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Abstract

Combining first-order logic and probability has
long been a goal of Al. Markov logic (Richard-
son & Domingos, 2006) accomplishes this by at-
taching weights to first-order formulas and view-
ing them as templates for features of Markov
networks. Unfortunately, it does not have the
full power of first-order logic, because it is only
defined for finite domains. This paper extends
Markov logic to infinite domains, by casting it
in the framework of Gibbs measures (Georgii,
1988). We show that a Markov logic network
(MLN) admits a Gibbs measure as long as each
ground atom has a finite number of neighbors.
Many interesting cases fall in this category. We
also show that an MLN admits a unique measure
if the weights of its non-unit clauses are small
enough. We then examine the structure of the set
of consistent measures in the non-unique case.
Many important phenomena, including systems
with phase transitions, are represented by MLNs
with non-unique measures. We relate the prob-
lem of satisfiability in first-order logic to the
properties of MLN measures, and discuss how
Markov logic relates to previous infinite models.

Introduction

works, an approach known as knowledge-based model con-
struction (Wellman et al., 1992). More recently, many com-
binations of (subsets of) first-order logic and probability
have been proposed in the burgeoning field of statistical re-
lational learning (Getoor & Taskar, 2007), including prob-
abilistic relational models (Friedman et al., 1999), sassh

tic logic programs (Muggleton, 1996), Bayesian logic pro-
grams (Kersting & De Raedt, 2001), and others.

One of the most powerful representations to date is Markov
logic (Richardson & Domingos, 2006). Markov logic is

a simple combination of Markov networks and first-order
logic: each first-order formula has an associated weight,
and each grounding of a formula becomes a feature in a
Markov network, with the corresponding weight. The use
of Markov networks instead of Bayesian networks obvi-
ates the difficult problem of avoiding cycles in all possi-
ble groundings of a relational model (Taskar et al., 2002).
The use of first-order logic instead of more limited repre-
sentations (e.g., description logics, Horn clauses) mikes
possible to compactly represent a broader range of depen-
dencies. For example, a dependency between relations like
“Friends of friends are (usually) friends” cannot be speci-
fied compactly in (say) probabilistic relational modelst bu
in Markov logic it suffices to write down the corresponding
formula and weight. Markov logic has been successfully
applied in a variety of domains (Domingos et al., 2006),
and open source software with implementations of state-of-
the-art inference and learning algorithms for it is avdiab
(Kok et al., 2006).

One limitation of Markov logic is that it is only defined for

Most Al problems are characterized by both uncertaintyﬁnite domains. While this is seldom a problem in prac-

and complex structure, in the form of multiple interact- tice, considering the infinite limit can simplify the treat-

ing objects and relations. Handling both requires COM- o1t of some problems, and yield new insights. We would
bining the capabilities of probabilistic models and first- '

; . ) >~ also like to elucidate how far it is possible to combine the
order logic. Attempts to achieve this have a long his-

; ah thered st ) ; Withi full power of first-order logic and graphical models. Thus
,:Iry;\lizlisnson ?\1/88%{)31 iseerf] ezrleyag(;rl%gfgegaﬁﬁz ( 19&;0)”?'1 this paper we extend Markov logic to infinite domains.

’ ) ‘Our treat t is based on the th f Gibb
Halpern (1990) and coworkers (e.g., Baccbkual. (1996)) Ur treatment IS based on the theoty o1 12Ibbs Measures

duced bstantial bodv of rel ¢ th tical I((Georgii, 1988). Gibbs measures are infinite-dimensional
produced a substantial body ot relevant theoretical Work g, o ygions of Markov networks, and have been studied ex-

Around the same time, severql authors began using IOgIFensively by statistical physicists and mathematicalsttat
programs to compactly specify complex Bayesian net-



cians, due to their importance in modeling systems within U(C). For convenience, in this paper we will define it
phase transitions. We begin with some necessary baclas the union of the two, and talk about @@ms inB(C)
ground on first-order logic and Gibbs measures. We thermndclauses inB(C) as needed.

define MLNs over infinite domains, state sufficient condi- , . L .
. . . " An interpretationis a mapping between the constant, pred-
tions for the existence and uniqueness of a probability mea-

sure consistent with a given MLN, and examine the impor_|cate and function symbols in the language and the objects,

tant case of MLNs with non-unique measures. Next, Wefuncuons and relations in the domain. In+gerbrand in-

; -terpretationthere is a one-to-one mapping between ground
establish a correspondence between the problem of Sat'?érms and objects (i.e., every object is represented by some
fiability in logic and the existence of MLN measures with ) o Y 0b) P y

. . . . . round term, and no two ground terms correspond to the
certain properties. We conclude with a discussion of th . . o .

