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Abstract

In this paper, we present a new approach for
lifted MAP inference in Markov Logic Networks
(MLNs). Our approach is based on the following
key result that we prove in the paper: if an MLN
has no shared terms then MAP inference over it
can be reduced to MAP inference over a Markov
network having the following properties: (i) the
number of random variables in the Markov net-
work is equal to the number of first-order atoms
in the MLN; and (ii) the domain size of each
variable in the Markov network is equal to the
number of groundings of the corresponding first-
order atom. We show that inference over this
Markov network is exponentially more efficient
than ground inference, namely inference over the
Markov network obtained by grounding all first-
order atoms in the MLN. We improve this result
further by showing that if non-shared MLNs con-
tain no self joins, namely every atom appears at
most once in each of its formulas, then all vari-
ables in the corresponding Markov network need
only be bi-valued.

Our approach is quite general and can be eas-
ily applied to an arbitrary MLN by simply
grounding all of its shared terms. The key fea-
ture of our approach is that because we reduce
lifted inference to propositional inference, we
can use any propositional MAP inference al-
gorithm for performing lifted MAP inference.
Within our approach, we experimented with two
propositional MAP inference algorithms: Gurobi
and MaxWalkSAT. Our experiments on several
benchmark MLNs clearly demonstrate our ap-
proach is superior to ground MAP inference in
terms of scalability and solution quality.
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Iceland. JMLR: W&CP volume 33. Copyright 2014 by the au-
thors.

1 Introduction

Statistical relational models [6] such as Markov logic net-
works [5] bring the power and compactness of first-order
logic to probabilistic graphical models. They are rou-
tinely used to solve hard problems in a wide variety of
real-world application domains including computer vision,
natural language processing, robotics and the Web. Re-
cently, there has been a growing interest in exploiting re-
lational structure during inference in statistical relational
models. Unlike propositional inference algorithms which
operate on individual random variables, these algorithms,
which are often called lifted or first-order inference algo-
rithms [17], perform inference over a group of random vari-
ables. As a result, they are more scalable, typically expo-
nentially faster when relational structure is present, than
propositional inference algorithms.

In this paper, we present a general approach for lifted MAP
inference in MLNs. Our approach is based on our key re-
sult that when the MLN contains no formulas having shared
terms (we refer to such MLNs as a non-shared MLN),
MAP inference is domain liftable [3], namely it is poly-
nomial in the domain size of the logical variables in the
MLN. In particular, we show that in non-shared MLNs, the
set of full assignments having the cardinality O(2

∑n
i=1 di),

where n is the number of predicates in the MLN and di is
the number of possible groundings of the i-th atom in the
MLN,1 can be partitioned into O(

∏n
i=1(di + 1)) subsets

such that each element in a subset has the same probability.
Thus, instead of performing a search for the MAP solu-
tion over O(2

∑n
i=1 di) assignments as the ground inference

algorithms do, we can perform the search over an expo-
nentially smaller O(

∏n
i=1(di + 1)) space, yielding a lifted

MAP inference algorithm.

We further extend this result by showing that if the non-
shared MLN has no self joins, namely each atom appears
at most once in each formula, then one of the MAP solu-
tions is guaranteed to lie at the following extreme points:
for each atom, all of its groundings are either all true or

1Number of possible groundings of an atom is the product of
the domain sizes of the logical variables appearing in it.
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all false. This helps us to further reduce the complexity of
inference from O(

∏n
i=1(di + 1)) to O(2n), i.e., the com-

plexity of inference is independent of the domain size.

We utilize the aforementioned results by developing a map-
ping from the lifted search space to propositional search
space of the same size. This helps us reformulate the
MAP inference task over non-shared MLNs as proposi-
tional MAP inference over a Markov network such that:
(i) the number of random variables in the Markov network
is equal to the number of atoms in the MLN (i.e., equal to
n) and (ii) the domain size of each random variable is ei-
ther di or 2 depending upon whether the non-shared MLN
has self-joins or not. The two key features of this formula-
tion are: (i) we can plug in any known propositional MAP
inference algorithm for inference on this Markov network;
and (ii) since the propositional algorithm operates in the
lifted search space, it has the same performance guarantees
as a lifted algorithm. Thus, by plugging in different propo-
sitional MAP inference algorithms, our approach yields a
family of lifted MAP inference algorithms.

