Supplementary Material: Primal-Dual Formulation for Deep Learning with Constraints

Yatin Nandwani, Abhishek Pathak, Mausam and Parag Singla Department of Computer Science and Engineering Indian Institute of Technology Delhi {yatin.nandwani, abhishek.pathak.cs115, mausam, parags}@cse.iitd.ac.in

4 Training

Algorithm 1 Training of a Deep Net with Constraints. Hyperparameters: warmup, d, β , α_{Λ}^{0} , α_{w}

1 Initialize: w randomly; $\lambda_k = 0, \ \forall k = 1 \dots K$ for warmup iterations do 2 **Update** w: Take an SGD step wrt w on $\mathcal{L}(w; \Lambda)$ on a mini-batch 3 end 4 Initialize: $l = 1; t = 1; t_1 = 1; \alpha_{\Lambda} = \alpha_{\Lambda}^0$ 5 while not converged do **Update** Λ : Take an SGA step wrt Λ on $\mathcal{L}(w; \Lambda)$ on a mini-batch 6 Increment t = t + 17 for *l* steps do 8 **Update** w: Take an SGD step wrt w on $\mathcal{L}(w; \Lambda)$ on a mini-batch 9 Increment $t_1 = t_1 + 1$ 10 end Update l = l + d11 Set learning rates: $\alpha_{\Lambda} = \alpha_{\Lambda}^{0} \frac{1}{1+\beta t}$ 12 end

Theorem 1. Algorithm 1 converges to a Local minmax point of $\mathcal{L}(w; \Lambda)$ for any $d \ge 1$.

Proof. Without loss of generality, we can assume warmup = 0. Then, for a given t (number of Λ updates), let t_1 denote the number of corresponding w updates. Then, $t_1 = 1 + d + \dots + t * d$, i.e., $t_1 = O(t^2d)$. Therefore, the ratio of effective learning rates for w and Λ updates = $\frac{\alpha_w}{\alpha_{\Lambda_0}}(1+\beta t)O(td)$. This term goes to ∞ with increasing t. Hence, by Theorem 28 in Jin *et al.* [2019], Algorithm 1 converges to the local Minmax point of $\mathcal{L}(w; \Lambda)$.

5 Experiments

Optimizer: For w updates, we use the same optimizer as used in the base model and for λ updates we use SGD with momentum of 0.9.

Software Used: All models are trained using PyTorch¹. For NER and SRL experiments, we use Allennlp² library which is built on top of PyTorch.

```
<sup>1</sup>https://pytorch.org/
```

²https://allennlp.org/

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Computational Resources: All our models are trained on PADUM: Hybrid High Performance Computing Facility at IITD ³.

5.1 Semantic Role Labeling

Hyperparameters: In all the experiments, *warmup* iterations and initial value of $l = l_0$ is selected in the same way: to select *warmup* iterations, we train the base model without constraints till convergence and as a rule of thumb, select *warmup* iterations as the iteration number where it reaches around 25% of its peak performance. Initial value of $l = l_0$ is set arbitrarily at 10. Initial learning rate α_{Λ}^0 is fixed at 0.05. Constant *d* and learning rate decay parameters β is selected through a grid search over $\{1, 10\}$ and $\{1, 1/5, 1/10\}$ respectively and we select the best combination based on the performance over dev set. Table 1 enumerates the best value of these two hyper-parameters for different training sizes.

	Constant	Decay	
	d	β	
1% Data	1	1/5	
5% Data	10	1	
10% Data	10	1	

Table 1: Best hyper-parameters in SRL experiments for different training sizes.

5.2 Named Entity Recognition

Constraints: Below we enumerate the constraints that we impose on the NER and POS label for any given word.