. ) P . .~ .~ same object). Anodelor possible worldspecifies which
relationship between infinite MLNs and previous infinite

. relations hold true in the domain. Together with an inter-
relational models. LT . .
pretation, it assigns a truth value to every atomic formula,
and thus to every formula in the knowledge base.
2 Background

. . 2.2 Gibbs Measures
2.1 First-Order Logic

) ) Gibbs measures are infinite-dimensional generalizatibns o
A first-order knowledge base a set of sentences or for- gihps distributions. A Gibbs distribution, also known as a

mulas in first-order logic (Genesereth & Nilsson, 1987). |44 linear model or exponential model, and equivalent un-
Formulas are constructed using four types of symbols: congar mild conditions to a Markov network or Markov ran-
stants, variables, functions, and predicates. Constant sy yom field assigns to a statethe probability

bols represent objects in the domain of discourse (e.g-, peo

ple: Anna, Bob, Chris, etc.). Variable symbols range over P(X=x) = 1 exp <Z wi s (x)> 1)
the objects in the domain (or a subset of it, in which case Z -

they aretyped. Function symbols (e.gMother0f) repre-
sent mappings from tuples of objects to objects. Predicat

symbols represent relations among objects (:g.ends) per we will be concerned exclusively with Boolean states

or attributes of objects (e.gSmokes). A termis any ex- : : :
. ) . and functions (i.e., states are binary vectors, correspond
pression representing an object. It can be a constant,-a vatri

. : ing to possible worlds, and functions are logical formulas)
able, or a function applied to a tuple of terms. For example . . . ;
. Markov logic can be viewed as the use of first-order logic
Anna, x, andGreatestCommonDivisor(x,y) are terms. . o . :
. ; . . to compactly specify families of these functions (Richard-
An atomic formulaor atomis a predicate symbol applied . .
) son & Domingos, 2006). Thus, a natural way to generalize
to a tuple of terms (e.gEriends(x, MotherOf(Anna))). .. .~ - S L :
. - ) it to infinite domains is to use the existing theory of Gibbs
A ground termis a term containing no variables. gkound - )
S . measures (Georgii, 1988). Although Gibbs measures were
atomor ground predicatés an atomic formula all of whose

. rimarily developed to model regular lattices (e.g., ferro
arguments are ground terms. Formulas are recursively con- . ; o .
. . . .__magnetic materials, gas/liquid phases, etc.), the theory i

structed from atomic formulas using logical connectives

and quantifiers. Apositive literalis an atomic formula; quite general, and applies equally well to the richer struc-

A : . . tures definable using Markov logic.
anegative literalis a negated atomic formula. élauseis
a disjunction of literals. Every first-order formula can be One problem with defining probability distributions over
converted into an equivalent formulajmenex conjunctive infinite domains is that the probability of most or all worlds

wherew; is any real numberf; is an arbitrary function or
featureof x, andZ is a normalization constant. In this pa-

normal form Qx; ... Qx, C(x1,...,z,), whereeacli)is  will be zero. Measure theory allows us to overcome this
a quantifier, ther, are the quantified variables, any. . .) problem by instead assigning probabilities to sets of weorld
is a conjunction of clauses. (Billingsley, 1995). LetQ) denote the set of all possible

worlds, and€ denote a set of subsets@f £ must be ar-
algebra, i.e., it must be non-empty and closed under com-
plements and countable unions. A function £ — R is

said to be grobability measurever (Q, &) if u(E) > 0
foreveryE € &, u(Q) = 1, andu(U E:) = > u(E),
where the union is taken over any countable collection of
disjoint elements of .