Our approach is quite general and can be extended to ar-
bitrary MLNs that have shared terms in a straight-forward
way: simply ground all the shared terms of the MLN to
obtain an equivalent non-shared MLN. The only caveat
is that if all terms in all atoms of the MLN are shared,
our approach will have the same complexity as ground
inference but never worse (e.g., in the transitive formula
∀ x, y, z R(x, y) ∧ R(y, z) ⇒ R(x, z), all terms of R are
shared). Note that this is a limitation of not only our ap-
proach but lifted inference in general: it is only useful when
symmetries are present.

We experimentally evaluated our approach on three bench-
mark MLNs: WebKB and Information Extraction MLNs
available from the Alchemy [12] web page and the Stu-
dent MLN created by us. We used two state-of-the-art
MAP inference algorithms within our approach: (i) Gurobi
[8], which is an integer linear programming solver and (ii)
MaxWalkSAT [11] which is a popular local search solver.
Our experiments clearly show that our approach is signif-
icantly better in terms of solution quality and scalability
than ground inference. In particular, as we increase the
number of objects in the MLN, our algorithms are an order
of magnitude faster and better in terms of solution quality.

The rest of the paper is organized as follows. In section
2, we present preliminaries. In section 3, we present our
new approach and in section 4, we extend it with several
heuristics and pruning techniques. In section 5, we present
experimental results and conclude in section 6.

2 Notation and Preliminaries

In this section, we describe notation and preliminaries on
propositional logic, first-order logic, Markov logic and

MAP inference. For more details, refer to [5, 9, 13].

2.1 Propositional and First-order Logic

The language of propositional logic consists of atomic sen-
tences called propositions or atoms, and logical connec-
tives such as ∧ (conjunction), ∨ (disjunction), ¬ (negation),
⇒ (implication) and ⇔ (equivalence). Each proposition
takes values from the binary domain {False, True} (or
{0, 1}). A propositional formula f is an atom, or any com-
plex formula that can be constructed from atoms using logi-
cal connectives. For example,A,B andC are propositional
atoms and f = A ∨ ¬B ∧ C is a propositional formula. A
knowledge base (KB) is a set of formulas. A world is a
truth assignment to all atoms in the KB.

First-order logic (FOL) generalizes propositional logic by
allowing atoms to have internal structure; an atom in FOL
is a predicate that represents relations between objects.
A predicate consists of a predicate symbol, denoted by
Monospace fonts (e.g., Friends, Smokes, etc.), fol-
lowed by a parenthesized list of arguments called terms.
A term is a logical variable, denoted by lower case letters
(e.g., x, y, etc.), or a constant, denoted by upper case letters
(e.g.,X , Y , etc.). We assume that each logical variable, say
x, is typed and takes values over a finite set (called domain)
∆x. The language of FOL also includes two quantifiers: ∀
(universal) and ∃ (existential) which express properties of
an entire collection of objects. A formula in first order logic
is a predicate (atom), or any complex sentence that can
be constructed from atoms using logical connectives and
quantifiers. For example, the formula ∀x Smokes(x) ⇒
Asthma(x) states that all persons who smoke have asthma.
Where as ∃x Cancer(x) states that there exists a person x
who has cancer.

In this paper, we use a subset of FOL which has no func-
tion symbols, equality constraints or existential quanti-
fiers. We also assume that domains are finite (and there-
fore function-free) and that there is a one-to-one mapping
between constants and objects in the domain (Herbrand in-
terpretations). We assume that each formula f is of the
form ∀x f , where x are the set of variables in f and f
is a conjunction or disjunction of literals; each literal be-
ing an atom or its negation. For brevity, we will drop ∀
from all the formulas. Given variables x = {x1, ..., xn} and
constants X = {X1, ..., Xn} where Xi ∈ ∆xi , f [X/x]
is obtained by substituting every occurrence of variable
xi in f with Xi. A ground formula is a formula ob-
tained by substituting all of its variables with a constant.
A ground KB is a KB containing all possible groundings
of all of its formulas. For example, the grounding of a
KB containing one formula, Smokes(x) ⇒ Asthma(x)
where ∆x = {Ana,Bob}, is a KB containing two formu-
las: Smokes(Ana)⇒ Asthma(Ana) and Smokes(Bob)
⇒ Asthma(Bob).
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2.2 Markov Logic

Markov logic [5] extends FOL by softening the hard con-
straints expressed by the formulas and is arguably the most
popular modeling language for SRL. A soft formula or a
weighted formula is a pair (f, w) where f is a formula
in FOL and w is a real-number. A Markov logic net-
work (MLN), denoted by M, is a set of weighted formu-
las (fi, wi). Given a set of constants that represent objects
in the domain, a Markov logic network defines a Markov
network or a log-linear model. The Markov network is
obtained by grounding the weighted first-order knowledge
base and represents the following probability distribution.

