
User Interaction in the BANKS System: A Demonstration

B. Aditya
�

Soumen Chakrabarti Rushi Desai Arvind Hulgeri Hrishikesh Karambelkar
Rupesh Nasre Parag

�
S. Sudarshan

Indian Institute of Technology, Bombay
Aditya Bhashyam@mckinsey.com,

�
soumen,rushi,aru,hrishi,rupesh,sudarsha � @cse.iitb.ac.in, parag@cs.washington.edu

Abstract

The BANKS system supports keyword search on
databases storing structured/semi-structured data. Answers
to keyword queries are ranked, and as in IR systems, the top
answers may not be exactly what a user is looking for. Fur-
ther interaction with the system is required to narrow in on
desired answers. We describe some of the new features that
we have added to the BANKS system to improve user in-
teraction. These include an extended query model, richer
support for user feedback and better display of answers.

1. Introduction
Traditionally, searching text documents and searching
structured databases have been supported by very differ-
ent systems. The Information Retrieval (IR) community
has developed systems for searching document collections
using free-format keyword queries which do not require
any notion of a schema, whereas the Relational Database
(RDBMS) community has developed a precise, schema-
cognizant query language (SQL) together with query-
processing technology.

We see a great need for systems that will embody a
convergence of these technologies. The Web, XML, and
database application servers have blurred the distinction be-
tween scenarios where one or the other technology is suit-
able. Increasingly, relational, object-relational, and XML
databases are being searched over a Web interface (typi-
cally, using HTML forms).

Users of such interfaces do not wish to know, or can-
not make use of, detailed schema information, and there-
fore they cannot use precise query languages like SQL or
XQuery to interact with such databases. On the other hand,
although IR systems support keyword querying along with
useful features such as ranking of answers, they deal with
documents that are well-defined units of text, whereas in-
formation needed to answer a query on a database may be
split across multiple items (tuples or XML elements).

To address the gap between the two extreme search
paradigms mentioned above, we are building a system we
call BANKS (an acronym for Browsing ANd Keyword

1Work performed while at I.I.T. Bombay.

Searching) [1, 2], to support keyword search on databases
storing structured/semi-structured data. A BANKS query,
in its simplest form, is just a set of keywords, as in an IR
system. Unlike in an IR system, the answer to a keyword
query may be a set of data items, each of which matches
a keyword, along with the connections between the data
items. Examples of connections include foreign key ref-
erences in relational data sources, and element containment
in XML.

As in IR systems, there is no guarantee that the top an-
swers will satisfy the user’s needs, but further interaction
with the BANKS system can help users narrow in on the
information that they require.

In this paper we describe some of the new features that
we have recently added to the BANKS system to improve
user interaction. These include an extended query model,
richer support for user feedback and better display of an-
swers. The demo will emphasize these features.

A demo of the BANKS system is accessible over the
Web at http://www.cse.iitb.ac.in/banks/.
The demo will use several sample databases, one contain-
ing bibliographic information from DBLP, another contain-
ing student information related to thesis submissions at IIT
Bombay, and a third database derived from IMDB (the In-
ternet Movie Database).

2. Basic Data and Query Model
BANKS uses a uniform directed graph model, which natu-
rally captures relational data, XML data and HTML data
with hyperlinks. The graph nodes correspond to tuples
or XML elements. Graph edges correspond to connec-
tions between the nodes; for example, foreign-key refer-
ences in a relational database, and element containment or
IDREFs in an XML database. Graph edges and nodes are
assigned weights as outlined in Section 3.3; conceptually,
edge weights correspond inversely with the degree of close-
ness, while node weights are a measure of “prestige”.

A keyword query seeks to find subgraphs whose nodes
collectively satisfy the query. An example of a keyword
query is “web mendelzon”. A keyword may match text
in a relational attribute (or XML element), or even metadata
text, such as the name of a table, column, or XML element
or attribute tag. Given a set of keywords, the system returns
a set of answer trees; each answer tree is such that each

user-specified keyword matches (at least) one of the nodes
of the tree. Answer trees are ranked based on the weights of
their edges and nodes. See [2] for details.