The Herbrand universeU(C) of a set of clause€ is
the set of all ground terms constructible from the func-
tion and constant symbols i@ (or, if C contains no con-
stants, some arbitrary constant, e.g), If C contains
function symbols,U(C) is infinite. (For example, ifC
contains solely the functiod and no constantsUU(C)

= {£(A),£(£(4)),£(£(£(8))),...}.) Some authors define
the Herbrand baseB(C) of C as the set of all ground A related difficulty is that in infinite domains the sum in
atoms constructible from the predicate symbol€drand  Equation 1 may not exist. However, the distribution of any
the terms inU(C). Others define it as the set of all ground finite subset of the state variables conditioned on its com-
clauses constructible from the clause€drand the terms plementis still well defined. We can thus define the infinite



distribution indirectly by means of an infinite collectioh o
1S TIDUHOTE INC d i ! Y% (E) is the probability of evenE according to the con-

finite conditional distributions. This is the basic idea in g X | brobabilities ® dth
Gibbs measures. itional probabilitiesyx (E|Sx ) and the measurgeon Sx.

We are now ready to define Gibbs measure.
Let us introduce some notation which will be used through-D

out the paper. Consider a countable set of variaBles
{X1, Xs,...}, where eachX; takes values i{0,1}. Let

X be a finite set of variables iff, andSx = S\ X. A
possible worldv € Q2 is an assignment to all the variables
in S. Letwx denote the assignment to the variableXin

underw, andwx, the assignment t&;. Let X denote the | other words, a Gibbs measure is consistent with a Gibb-
set of all finite subsets d. A basic eveniX = xis an  sjan specification if its event probabilities agree withsto
assignment of values to a finite subset of variatdes X',  optained from the specification. Given a Gibbsian speci-
and denotes the set of possible worldsc 2 such that fication, we can ask whether there exists a Gibbs measure
wx = x. LetE be the set of all basic events, anddebe  consistent with it [G(v®)| > 0), and whether it is unique
the o-algebra generated W, i.e., the smallest-algebra  (|G(4®)| = 1). In the non-unique case, we can ask what
containingE. An element® of £ is called areventandf  the structure off (%) is, and what the measures in it repre-

is theevent spaceThe following treatment is adapted from sent. We can also ask whether Gibbs measures with specific
Georgii (1988). properties exist. The theory of Gibbs measures addresses
Definition 1. Aninteraction potentiafor simply apoten-  these questions. In this paper we apply it to the case of
tial) is a family® = (®v)vex of functionsdy : V. — R Gibbsian specifications defined by MLNs.

such that, for allX € X andw € €, the summation

ng(w) _ Z q)V(wV) ) 3 Infinite MLNs

VeX , VNX£0

efinition 2. Let~® be a Gibbsian specification. Let

be a probability measure over the measurable sg&are)
such that, for everX € X andE € &, u(E) = py%(E).
Then the specification® is said to admit theGibbs mea-
sureu. Further,G(y?®) denotes the set of all such measures.

o . G 3.1 Definition
is finite. Hy is called the Hamiltonian ifX for ®.

A Markov logic network (MLN) is a set of weighted first-
Intuitively, the HamiltonianH% includes a contribution  grder formulas. As we saw in the previous section, these
from all the potentialsby which share at least one vari- can pe converted to equivalent formulas in prenex CNF.
able with the seX. Given an interaction potentidl and a  \ye will assume throughout that all existentially quantified
subset of variableX, we define the conditional distribu- yariaples have finite domains, unless otherwise specified.

tion 7% (X|Sx) as o While this is a significant restriction, it still includesses-
V(X =x[Sx =y) = exp(Hx (%, y)) (3) tially all previous probabilistic relational represeridais as
Z exp(Hx (%,¥)) special cases. Existentially quantified formulas can now
xe€Dom(X) be replaced by finite disjunctions. By distributing conjunc

where the denominator is called thartition functionin X~ tions over disjunctions, every prenex CNF can now be con-
for ® and denoted byz2, andDom(X) is the domain of verted to a quantifier-free CNF, with all variables impligit
X. Equation 3 can be easily extended to arbitrary eventsiniversally quantified.