PM(ω) =
1

Z(M)
exp

(∑
i

wiN(fi, ω)

)
(1)

where ω is a world, N(fi, ω) is the number of groundings
of fi that evaluate to True in the world ω and Z(M) is a
normalization constant or the partition function.

Throughout the paper, we will assume that the input MLN
to our algorithm is in normal form [10]. We require this
for simplicity of exposition. A normal MLN is an MLN
that satisfies the following two properties: (1) There are
no constants in any formula, and (2) If two distinct atoms
with the same predicate symbol have variables x and y in
the same position then ∆x = ∆y. Any MLN can be con-
verted to a normal MLN. Note that in a normal MLN, we
assume that the terms in each atom are ordered and there-
fore we can identify each term by its position in the order.
Furthermore, we assume that the MLN is expressed as a set
of weighted clauses.

2.3 MAP Inference in MLNs

A common optimization inference task over MLNs is find-
ing the most probable state of the world ω, that is finding
a complete assignment to all ground atoms which maxi-
mizes the probability. This task is known as Maximum a
Posteriori (MAP) inference in the Markov network litera-
ture, and Most Probable Explanation (MPE) inference in
the Bayesian network literature. For Markov logic, this is
formally defined as follows:

arg max
ω

PM(ω) = arg max
ω

1

Z(M)
exp

(∑
i

wiN(fi, ω)

)
= arg max

ω

∑
i

wiN(fi, ω) (2)

From Eq. (2), we can see that the MAP problem in Markov
logic reduces to finding the truth assignment that maxi-
mizes the sum of weights of satisfied clauses. Therefore,
any weighted satisfiability solver can be used to solve this
problem. The problem is NP-hard in general, but effec-
tive solvers exist, both exact and approximate. Exam-
ples of such solvers are MaxWalkSAT, a weighted variant

R(A) R(B) S(A) S(B) Weight Groups
0 0 0 0 0 (0,0)
0 0 0 1 2w1 + w3 (0,1)
0 0 1 0 2w1 + w3 (0,1)
0 0 1 1 4w1 + 2w3 (0,2)
0 1 0 0 2w1 + w2 (1,0)
0 1 0 1 3w1 + w2 + w3 (1,1)
0 1 1 0 3w1 + w2 + w3 (1,1)
0 1 1 1 4w1 + w2 + 2w3 (1,2)
1 0 0 0 2w1 + w2 (1,0)
1 0 0 1 3w1 + w2 + w3 (1,1)
1 0 1 0 3w1 + w2 + w3 (1,1)
1 0 1 1 4w1 + 2w3 + w2 (1,2)
1 1 0 0 4w1 + 2w2 (2,0)
1 1 0 1 4w1 + 2w2 + w3 (2,1)
1 1 1 0 4w1 + 2w2 + w3 (2,1)
1 1 1 1 4w1 + 2w2 + 2w3 (2,2)

Figure 1: Weights of all assignments to ground atoms and
(lifted) groups for the non-shared MLN: [R(x)∨S(y), w1];
[R(x), w2]; and [S(y), w3] with domains given by ∆x =
∆y = {A,B}.

of the WalkSAT local-search satisfiability solver [18] and
Clone [16], a branch-and-bound solver. However, all of
these algorithms are propositional and therefore they can-
not exploit relational structure that is inherent to MLNs.

3 Lifted Formulation of MAP Inference

In this section, we show that we can reduce MAP inference
in a sub-class of MLNs, which we call non-shared MLNs,
to MAP inference over an equivalent propositional MLN
(or a propositional Markov network) such that the num-
ber of propositional variables in the propositional MLN is
equal to the number of first order atoms in the non-shared
MLN. This is in contrast to ground MAP inference in which
the number of propositional variables is equal to the num-
ber of ground atoms.

We begin by defining non-shared MLNs.

Definition 1. A normal MLN is called a non-shared MLN
if each of its formulas is non-shared. A formula fi is non-
shared if every logical variable appears at most once in the
formula. In other words, in a non-shared MLN, no logical
variable is shared between the atoms in a formula.

For example, R(x) ∨ S(y) is a non-shared formula. How-
ever, R(x) ∨ S(x) is not because x is shared.