B-org \implies {NNP} B-tim \implies {NNP, CD, JJ} B-geo \implies {NNP} B-gpe \implies {JJ, NNS, NNP} B-per \implies {NNP} B-eve \implies {NNP} B-art \implies {NNP, NNPS, JJ, NNS} B-nat \implies {NNP} I-per \implies {NNP} I-org \implies {NNP} I-geo \implies {NNP, NNPS} I-tim \implies {CD, NNP, NN, IN} I-eve \implies {NNP} I-art \implies {NNP} I-gpe \implies {NNP} I-nat \implies {NNP}

Hyperparameters: warmup iterations and initial value of l are selected as in SRL experiments. In these experiments, we do not decay the learning rate and set β to 0. To select the learning rate α_{Λ} , and constant d, we do a grid search over $\{0.01, 0.05\}$ and $\{1, 5\}$ respectively and select the best combination based on the performance over dev set. Table 2 enumerates the best value of these two hyper-parameters for different training sizes in both the settings: constrained learning and semi-supervision.

Results Table 3 enumerates the mean F1-Score over 10 random shuffles of data, along with its stdev, for different models with varying training size. We also tabulate the number of violations in each scenario.

³http://supercomputing.iitd.ac.in

	CL		SCL		
Training Size	Learning Rate	Constant	Learning Rate	Constant	
IT anning Size	$lpha_{\Lambda}$	d	$lpha_{\Lambda}$	d	
400	0.05	5	0.01	5	
800	0.05	1	0.01	5	
1,600	0.05	1	0.05	1	
3,200	0.05	1	0.05	1	
6,400	0.01	5	0.01	5	
12,800	0.05	1	0.01	5	
25,600	0.01	5	0.01	5	
37,206	0.01	5	0.01	5	

Table 2: Best hyper-parameters in NER for different training sizes in both scenarios: CL and SCL.

	$F1$ -Score(Mean \pm Stdev)			Mean #Violations				
Train Size	В	CL	SL	CI	В	CL	SL	CI
400	51.6 ± 0.99	53.7 ± 1.16	54.6 ± 0.83	52.7 ± 0.79	4,482	383	7	401
800	57.3 ± 1.45	59.1 ± 1.34	60.2 ± 0.74	58.3 ± 1.25	4,208	201	8	610
1,600	62.3 ± 1.05	63.6 ± 0.51	64.6 ± 0.71	63.2 ± 0.84	3,902	222	4	880
3,200	66.2 ± 0.59	67.7 ± 0.38	68.1 ± 0.5	67 ± 0.55	3,715	141	8	1,147
6,400	69.8 ± 0.54	70.8 ± 0.34	71 ± 0.43	70.5 ± 0.53	3,456	514	64	1,418
12,800	72.1 ± 0.28	72.9 ± 0.36	73.1 ± 0.38	72.8 ± 0.27	3,540	115	147	1,626
25,600	74.3 ± 0.24	75.1 ± 0.17	75.1 ± 0.25	74.9 ± 0.2	3,376	347	315	1,697
37,206	75.3 ± 0.24	75.8 ± 0.21	75.8 ± 0.21	75.9 ± 0.25	3,455	333	333	1,823

Table 3: F score for different models (mean \pm stdev), along with average number of constraint violations

5.3 Fine Grained Entity Typing

warmup iterations and initial value of l are selected as in the above two experiments. As in NER experiments, we do not decay the learning rate and set β to 0. We observed that higher values of the constant d hurts the performance and increase the number of constraint violations as well. Hence, we set it to 0 which gives the best results. To select the learning rate α_{Λ} , we do a grid search over $\{0.01, 0.02, 0.03, 0.04, 0.05\}$ and select the best value based on the performance over dev set. Table 4 below enumerates its best value different training sizes in both the settings: constrained learning and semi-supervision.

	CL	SCL
Training Size	Learning Rate	Learning Rate
II anning Size	$lpha_\Lambda$	$lpha_\Lambda$
5% Data	0.05	0.01
10% Data	0.02	0.03
100% Data	0.04	

Table 4: Best hyper-parameters in Typenet for different training sizes in both scenarios: CL and SCL.

References

Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Minmax optimization: Stable limit points of gradient descent ascent are locally optimal. *CoRR*, abs/1902.00618, 2019.