E € & by definingyk (E|Sx) to be non-zero only when  The Herbrand universtl(L) of an MLN L is the set of
E is consistent with the assignment k. Details are )| ground terms constructible from the constants and func-
skipped here to keep the discussion simple, and can bgyn symbols in the MLN. The Herbrand baB&L) of L is
found in Georgii (1988). The family of conditional distri- the set of all ground atoms and clauses constructible from
butionsy® = (yx)xex as defined above is called3ibb-  the predicates i, the clauses in the CNF form &f, and

sian specificatiort the terms ifU(L), replacing typed variables only by terms
Given a measurg over (€2, &) and conditional probabili- of _the corresponding type. We assume Herbrand inter_pre-
tiesy2 (E|Sx), let the compositiony2 be defined as :\z/;ll'lt_l(’)\lns throughout. We are now ready to formally define
s.
pyx (E) = /D y )7§(E|SX) o (4)  Definition 3. A Markov logic network (MLN)L is a (fi-
om(Sx

nite) set of pairs(F;, w;), whereF; is a formula in first-

!For physical reasons, this equation is usually written with order logic andw; is a real number. L defines a count-
negative sign in the exponent, i.exp[—Hx (w)]. Since thisis  able set of variables$ and interaction potentiatb™ =
n(;t(r:')il]e.tvfintln Markov logic and does not affect any of theiltss (@%{)XGX’ X being the set of all finite subsets 8f as
wi it it. .

2Georgii (1988) defines Gibbsian specifications in terms ef un follows:
derlying independent specifications. For simplicity, weuase
these to be equidistributions and omit them throughoutghjser. 1. S contains a binary variable for each atom B(L).



The value of this variable is 1 if the atom is true, and If the MLN contains no function symbols, Definition 3 re-

0 otherwise. duces to the one in Richardson and Domingos (2006), with
C being the constants appearing in the MLN. This can be
easily seen by substituting = S in Equation 5. Notice

it would be equally possible to define features for conjunc-
tions of clauses, and this may be preferable for some appli-
cations.

2. ¥ (x) = >, w;fi(x), where the sum is over the
clauseC; in B(L) whose arguments are exactly the
elements oX. If F;(; is the formula inL. from which
C; originated, andF;(;) gave rise ton clauses in the
CNF form ofL, thenw; = w;/n. f;(x) = 1if C; is
true in worldx, and f; = 0 otherwise. 32 Existence

For ® to correspond to a well-defined Gibbsian specifica-| et T, be a locally finite MLN. The focus of this sec-

tion, the corresponding Hamiltonians (Equation 2) need tgjon is to show that its specification always admits

be finite. This brings us to the following definition. some measurg. It is useful to first gain some intuition

Definition 4. LetC be a set of first-order clauses. Given a as to why this might not always be the case. Consider

ground atomX € B(C), let theneighboraN(X) of X be  an MLN stating that each person is loved by exactly one

the atoms that appear with it in some ground clau€eis  person: ¥x 3'y Loves(y,x). Let w, denote the event
said to belocally finite if each atom in the Herbrand base Loves(P,,Anna), i.e., Anna is loved by théth person in

of C has a finite number of neighbors, i.8X € B(C), the (countably infinite) domain. Then, in the limit of infi-

IN(X)| < co. An MLN (or knowledge base) is said to be nite weights, one would expect thafl  wy) = 1(Q) = 1.

locally finite if the set of its clauses is locally finite. But in fact u(Jws) = > p(wr) = 0. The first equality

holds because the,’s are disjoint, and the second one be-

It is easy to see that local finiteness is sufficient to ensurgayse eachy;, has zero probability of occurring by itself.

a well-defined Gibbsian SpeCification. Given such an MLNThere is a Contradiction’ and there exists no measure con-

L, the distributiomy of a set of variableX € X condi-  sistent with the MLN abové. The reason the MLN fails

tioned on its complemeriix is given by to have a measure is that the formulas are not local, in the

exp (Zj w; f(%, y)) sense that the truth value of an atom depends on the truth
values of infinite others. Locality is in fact the key propert

Zx’eDom(X) exp (Zj w; f5 (%', y)) for the existence of a consistent measure, and local finite-

ness ensures it.

Definition 6. A functionf : Q — R is localif it depends
only on a finite subseV € X. A Gibbsian specification
v = (vx)xex is local if eachyx is local.

1% (X=x|Sx=y) =

where the sum is over the clausesBAL) that contai(nSZat
least one element &X, and f;(x,y) = 1 if clauseCj is
true under the assignmeft, y) and 0 otherwise. The cor-
responding Gibbsian specification is denotedyby

For an MLN to be locally finite, it suffices that it be- Lemma. LetL be a locally finite MLN, and™ the corre-
determinate sponding specification. Ther¥ is local.