3.1 Domain-Lifted MAP Inference over Non-Shared
MLNs

We show that MAP inference over non-shared MLNs is do-
main liftable [3], namely inference over it is polynomial in
the domain size of the logical variables in the MLN. The



Lifted MAP Inference for Markov Logic Networks

key reason that non-shared MLNs are domain liftable is
that they contain several worlds with the same probabil-
ity. We can group together these equi-probable worlds and
perform MAP inference by just iterating over the groups,
selecting the group with the maximum probability. The fol-
lowing example illustrates this grouping.

Example 1. Consider the non-shared MLN containing
three formulas: [R(x) ∨ S(y), w1]; [R(x), w2]; and
[S(y), w3]. Let ∆x = ∆y = {A,B}. Figure 1 gives a
truth table showing all possible assignments to the ground
atoms as well as their weights. Figure 1 also shows nine
equi-probable groups for these assignments. It turns out
that each group can be represented by a pair (i, j) where
i and j are the number of true groundings of R and S re-
spectively. Namely, i, j ∈ {0, 1, 2}. Thus, to compute the
MAP tuple, we only have to iterate over 9 groups while the
ground (naive) MAP inference algorithm will iterate over
16 assignments. In general, the number of groups will be
equal to (|∆x|+1)(|∆y|+1) while the number of possible
assignments to the ground atoms equals 2|∆x|+|∆y|.

We can generalize the ideas presented in Example 1 using
the following theorem:

Theorem 1. Given a non-shared MLNM, let ω1 and ω2 be
two worlds such that for each atom R in the MLN, the num-
ber of true groundings of R in ω1 is equal to the number of
true groundings of R in ω2. Then, PrM(ω1) = PrM(ω2).

Proof. We will prove this theorem by leveraging the gen-
eralized binomial rule [10]. The generalized Binomial rule
states that if an atom R is non-shared (which is a spe-
cial case of singleton atoms), then the MLNs obtained by
conditioning on the following subset of assignments to all
groundings of R are equivalent: the number of true ground-
ings of R is the same in all the assignments in the subset.
Moreover, according to the rule, the following two condi-
tions hold:

• if the MLN is non-shared then the new MLN is also
non-shared

• the number of formulas involving R satisfied by each
assignment in the subset is the same.

Let R1, . . . ,Rn be the atoms in the MLNM. Let di be the
domain size of Ri. Let Ri = ji,1 and Ri = ji,2 where ji,k ∈
2di , k ∈ {1, 2} denote the assignment to all groundings of
Ri in the worlds ω1 and ω2 respectively. Let us condition
the atoms along the order R1, . . . ,Rn. By the generalized
Binomial rule, the MLN obtained by conditioning on R1 =
j1,1, denoted by M|R1 = j1,1 is equivalent to the MLN
M|R1 = j1,2 obtained by conditioning on R1 = j1,2 (since
the number of true groundings of Ri is the same in both
the assignments). Let w(M|Ri = ji,k), k ∈ {1, 2} denote
the sum of the weights of clauses satisfied by conditioning

on the assignment Ri = ji,k. By the generalized Binomial
rule, w(M|R1 = j1,1) = w(M|R1 = j1,2). Moreover,
since all atoms in M|R1 = j1,1 and M|R2 = j2,1 are
non-shared, it follows that the MLNs obtained by further
conditioning on R2 = j2,1 is the same as the one obtained
by conditioning on R2 = j2,2. By iteratively (inductively)
applying this argument, we have:

n∑
i=1

w(M|R1 = j1,1, . . . ,Ri−1 = ji−1,1)

=

n∑
i=1

w(M|R1 = j1,2, . . . ,Ri−1 = ji−1,2) (3)

In other words, the two worlds ω1 and ω2 have the same
weight. Therefore, PrM(ω1) = PrM(ω2).

Theorem 1 yields the following lifted inference algorithm.
Let {R1,R2, . . . ,Rn} be the atoms in the non-shared MLN.
Let di denote the domain size of Ri (the domain of an
atom equals the cartesian product of the domains of its
logical variables). By Theorem 1, all the ground assign-
ments of the MLN can be grouped into assignments of the
form 〈(Ri, ai)|i ∈ {1, . . . , n}〉 where ai ∈ {0, . . . , di}
and the assignment indicates ai groundings of Ri are
true. We will refer to (Ri, ai) as a counting assignment
[14]. The algorithm iterates over all tuples of the form:
〈(R1, a1), . . . , (Rn, an)〉, computes the weight of the tu-
ple, and returns the tuple with the maximum weight as the
MAP tuple. This lifted algorithm is clearly more efficient
than its propositional counterpart. The search space over
which the propositional algorithm operates is bounded by
O(2

∑n
i=1 di) where n is the number of atoms in the MLN.

