature
selection (QPFS) method has been proposed (Rodriguez-
Lujan et al. 2010). Here, a similarity matrix which represents
the redundancy among the features and a feature relevance
vector are computed. These together are fed into a quadratic
program to get a ranking on the features. To deal with the
quadratic complexity, Rodriguez-Lujan et al. (2010) com-
bine a Nyström sampling method, which reduces the space
and time requirements at the cost of accuracy.

The complexity of learning Support Vector Machines
(SVM) using quadratic program solver is cubic. Sequential
minimal optimization (SMO) based decomposition signifi-
cantly reduces the complexity of learning in SVMs (Guyon
and Elisseeff 2003). In the SMO based approach, a working
set of size two (i.e. two variables which most violate the op-
timality condition) is selected iteratively and the target func-
tion is optimized with respect to them.

In this paper, we propose an SMO type decomposition
based on second order approximation for QPFS. We refer to
our approach as QPFS-SMO, henceforth. We derive the con-
ditions for selecting the working set for our formulation. Our
proposed approach has computational time quadratic in the
number of features in practice. This is in contrast to the cubic
time complexity of QPFS. Our approach is also significantly
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more memory efficient. This time and memory saving can be
critical for doing feature selection in high dimensional data
where QPFS runs out of memory. Our experiments on three
publicly available benchmark microarray datasets validate
that QPFS-SMO is orders of magnitude faster, and signif-
icantly more memory efficient, than QPFS and QPFS with
Nyström method, while retaining the same level of accuracy.

We first describe our SMO based formulation for QPFS.
This is followed by experimental evaluation of the two ap-
proaches on the three datasets.

QPFS
Given a dataset with M features (Ai, i = 1, ...,M ), C class
labels (ci, i = 1, ..., C) and l training instances (xi, i =
1, ..., l), the standard QPFS formulation (Rodriguez-Lujan
et al. 2010) is:

f (α) = min
α

1

2
(1− θ)αTQα− θsTα

Subject to αi ≥ 0, i = 1, ...,M ; ITα = 1.
(1)

where, α is an M dimensional vector, I is the vector of all
ones and Q is an M ×M symmetric positive semi-definite
matrix, which represents the redundancy among the features.
s is an M dimensional vector of non-negative values, which
represents relevance score of features with the class labels.
In this formulation, quadratic term captures the dependence
between each pair of features, and linear term captures the
relevance between each of the features and the class labels.
The scalar quantity θ ∈ [0, 1] represents the relative impor-
tance of non-redundancy amongst the features and their rel-
evance. Rodriguez-Lujan et al. (2010) provide a detailed de-
scription of QPFS.

The Proposed QPFS-SMO Approach
It is easy to see that Equation (1) differs from the SVM for-
mulation (Fan, Chen, and Lin 2005) only in the way con-
straints are expressed over αi’s. The primary difference lies
in the constraint set and the feature relevance vector s. In
SVMs, a vector of ones is used instead of the feature rel-
evance vector s. The key component in the SMO type de-
composition is to select a working set which maximally de-
scends the objective value at each iteration. Following Fan,
Chen, and Lin (2005)’s work for SVMs, we have developed



a second order approximation for working set (two element)
selection for QPFS-SMO. After computing α vector, the fea-
tures are ranked as done by Rodriguez-Lujan et al. (2010).
Algorithm 1 summarizes our approach. Details are available
in the supplementary material (Prasad, Biswas, and Singla
2013).

Algorithm 1: Proposed QPFS-SMO Approach
Input: Dataset, Value of θ parameter
Output: Solution vector α

1. Compute similarity matrix Q and relevance vector s.
Scale Q and s by (1− θ) and θ, respectively.

2. Initialize α1 to some feasible solution.
3. Set k ← 1.
4. Select working set B = {i, j}.
5. Set αk+1 to be the optimal solution.
6. Set k ← k + 1.
7. If αk satisfies the stopping criteria, then exit.

Otherwise, go to step 4.

Experiments
Datasets
We experiment with three publicly available bench-
mark microarray datasets, namely Colon, SRBCT and
GCM (Rodriguez-Lujan et al. 2010; Ganesh Kumar et al.
2012). The number of features in these datasets are 2000,
2308 and 16063, respectively. The number of samples are
62, 63 and 190, respectively.

Methodology
We follow the methodology of Rodriguez-Lujan et al. (2010)
for our experiments. Each dataset is divided into 90% and
10% sized splits for training and testing, respectively. The
reported results are averaged over 100 random splits of the
data. We use mutual information for redundancy and rele-
vance measures. The data is discretized using three segments
and one standard deviation for computing mutual informa-
tion. The value of scale parameter (θ) is computed as de-
scribed in Lujan et al. (2010). Linear SVM (L2-regularized
L2-loss support vector classification in primal) (Fan et al.
2008) is used to train a classifier using the optimal set of
features output by each algorithm. All the experiments were
run on a machine with 16 processors (3.10 GHz) using 128
GB of RAM.

Results
Time and Memory Table 1 shows the time and mem-
ory requirements for feature selection done using QPFS and
QPFS-SMO. On all the datasets, QPFS-SMO is faster than
QPFS. On Colon and SRBCT, it is an order of magnitude
faster. QPFS ran out of memory for the GCM dataset in
contrast to QPFS-SMO which had no issue running on this

dataset. On GCM, we also compared the performance of
QPFS-SMO+Nyström with QPFS+Nyström at a sampling
rate of ρ = 0.03. QPFS-SMO+Nyström (59.2 seconds) is
about twice as fast as the QPFS+Nyström (97.5 seconds),
while performing marginally better.

QPFS-SMO requires significantly less memory compared
to QPFS on all the datasets. For QPFS-SMO, the savings
come from the fact that unlike QPFS, it does not need to
calculate the SVD of the Q matrix.

Table 1: Comparison of average time and memory usage.

Time(seconds) Memory(KB)
QPFS QPFS QPFS QPFS

Dataset -SMO -SMO

Colon 118.0 4.8 84779 16981
SRBCT 178.7 6.6 100591 89884
GCM - 483.5 - 510949

Accuracy Figure 1 compares the accuracies of the two ap-
proaches as we vary the number of features to be selected
from 1 to 400. As expected, the accuracies achieved by the
two algorithms are quite similar at varying number of top
features selected. The error rates come down as relevant fea-
tures are added to the set. Once the relevant set has been
added, any more additional (irrelevant) features lead to loss
in accuracy. Results for the other datasets show a similar
trend.
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Figure 1: Error rate for Colon Dataset

Conclusion
We have presented an SMO based optimization for QPFS
which is significantly more efficient both in time and mem-
ory compared to the standard formulation. Directions for fu-
ture work include experimenting on more datasets, on the fly
computation of the similarity matrix and parallel formalism
of our SMO based framework.
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