Definition 5. A clause isr-determinatéf all the variables ~ Proof. Each Hamiltoniarf; is local, since by local finite-
with infinite domains it contains appear in all literalsA ~ ness it depends only on a finite number of potentigs It
set of clauses is-determinate if each clause in the set is follows that eachy is local, and hence the corresponding
o-determinate. An MLN is-determinate if the set of its Specificationy™ is also local. O
clauses isr-determinate.

We now state the theorem for the existence of a measure
Notice that this definition does not require that all literal admitted byy".

have the same infinite arguments; for example, the Claus?heorem 1. Let L be a locally finite MLN, andy’ —

Q(x,y) = R(£(x), g(x,y)) iso-determinate. In essence, (v%)xcx be the corresponding Gibbsian specification.

determinacy requires that the neighbors of an atom be defhen there exists a measyrever (2, €) admitted byy"
fined by functions of its arguments. Because functions can ’ '

Ly >
be composed indefinitely, the network can be infinite; be- & GO > 1.

cause first-order clauses have finite lengtideterminacy Proof. To show _the eX|stenc_e_of a. measyrewe need to
ensures that neighborhoods are still finite. prove the following two conditions:

L o
3This is related to the notion of @eterminate clausi logic 1. The net(yx (X|Sx))xex has a cluster point with re-

programming. In a determinate clause, the grounding of #ie v spect to the weak topology df, £).
ables in the head determines the grounding of all the vaasibl ) L
the body. In infinite MLNs, any literal in a clause can be inéer 2. Each cluster point ofyx (X|Sx))xex belongs to

from the others, not just the head from the body, so we require g(yL),
that the (infinite-domain) variables in each literal deteventhe
variables in the others. 4See Example 4.16 in Georgii (1988) for a detailed proof.



Itis a well known result that, if all the variable§; have  Tne oscillation of a function is thus simply the difference

finite domains, then the net in Condition 1 has a clustefenyeen its extreme values. We can now state a sufficient
point (see Section 4.2 in Georgii (1988)). Thus, since all.ngition for the existence of a unigue measure.

the variables in the MLN are binary, Condition 1 holds. . . .
Further, sincey™ is local, every cluster point of the Theorem 2. LetL be a locally finite MLN with interaction

net(+% (X|Sx))xc.x belongs ta(+%) (Comment 4.18 in potential®” and Gibbsian specification” such that

Georgii (1988)). Therefore, Condition 2 is also satisfied. sup Z (IC;| = D)|w;| < 2 @)

Hence there exists a measuyreonsistent with the specifi- Xi€S ¢ co(xy)

cationy", as required. O  whereC(X;) is the set of ground clauses in whigh ap-
pears,|C;| is the number of ground atoms appearing in

3.3 Uniqueness clauseC;, andw; is its weight. Then/™ admits a unique

Gibbs measure.
This section addresses the question of under what condi-
tions an MLN admits a unique measure. Let us first gainpyot. Based on Theorem 8.7 and Proposition 8.8 in

some intuition as to why an MLN might admit more than Geq i (1988), a sufficient condition for uniqueness is
one measure. The only condition an MLIN imposes

on a measure is that it should be consistent with the lo- o8 Z (VI =1)d(@y) <2 (8)

cal conditional distributions%. But since these distribu- o VeX _
tions are local, they do not determine the behavior of theRewriting this condition in terms of the ground formulas in
measure at infinity. Consider, for example, a semi-infinitehich a variableX; appears (see Definition 3) yields the
two-dimensional lattice, where neighboring sites are morélesired result. L
likely to have the same truth value than not. This can

be represented by formulas of the foiva,y Q(x,y) <  Note that, as alluded to before, the above condition does not
Q(s(x),y) andvx,y Q(x,y) < Q(x,s(y)), with a single  depend on the weight of the unit clauses. This is because
constant0 to define the origin(0,0), and withs() be-  for a unit claus¢C;| — 1 = 0. If we define the interac-
ing the successor function. The higher the weighbf  tion between two variables as the sum of the weights of all
these formulas, the more likely neighbors are to have théhe ground clauses in which they appear together, then the
same value. This MLN has two extreme states: one whergbove theorem states that the total sum of the interactions
Vx S(x), and one whergx —S(x). Let us call these states 0f any variable with its neighbors should be less than 2 for
¢ and¢-, and let¢’ be a local perturbation af (i.e.,¢’ dif-  the measure to be unique.