On the other hand, the search space of the lifted algorithm
is bounded by O(

∏n
i=1(di + 1)). Since the search space

is bounded polynomially by the domain size of the logical
variables, we have:

Theorem 2. MAP inference in non-shared MLNs is do-
main liftable.

Although this represents a significant improvement over
propositional MAP algorithms, it turns out that we can fur-
ther reduce the search space for a sub-class of non-shared
MLNs, namely non-shared MLNs without self-joins.2 We
will present this result next.

3.2 MAP Inference over non-shared MLNs without
Self-Joins

We illustrate the main idea in our result using the following
example.

Example 2. Consider the MLN used in Example 1. Let
w1 = −4, w2 = 5 and w3 = 3. Assume that the domain

2We say that a formula has no self-joins if a predicate symbol
appears at most once in the formula.
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Figure 2: The total weight of satisfied clauses as a function of
counting assignment of R and S. The plane is for illustration pur-
pose only.

of x, y is {A,B,C,D,E}. If we iterate through all pos-
sible counting assignments to R and S and plot the total
weight of satisfied clauses as a function of counting assign-
ment of R and S we get the plot in Figure 2. Figure 2 shows
that the function in the plot has only four extreme points:
(0, 0), (0, 5), (5, 0) and (5, 5). These extreme points corre-
spond to all groundings of R and S as either being all true
or all false. Since the MAP value can only lie on these ex-
treme points, we only have to evaluate these extreme points
for computing the MAP value. It turns out that the MAP
tuple is 〈(R, 0), (S, 0)〉.

We observe in the previous example that all the ground
atoms of the predicate R (and the predicate S) have the
same truth value. We will refer to this kind of assignment
(i.e., all ground atoms having the same truth value) as a
uniform assignment [1]. This observation, that the atoms
have a uniform assignment in the MAP state, holds not only
for this example but for any non-shared MLN without self-
joins, and we will prove this formally next.

Lemma 1. The sum of weights of satisfied clauses for a
non-shared MLN without self-join is a multilinear function
on the counting assignment of its predicates.

Proof. (Sketch) Consider a non-shared MLNM that con-
tains m weighted clauses {(Ci;wi)}mi=1. Let V(Ci) repre-
sent the set of all the atoms in the clause Ci. Let V(+)(Ci)
represent the set of atoms which appear as positive literals
in Ci. Let V(−)(Ci) represent the set of atoms appearing
as negative literals. Given an atom R, let (R, vR) denote its
counting assignment. It can be easily shown that the num-
ber of groundings of Ci that are unsatisfied by the counting
assignment is given by,∏

R∈V(+)(Ci)

(∆R − vR)
∏

R∈V(−)(Ci)

vR

where ∆R represents the number of possible groundings of
R. Clearly, the total number of possible groundings of Ci

is equal to
∏

R∈Ci
(∆R). Therefore, the sum of weights of

satisfied clauses forM is given by,∑
Ci

wi(
∏
R∈Ci

(∆R)−∏
R∈V(+)(Ci)

(∆R − vR)
∏

R∈V(−)(Ci)

vR) (4)

Clearly eq. 4 is a multilinear function in vR since vR never
appears more than once in the product term (if there are no
self-joins inM).

Lemma 2. Consider a multilinear function Φ(v) defined
over a tuple of variables v = (v1, v2, · · · , vn). Let each
vj take values from the set {0, 1, 2, · · ·∆vj

}. Then, at
least one of the solutions v∗ to the optimization problem
arg max

v
Φ(v) is such that each v∗j lies at the extremes i.e.

v∗j = 0 or v∗j = ∆j ∀j.

Proof. We will prove the theorem using induction over n,
the number of variables over which the multilinear func-
tion is defined. Clearly, the theorem holds true for n = 1
since a linear function of one variable has its maxima at
the extremes. Assume the theorem holds for any multilin-
ear function defined over n − 1 variables. Consider the
function Φ(v) over the variables v = (v1, v2, · · · vn). By
re-arranging terms, we can write:

max
v

Φ(v) = max
v\vn

(max
vn

Φ(v))

Since Φ(v) is a multilinear function, it can be seen as a
linear function of vn (holding other variables as constant).
Hence, the inner expression on the right side is optimized
at an extreme value of vn (vn = 0 or vn = ∆vn ). Let
Φ0(v \ vn) and Φ∆vn

(v \ vn), respectively, be the two
possible resulting functions by substituting the values of 0
and ∆vn , for vn in Φ(v). In both the cases, we get a new
function which is multilinear over n − 1 variables. Using
the induction hypothesis, its maxima will lie at the extreme
values of vi, v2, · · · vn−1. Hence, one of the maxima of
the original function φ(v) will lie at the extreme values of
v1, v2, · · · vn. Hence, proved.