3. Extended Query Model
We describe several recently implemented extensions of the
BANKS query model in this section.

3.1. Node Selections

BANKS allows selection conditions to be specified on
nodes, along with keywords. For instance,

optimization (year = 2000)
selects nodes that match the keyword optimization, and
have an attribute called year whose value is 2000.2 Selec-
tions on ordered domains can be approximate; for example,
the query

optimization (year � 2000)
looks for papers on optimization, published in a year around
2000. The weight of a node matching the keyword “op-
timization” then becomes a function of how closely its
year attribute matches 2000. The attribute name can be
dropped, as in “optimization (� 2000)” in which
case matching is done on all available attributes.

3.2. Proximity

BANKS allows the ranking function (near
�

), where
�

is
a set of keywords, to be specified along with a keyword. For
example, consider the query

movies (near hitchcock, reagan)
Answers to the query are nodes that match the keyword
“movies”, and are in proximity to nodes that match the key-
words “hitchcock” or “reagan”. Intuitively, the presence of
multiple nodes that match the near set (“hitchcock” or “rea-
gan”) near a particular movie node increases the weight (rel-
evance score) of that movie. As another example, the query
“author (near recovery)” would intuitively give us
authors who have published many papers on recovery.

When the near ranking function is specified along with a
keyword, its effect is to modify the weights of nodes match-
ing the keyword. The rest of the BANKS node and edge
weight model remains unchanged.

The near ranking function aggregates the proximity to
multiple nodes. For example, as in [4], the proximity of
a node � with a near set � can be defined as �����
	 �����
where ��� is the distance from � to the � th node matching
a keyword in the near set � ; the weight of � is then in-
versely related to the above proximity. Goldman et al. [4]
introduced this model of search based on proximity; how-
ever, unlike BANKS, they do not consider general keyword
queries. The near ranking function allows the Goldman
proximity model to be cleanly integrated into BANKS.

2This can be extended to allow attribute names that are similar, or are
in closely connected tuples, although this extension is not currently imple-
mented.

3.3. Tree Weight Model

In the current BANKS model, the weight of a tree is com-
puted as a combination (e.g. the sum) of the weights of its
edges and nodes. The weight of a forward edge is based on
its edge type, and can be specified by the system adminis-
trator (defaulting to 1) The weight of a backward edge from
a node (i.e. a backward traversal of an edge pointing into
the node) is proportional to the number of edges pointing
to the node. Nodes weights are a measure of “prestige” can
be based on the indegree of a node, or using the PageRank
algorithm [3]. We are currently experimenting with exten-
sions of the random walk model of PageRank, by biasing
the walk, using attributes of tuples associated with nodes,
or external statistical data.

Although the current ranking model has worked well on
the data sets we have studied so far, a potential problem is
that a small variation in the schema can significantly change
the weight of paths connecting nodes of interest. In ongoing
work we are exploring an alternative approach to “charging”
an answer tree for (lack of) proximity between nodes of in-
terest. Our approach is based on a random walk model, but
restricted to the neighbourhood of the answer tree.

4. User Feedback

Keyword queries are inherently ambiguous, so a user may
need to interact with the system to find required answers.
BANKS provides several strategies for refining queries to
get required results.

Disambiguation of Nodes: A given keyword, such as “su-
darshan” may match several nodes, for example “S. Sudar-
shan” and “Sudarshan Chawathe”. BANKS allows users
to select which nodes are relevant and re-execute the query
with those nodes.

Answer Patterns: Suppose a user wishes to find papers
by Soumen that refer to papers by Sudarshan, and executes
a query sudarshan soumen. This query would return
papers written jointly by Sudarshan and Soumen, papers
by Sudarshan that refer to papers by Soumen in addition
to papers by Soumen that refer to papers by Sudarshan. The
BANKS system system allows the users to select particular
tree patterns as relevant and find only answers that match
that pattern. The tree patterns are used to prune the search
for answers.