fers from¢ on only a finite number of sites). If we draw a

X . Two other sufficient conditions are worth mentionin
contour around the sites whegeand¢ differ, then the log g

dds of¢ ande” | ithod. whered is the | hof briefly. One is that, if the weights of the unit clauses are
odas of€ and¢” increase withud, whered is the length o sufficiently large compared to the weights of the non-unit

the contour. Thus long contours are improbable, and ther%nes, the measure is unique. Intuitively, the unit terms

Is a measurg — d¢ asw — co. Since, by the Same réa- wyo\yn out” the interactions, rendering the variables ap-
soning, there is a measype. — d¢_ asw — oo, the MLN proximately independent. The other condition is that, & th
admits more than one measdre. MLN is a one-dimensional lattice, it suffices that the total
Let us now turn to the mathematical conditions for the ex-interaction between the variables to the left and right gf an
istence of a unique measure for a given MIN Clearly, ~ arc be finite. This corresponds to the ergodicity condition
in the limit of all non-unit clause weights going to zero, for a Markov chain.

L defines a unique distribution. Thus, by a continuity ar-

gument, one would expect the same to be true for smalB.4 Non-unique MLNs

enough weights. This is indeed the case. To make it pre-

cise, let us first define the notion of the oscillation of a func At first sight, it might appear that non-uniqueness is an un-
tion. Given a functiorf : X — R, let the oscillation off, desirable property, and non-unique MLNs are not an in-

0(f), be defined as teresting object of study. However, the non-unique case
, is in fact quite important, because many phenomena of in-
of) = X,X,S}D%’,;(X) £ () = £ terest are represented by MLNs with non-unique measures

= max|f(x)| — min | f(x)| (6) (for example, very large social networks with strong word-

of-mouth effects). The question of what these measures
®Notice that this argument fails for a one-dimensional datti represent, and how they relate to each other, then becomes

(equivalent to a Markov chain), since in this case an ariligra important. This is the subject of this section.

large number of sites can be separated from the rest by a con- . L .
tour of length 2. Non-uniqueness (corresponding to a ngoeic "The first observation is that the set of all Gibbs measures

chain) can then only be obtained by making some weights tafini G(y")is convex. Thatis, ifi, i’ € G(v") thenv € G(+1),
(corresponding to zero transition probabilities). wherev = su+(1—s)u’, s € (0,1). Thisis easily verified



by substituting’ in Equation 4. Hence, the non-uniqueness4  Satisfiability and Entailment
of a Gibbs measure implies the existence of infinitely many
consistent Gibbs measures. Further, many properties of thRichardson and Domingos (2006) showed that, in finite do-
setG(y%) depend on the set of extreme Gibbs measuresnains, first-order logic can be viewed as the limiting case
ex G(v¥), wherep € ex G(v%) if u € G(+*) cannot be  of Markov logic when all weights tend to infinity, in the
written as a linear combination of two distinct measures infollowing sense. If we convert a satisfiable knowledge base
G(v"M). K into an MLN Lk by assigning the same weight— oo
An important notion to understand the properties of ex-10 all clauses,.the_ILK defines a uniform distribution over
treme Gibbs measures is the notion of a tail event. Considetpe wor[ds sausfymg_K. FurtherK entails a formul.au '.ﬁ
asubses’ of S. Leto(S') denote ther-algebra generated Lk assigns probability 1 to the set of worlds sgtlsfyrmg
by the set of basic events involving only variablesSin _(Pro_posmon _4.3). In this section we extend this result to
Then we define the tait-algebraZ as infinite domains.
Consider an MLNL such that each clause in its CNF
7= () o(Sx) (9)  form has the same weight. In the limitw — oo, L
Xex does not correspond to a valid Gibbsian specification, since

A belonging ta” | lled i T the Hamiltonians defined in Equation 2 are no longer fi-
ny event belonging td Is called a tail event7' Is pre- ite. Revisiting Equation 5 in the limit of all equal infinite

cisely the set of events which do not depend on the value o lause weights, the limiting conditional distribution -

any finite set of variables, but rather only on the beh"’“’iordistribution ovér those configuratio$ which satisfy the

at infinity. For example, in the infinite tosses of a coin, themaximum number of clauses givéx — y. It tumns out
event that ten consecutive heads come out infinitely many . .an still talk about the existence of a measure consis-
times is a tail event. Similarly, in the lattice example ie th tent with these conditional distributions, because they co