Note that above lemma states that at least one of the max-
ima of a multilinear function will lie at its extremes. It is
still possible that there are other maxima which do not lie
at the extremes (for instance, think of a constant function).
As long as we are interested in finding one of them, above
lemma can be put to use. Lemma 1 and Lemma 2 allow us
to prove our second main result stated below.

Theorem 3. For a non-shared MLN without self-joins, in
at least one of the MAP solutions, all predicates have uni-
form assignments.
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We can use Theorem 3 to formulate the MAP problem as a
weighted Max-SAT problem as formalized in the following
corollary.

Corollary 1. The MAP inference in a non-shared MLNM
that contains no self-joins can be converted to an equiva-
lent propositional weighted Max-SAT problem with number
of variables equal to the number of first order atoms inM.

Proof. Given a non-shared MLN, M with m weighted
clauses {(Ci;wi)}mi=1 that contains no self-joins, we first
construct a weighted propositional knowledge base S. We
create S = {(C ′i;w′i)}mi=1 with v propositional variables
where every vk ∈ v corresponds to a distinct atom Rvk in
M. All atoms in M have a corresponding variable in v
and vice versa. The assignment true to variable vk cor-
responds to the positive uniform assignment to Rvk , i.e.
- (Rvk , ∆Rvk

) and assigning false to variable vk corre-
sponds to the negative uniform assignment to Rvk , i.e. -
(Rvk , 0). C ′i is constructed by replacing each atom in Ci by
its corresponding variable in v. The weight of the clause
is computed as w′i = ∆Ci × wi, where ∆Ci is the number
of possible groundings of Ci. For uniform assignment, all
groundings of each clause Ci is either satisfied or none of
them are satisfied. Since whenever Ci is satisfied C ′i is also
satisfied and as the weight of C ′i is ∆Ci

× wi the sum of
weights of satisfied clauses for a complete assignment will
be same in both M and S. As theorem 3 proves that the
MAP solution consist of uniform assignments, it follows
from equation 2 that the MAP inference inM is equivalent
to solving the weighted Max-SAT problem over S. Hence
the corollary follows.

The result of corollary 1 allows us to use any weighted
Max-SAT solver to compute the MAP solution of a non-
shared MLN without self-joins. This observation also
means that for such MLNs, the optimal solution is inde-
pendent of the number of objects in the MLN which makes
MAP inference especially efficient in these cases.

4 Extensions

In this section, we propose heuristics to make our approach
more practical. These heuristics can be considered as prun-
ing techniques, which allow us to greatly reduce the size
of the knowledge base. Moreover these heuristics can be
applied to any arbitrary MLN. These can give us orders of
magnitude of speedup. We propose to use these heuristics
as a preprocessing step to simplify the MLN.

4.1 Unit Propagation

Repeated use of unit propagation [4] is one of the key com-
ponent of highly effective propositional satisfiability test-
ing solvers. The idea in unit propagation is to resolve all

clauses with unit clauses, and continue to do this until con-
vergence, i.e., no further unit resolutions are possible. Al-
though this heuristic is very effective for SAT solvers, for
Max-SAT, it is not sound. However, this rule can be used
for hard unit clauses. We can lift this rule in a straight for-
ward manner, by resolving the hard unit clauses with other
clauses. This heuristic in conjunction with the pure literal
heuristic can greatly reduce the size of the MLN.

4.2 Pure Literal Elimination

The pure literal elimination rule for SAT formulas [4] when
lifted to MAP inference for MLNs, removes (i) Clauses
guaranteed to be satisfied for all groundings; and (ii) Atoms
guaranteed to be false for all groundings. The following
proposition specifies the pure literal elimination rule for
MLNs.