Re-scoring: Node disambiguation and answer tree patterns
result in a strict selection/rejection of answers. We are also
adding a feature for the user to express a “softer” prefer-
ence, by simply marking some answers as relevant (or more
relevant than unmarked answers). The random walk model
for answer tree scoring, described earlier, can use this infor-
mation to prefer or avoid certain paths.

2

Figure 1. Answer formatting: (a) Connection Tree Display (b) Improved Display

5. Answer Formatting
Consider the keyword query “hector architec-
tural” on the DBLP database. One of the result trees
have been shown in Figure 1(a). Two shortcomings can be
easily identified. First, the paper-id attribute which forms
the primary key for paper is meaningless to users, and dis-
playing the title and year of a paper without its authors (or
with a partial list of authors) gives incomplete information
to the user. Second, the writes and cites tuples are “relation-
ship” tuples, which serve only to link other tuples. Since the
linked tuples are adjacent in the tree, the content of the tu-
ples are superfluous except to indicate the directionality of
the relationship.

The first problem is solved by allowing information from
related nodes to be “folded in” when displaying a node. For
instance, the system administrator can specify that when-
ever a paper tuple is displayed, the system should also dis-
play the author tuples linked through the writes relation-
ship. This can be seen in Figure 1(b), where the author
name Schek has been folded in and displayed with the sec-
ond paper.

The second problem is solved by allowing the system ad-
ministrator to specify “forward” and “backward” names to
relations that model binary relationships (i.e. relations hav-
ing two foreign keys). The foreign key information is then
suppressed, but the directionality of the relationship indi-
cated by displaysing the appropriate (forward or backward)
name. For instance, the cites tuple displayed in Figure 1(a)
has been replaced by the name “cited by” in Figure 1(b)
(if the parent and child nodes were interchanged, the name
“cites” would have been used instead).

In some cases, the information in a leaf node of the tree
may have already been folded into the display of a parent
node (for example, an author name into a paper). In such
cases, the display of the leaf node (along with any parent
binary relationship node) is suppressed whenever doing so
would not result in loss of information.

The BANKS system supports templates for formatting
the display of tuples; templates can contain HTML code,
along with hyperlinks to attributes, and relationships to be
folded in.

6. Implementation and Efficiency Issues
The BANKS system is built using Java Servlets to provide
a Web interface, and JDBC to communicate with relational
databases; BANKS can be run on any database supporting
JDBC, without any programming. Extensions to support
XML are being implemented.

An important concern when using a system such as
BANKS is the efficiency of graph traversals required to find
answers. If a disk access were potentially required for each
edge traversal, the system would be unusably slow. We
therefore store the database graph in memory. Note that we
do not require the database to fit in memory. The in-memory
structure is a graph which basically acts as an index on the
database; the graph stores a single node (an integer identi-
fier along with some pointers) for each edge and each node,
which in our current Java implementation takes around 30
bytes. No other structure need be in memory, and no strings
are stored in the in-memory structure. As a result, we can
easily handle databases containing millions to even tens of
millions of records using a modest amount of memory, suf-
ficient for most organizational data.

7. Conclusion
In this paper we have outlined novel user interaction fea-
tures of BANKS. Future work includes improved user feed-
back, and querying across multiple data sources using dif-
ferent data models, using the unifying graph model.

References
[1] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe,

Parag, and S. Sudarshan. Banks: Browsing and keyword
searching in relational databases. In Proc. of the Int’l Conf.
on VLDB, Aug. 2002. Demo paper.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Su-
darshan. Keyword searching and browsing in databases using
BANKS. In IEEE Int’l Conf. on Data Engineering, Feb. 2002.

[3] S. Brin and L. Page. The anatomy of a large-scale hyper-
textual Web search engine. Computer Networks and ISDN
Systems, 30(1–7), 1998.

[4] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity search in databases. In Proc.
of the Int’l Conf. on VLDB, pages 26–37, 1998.

3