Erewoas se::tlorjl-,_the eylcent that 2 flnlt?umbsr Oava”?ble&itute a valid specification (though not Gibbsian) under th
ave the value 1is a tail event. Events/irean be thought oo 0 conditions as in the finite weight case. We omit the

.Of as representing macroscopic properties of the system b‘ffetails and proofs for lack of space; they can be found in
ing modeled. Singla and Domingos (2007). Existence of a measure fol-
Definition 7. A measurey is trivial on a o-algebra& if ~ lows as in the case of finite weights because of the locality
u(E)=0orlforall £ € &. of conditional distributions. We now define the notion of a
satisfying measuravhich is central to the results presented
The following theorem (adapted from Theorem 7.8 inin this section.
Georgii (1988)) describes the relationship between the expefinition 8. LetL be a locally finite MLN. Given a clause
treme Gibbs measures and the taidlgebra. C; € B(L), let V; denote the set of Boolean variables

Theorem 3. LetL be a locally finite MLN, and® denote ~ appearing inC;. A measurg: € G(y") is said to be a
the corresponding Gibbsian specification. Then the follow-Satisfying measuréor L if, for every ground claus€’; €
ing results hold: B(L), p assigns non-zero probability only to the satisfying

assignments of the variables @, i.e., u(V; = v;) > 0
implies thatV,; = v, is a satisfying assignment far;.
S(y¥) denotes the set of all satisfying measuresIfor

1. A measure: € ex G(yY)) iff it is trivial on the tail
o-algebra7 .

2. Each measurg is uniquely determined by its behav- o )
ior on the tail o-algebra, i.e., ifu; = ps on7 then  Informally, a satisfying measure assigns non-zero proba-
1 = po. bility only to those worlds which are consistent with all the

formulas inL. Intuitively, existence of a satisfying mea-
It is easy to see that each extreme measure correspondssure forL should be in some way related to the existence
some particular value for all the macroscopic properties ofof a satisfying assignment for the corresponding knowledge
the network. In physical systems, extreme measures corréase. Our next theorem formalizes this intuition.

spond to phases of the system (e.g., liquid vs. gas, or difrhegrem 4. Let K be a locally finite knowledge base, and
ferent directions of magnetization), and non-extreme meagt 1, pe the MLN obtained by assigning weight —
sures correspond to probability distributions over phases,; tg all the clauses ifK. Then there exists a satisfying

Uncertainty over phases arises when our knowledge of &,e55ure foll. iff K is satisfiable. Mathematically,
system is not sufficient to determine its macroscopic state. S(=)[ > 0 Satisfiable(K) (10)
vyl < oatisfiaole

Clearly, the study of non-unique MLNs beyond the highly
regular ones statistical physicists have focused on pesnis Proof. Let us first prove that existence of a satisfying mea-
to be quite interesting. In the next section we take a step iisure implies satisfiability oK. This is equivalent to prov-
this direction by considering the problem of satisfiability ing that unsatisfiability oflK implies non-existence of a
the context of MLN measures. satisfying measure. LdK be unsatisfiable. Equivalently,



B(K), the Herbrand base d, is unsatisfiable. By Her- a way satisfies the properties of a probability measure (see
brand’s theorem, there exists a finite set of ground clauseSection 2.2). Finallyu is a satisfying measure because
C C B(K) that is unsatisfiable. LeV denote the set Vku(Xk) € Ty and eacll, is a set of satisfying distribu-

of variables appearing i©. Then every assignmentto  tions overXy. O

the variables inV violates some clause i@. Let ;1 de-
note a measure fdi,. Sinceyu is a probability measure,
> vepom(vy MV = v) = 1. Further, sinceV is finite,
there exists some € Dom(V) such thaf(V = v) > 0.
Let C; € C be some clause violated by the assignment
(every assignment violates some clause).Vetlenote the N
set of variables ii’; andv; be the restriction of assignment Kla & [SHy")=0 (11)

v to the variables ifV;. Thenv; is an unsatisfying assign- Thys; for locally finite knowledge bases with Herbrand in-
ment forC;. Further,u(Vi = vi) > u(V = v) > 0. terpretations, first-order logic can be viewed as the limit-
Hencey cannot be a satisfying measure fog.. Since the g case of Markov logic when all weights tend to infinity.