Proposition 1. Given an MLNM, if a predicate S appears
in k clauses C = {Ci;wi}ki=1, (i) if wi ≥ 0, ∀ 1 ≤ i ≤ k
and S either always occurs as a positive literal or always
occurs as a negative literal in M, every Ci ∈ C can be
removed from M; and (ii) if wi < 0, ∀ 1 < i ≤ k and S
either always occurs as a positive literal or always occurs
as a negative literal inM, then every occurrence of S can
be removed fromM.

5 Experiments

For our experiments, we implemented two lifted MAP al-
gorithms, (i) An anytime exact solver based on Integer Lin-
ear Programming (L-ILP); and (ii) An anytime approxi-
mate solver based on WalkSAT architecture (L-MWS).

We implemented L-ILP using a parallelized ILP solver
called Gurobi [8] and implemented L-MWS using
MaxWalkSAT [18], a randomized local-search algorithm.
We compared both our algorithms with MaxWalkSAT
which is the MAP inference algorithm implemented within
two state-of-the-art MLN systems, Alchemy (MWS) and
Tuffy (TUFFY)[15]. Since both these systems produce ap-
proximate results, we implemented an exact MAP infer-
ence algorithm using Gurobi (ILP). All three algorithms,
MWS, TUFFY and ILP work on the propositional search
space, i.e. they ground the entire MLN before performing
MAP inference.

We used three MLNs to evaluate our system,

(i) A Student MLN having four formulas:

Teaches(teacher,course) ∧ Takes(student,course)
→ JobOffers(student,company);

Teaches(teacher,course);

Takes(student,course); and

¬JobOffers(student,company).
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(ii) WebKB MLN [12] from the Alchemy web page, con-
sisting of three predicates and six formulas.

(iii) Citation Information-Extraction (IE) MLN [12]
from the Alchemy web page, consisting of five pred-
icates and fourteen formulas.

In order to compare the performance and scalability of our
algorithms, we ran two sets of experiments illustrated in
Fig. 3 and Fig. 4. Fig. 3, plots the solution quality (to-
tal weight of false clauses) achieved by each algorithm for
varying time-bounds. Fig. 4 plots the relative-gap between
the optimal solution and the solution output by each algo-
rithm, for varying domain-sizes. We describe the results of
both our experiments below. All our experiments were run
on a quad-core CentOS machine with 8GB RAM.

5.1 Cost vs Time

The results for the Student MLN are shown in Fig. 3 (a)-(c).
We see that the lifted algorithms L-ILP and L-MWS are the
best performing algorithms for all domain-sizes. At higher
domain-sizes (100 and 500), the propositional solvers ILP,
MWS and TUFFY ran out of memory. The performance
of L-MWS was similar to L-ILP for domain-size equal to
30. For domain-sizes of 100 and 500, L-MWS gradually
converges towards the optimal solution, whereas L-ILP was
able to exactly solve the problem in less than 10 seconds.

The results for WebKB are shown in Fig. 3 (d)-(f). Again,
we can see that the lifted algorithms L-ILP and L-MWS
outperform the propositional algorithms and are much
more scalable. For the larger domain-sizes (100 and 500),
MWS and TUFFY run out of memory. For domain-size
30 and 100, the performance of both the lifted algorithms
L-ILP and L-MWS is quite similar.

The results for IE are shown in Fig. 3 (g)-(i). For domain-
size 30, the performance of both the lifted algorithms L-
ILP and L-MWS is quite similar. For the domain-sizes 100
and 500, L-ILP was able to find the optimal solution while
L-MWS was far from optimal.

5.2 Accuracy vs Domain-Size

Fig. 4 illustrates the variation in accuracy for each algo-
rithm as the domain-size increases. Here, we gave each
algorithm a fixed time-bound of 500 seconds and measured
the relative-gap between the optimal solution (opt) and the
best cost given by the algorithm (c) using |opt−c|opt . We see
that both L-MWS and L-ILP are quite accurate and scale
to much larger domain-sizes. On the other hand, there is a
noticeable drop in the accuracy of the propositional algo-
rithms, MWS, TUFFY and ILP as we increase the domain-
size. For larger domain-sizes, the propositional algorithms
run out of memory.

In summary, our experiments show that our two lifted al-
gorithms L-MWS and L-ILP are far more scalable and ac-
curate than propositional approaches. Since the two ap-
proaches are fundamentally different, L-ILP is a complete
anytime solver while L-MWS is an approximate solver, as
expected they perform differently on the benchmarks, with
L-ILP being the superior approach. However, the main
virtue of our approach is that we could use any off-the-
shelf solver that is purely propositional in nature to perform
lifted inference. This allows us to scale to large domain-
sizes without implementing a new lifted solver. We believe
that this abstraction greatly simplifies the development of
lifted algorithms by benefitting from the advances made in
propositional algorithms.