Loo S . )
above argument holds for apye G(v~>), there does not \yhether these conditions can be relaxed is a question for
exist a satisfying measure fir,, whenK is unsatisfiable.  ¢,t,re work.

Corollary. LetK be a locally finite knowledge base. Let
a be a first-order formula, and., be the MLN obtained
by assigning weightsy — oo to all clauses inK U {—«}.
ThenK entails« iff LS, has no satisfying measure. Math-
ematically,

Next, we need to prove that satisfiability Kfimplies exis-
tence of a satisfying measure. We will only give a proof5  Related Work
sketch here; the full proof can be found in Singla and

Domingos (2007). LeK be satisfiable. Now, consider a nymber of relational representations capable of handling
a finite subseX of the variables defined bli... Given jqfinjte domains have been proposed in recent years. Gen-
X, let Ax denote the set of those probability distributions grg|ly, they rely on strong restrictions to make this possi-
overX which assign non-zero probability only to the con- pje T our knowledge, Markov logic is the most flexible
figurations which are partial satisfying assignment®of  |anguage for modeling infinite relational domains to date.
We will call Ax the set of satisfying distributions ov&. |, thjs section we briefly review the main approaches.

Ax is a compact set. LEY denote the set of neighbors

of the variables inX. We defineFx : Ay — Ax to Stochastic logic programs (Muggleton, 1996) are general-
be the function which maps a satisfying distribution overizations of probabilistic context-free grammars. PCFGs al
Y to a satisfying distribution oveX given the conditional low for infinite derivations but as a result do not always rep-
distributiony%= (X|Sx). The mapping results in a satis- resent valid distributions (Booth & Thompson, 1973). In
fying distribution overX because, in the limit of all equal SLPs these issues are avoided by explicitly assigning zero
infinite weights, the conditional distribution ov&ris non- ~ Probability to infinite derivations. Similar remarks apply
zero only for the satisfying assignmentsXf SinceAy to related languages like independent choice logic (Poole,
is compact, its image under the continuous functignis ~ 1997) and PRISM (Sato & Kameya, 1997).

also compact. Many approaches combine logic programming and

GivenX; C X; and their neighborsy; andY; respec- Bayes?an networks. The most gdvanced one is arguably
tively, we show that ifrx, € Ax, is in the image ofAy, ~ Bayesian logic programs (Kersting & De Raedt, 2001).
underFx,, thenmx, = Y.x . 7x, is in the image of Kersting and De Raedt show that, if all nodes have a fi-
Ax, underFx,. This procéss ‘can then be repeated fornite number of ancestors, a BLP represents a unique dis-

ever-increasing setX,, > X,. This defines a sequence tribution. This is a stronger restriction than finite neigh-
(T])I=:° of non-empty subsets of satisfying distributions Porhoods. Richardson and Domingos (2006) showed how

j=1 . . .
overX;. Further, it is easy to show that: Tf“ C T, BLPs can b_e conve_rt_ed into Markov logic without loss of
representational efficiency.

Since eaclT* is compact and non-empty, from the theory
of compact sets we obtain that the countably infinite inter-Jaeger (1998) shows that probabilistic queries are deleidab
sectionT; = ;i;” T/ is also non-empty. for a very restricted language where a ground atom cannot
depend on other groundings of the same predicate. Jaeger
shows that if this restriction is removed queries become un-
decidable.

Let (X1, Xo,...,Xk,...) be some ordering of the vari-
ables defined byL.,, and letX; = {X3,Xs,... X}
We now define a satisfying measureas follows. We
defineu(Xy) to be some element 6F;. Givenu(Xy),  Recursive probability models are a combination of
we defineu (X, 1) to be that element o'y, whose Bayesian networks and description logics (Pfeffer &
marginal is (Xy) (such an element always exists, by Koller, 2000). Like Markov logic, RPMs require finite
construction). For an arbitrary set of variabl®s let ' neighborhoods, and in fact existence for RPMs can be
be the smallest index such tha&® C X, and define proved succinctly by converting them to Markov logic and
1(X) = > x,\x #(Xk). We show thay defined in such  applying Theorem 1. Pfeffer and Koller show that RPMs



do not always represent unique distributions, but do notng the official policies, either expressed or implied, of RRA,
study conditions for uniqueness. Description logics are aNSF, ONR, or the United States Government.
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