6 Summary and Future work

In this paper, we proposed a general approach for lifting
MAP inference in Markov Logic Networks (MLNs). We
identified cases in which we can reduce lifted MAP infer-
ence to inference over an equivalent propositional theory
such that the number of propositional variables is equal to
the number of first order atoms in the MLN. We used this
observation in a straight-forward manner: convert the MLN
to an equivalent propositional theory and then apply any
propositional algorithm to solve it. For our experiments,
we used two propositional algorithms, a complete, any-
time algorithm (Gurobi) based on Integer Linear Program-
ming (ILP) and a local-search algorithm called MaxWalk-
sat. Our experiments clearly demonstrate the scalability
and promise of our approach.

Directions for future work include: combining our ap-
proach with other lifted inference rules such as the power
rule [7, 10]; identifying cases where our generalized the-
orem can be applied; applying the results in this paper to
lifted MCMC approaches [19]; and using our approach for
exploiting symmetries in probabilistic graphical models.

Acknowledgements

This research was partly funded by ARO MURI grant
W911NF-08-1-0242, by the AFRL under contract num-
ber FA8750-14-C-0021 and by the DARPA Probabilistic
Programming for Advanced Machine Learning Program
under AFRL prime contract number FA8750-14-C-0005.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
DARPA, AFRL, ARO or the US government.

References

[1] Apsel, U.; and Brafman, R. 2012. Exploiting Uniform
Assignments in First-Order MPE. In Proceedings of the



Lifted MAP Inference for Markov Logic Networks

 100

 1000

 10000

 100000

 1e+06

 0  20  40  60  80  100  120  140  160  180  200

C
os

t

Time in Seconds

L-MWS 
L-ILP 
MWS 

TUFFY 
ILP 

(a) Student-30 (810K clauses)

 10000

 100000

 0  20  40  60  80  100  120  140  160  180  200

C
os

t

Time in Seconds

L-MWS 
L-ILP 

(b) Student-100 (100 million clauses)

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 0  20  40  60  80  100  120  140  160  180  200

C
os

t

Time in Seconds

L-MWS 
L-ILP 

(c) Student-500 (62 Billion clauses)

 1000

 10000

 100000

 1e+06

 0  20  40  60  80  100  120  140  160  180  200

C
os

t

Time in Seconds

L-MWS 
L-ILP 
MWS 

TUFFY 
ILP 

(d) WebKB-30 (100K clauses)

 10000

 100000

 0  20  40  60  80  100  120  140  160  180  200

C
os

t

Time in Seconds

L-MWS 
L-ILP 

(e) WebKB-100 (100 million clauses)

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 0  20  40  60  80  100  120  140  160  180  200

C
os

t

Time in Seconds

L-MWS 
L-ILP 

(f) WebKB-500 (65 Billion clauses)

 1000

 10000

 100000

 0  20  40  60  80  100  120  140  160  180  200

C
os

t

Time in Seconds

L-MWS 
L-ILP 
MWS 

TUFFY 
ILP 

(g) IE-10 (200K clauses)

 10000

 100000

 1e+06

 0  20  40  60  80  100  120  140  160  180  200

C
os

t

Time in Seconds

L-MWS 
L-ILP 

(h) IE-100 (350 million clauses)

 100000

 1e+06

 1e+07

 1e+08

 0  20  40  60  80  100  120  140  160  180  200

C
os

t

Time in Seconds

L-MWS 
L-ILP 

(i) IE-500 (200 billion clauses)

Figure 3: Cost vs Time: Cost of unsatisfied clauses (smaller is better) against time for benchmark MLNs for different domain sizes.
Notation used to label each figure: MLN-domainsize(number of ground clauses in the MLN). The standard deviation is plotted as error
bars. For (b),(c),(e),(f),(h) and (i), no results could be obtained for propositional algorithms since they ran out of memory.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10  20  30  40  50  60  70  80  90  100

R
el

at
iv

e-
ga

p

Domain-Size

L-MWS 
L-ILP 
MWS 

TUFFY 
ILP 

(a) Student

 0.0001

 0.001

 0.01

 0.1

 1

 10  20  30  40  50  60  70  80  90  100

R
el

at
iv

e-
ga

p

Domain-Size

L-MWS 
L-ILP 
MWS 

TUFFY 
ILP 

(b) WebKB
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