Gentle Introduction to Local Search in Combinatorial Optimization

Vinayaka Pandit

IBM India Research Laboratory
Outline

- Local Search Technique
- Max-CUT: simple theorem and proof
- The k-median problem: Statement of the result (no proof!)
- Some more applications
Combinatorial Optimization Problem

- A problem with notions of “feasible solution” and “cost of a feasible solution”. Typically we are looking for a feasible solution of optimal cost.

- Given an instance, potential number of feasible solution is large, i.e, “combinatorial”

- Example: suppose we are given a boolean formula on n variables and we want assignment that satisfies all clauses. Potentially, there are 2^n satisfying assignments.

- Large number of combinatorial optimization problems are NP-Complete.
Local Search Technique

- Let \mathcal{F} denote the set of all feasible solutions for a problem instance \mathcal{I}.
- Define a function $\mathcal{N} : \mathcal{F} \rightarrow 2^{\mathcal{F}}$ which associates for each solution, a set of neighboring solutions.
- Start with some feasible solution and iteratively perform “local operations”. Suppose $S_C \in \mathcal{F}$ is the current solution. We move to any solution $S_N \in \mathcal{N}(S_C)$ which is strictly better than S_C.
- Output S_L, a locally optimal solution for which no solution in $\mathcal{N}(S_L)$ is strictly better than S_L itself.
If any of the neighboring solution has better cost, then, move to it. Otherwise output Current solution.
Example: MAX-CUT

Given a graph $G = (V, E)$,

Partition V into A, B s.t. #edges between A and B is maximized.

Note that MAX-CUT is $\leq |E|$.
Local Search for MAX-CUT

Algorithm Local Search for MAX-CUT.

1. \(A, B \leftarrow \text{any partition of } V;\)
2. While \(\exists \ u \in V \text{ such that in-degree}(u) > \text{out-degree}(u),\)
 do
 if \((u \in A), \text{ Move } u \text{ to } B\)
 else, \(\text{Move } u \text{ to } A\)
 done
3. return \(A, B\)
Neighborhood Function

- Solution Space: the set of all partitions.
- Neighborhood Function: Neighbors of a partition \((A, B)\) are all the partitions \((A', B')\) obtained by interchanging the side of a single vertex.
Analysis for MAX-CUT

1. in-d(\(u\)) \leq out-d(\(u\)) (Apply Conditions for Local Optimality)

2. \(\sum_{u \in V} in-d(u) \leq \sum_{u \in V} out-d(u)\) (Consider suitable set of local operations)

3. #Internal Edges \leq #Cut Edges

#Cut-edges \geq \frac{|E|}{2} \Rightarrow 2\text{-approximation} (\text{Infer})
The k-median problem

We are given n points in a metric space.
The k-median problem

We are given n points in a metric space.

$$d(u, v) \geq 0, \quad d(u, u) = 0, \quad d(u, v) = d(v, u)$$
The \(k \)-median problem

We are given \(n \) points in a metric space.
The k-median problem

We are given n points in a metric space.

Identify k “medians” so as to minimize the sum of the distances of the points to their nearest medians.
The k-median problem

We are given n points in a metric space.

We want to identify k “medians” such that the sum of lengths of all the red segments is minimized.
Overview of the k-median problem

- NP-hard
Overview of the k-median problem

- NP-hard
- Popular in the OR community since 60’s.
Overview of the k-median problem

- NP-hard
- Popular in the OR community since 60’s.
- Used for locating warehouses, manufacturing plants, etc.
Overview of the k-median problem

- NP-hard
- Popular in the OR community since 60’s.
- Used for locating warehouses, manufacturing plants, etc.
- Used also for clustering, data mining.
Overview of the k-median problem

- NP-hard
- Popular in the OR community since 60’s.
- Used for locating warehouses, manufacturing plants, etc.
- Used also for clustering, data mining.
- Received the attention of the Approximation algorithms community in early 90’s.
Overview of the k-median problem

- NP-hard
- Popular in the OR community since 60’s.
- Used for locating warehouses, manufacturing plants, etc.
- Used also for clustering, data mining.
- Received the attention of the Approximation algorithms community in early 90’s.
- Various algorithms via LP-relaxation, primal-dual scheme, etc.
A local search algorithm
A local search algorithm

Start with any set of k medians.
A local search algorithm

Identify a median and a point that is not a median.
A local search algorithm

And SWAP tentatively!
Perform the swap, only if the new solution is “better” (has less cost) than the previous solution.
A local search algorithm

Perform the swap, only if the new solution is “better” (has less cost) than the previous solution.

Stop, if there is no swap that improves the solution.
The algorithm

Algorithm Local Search.

1. $S \leftarrow \text{any } k \text{ medians}$
2. While $\exists \ s \in S \text{ and } s' \not\in S$ such that,

 $\cost(S - s + s') < \cost(S)$,

 do $S \leftarrow S - s + s'$
3. return S
Main theorem

The local search algorithm described above computes a solution with cost (the sum of distances) at most 5 times the minimum cost.
Main theorem

The local search algorithm described above computes a solution with cost (the sum of distances) at most 5 times the minimum cost.

Korupolu, Plaxton, and Rajaraman (1998) analyzed a variant in which they permitted adding, deleting, and swapping medians and got $(3 + 5/\epsilon)$ approximation by taking $k(1 + \epsilon)$ medians.
Graph Partition Problem

- Given a graph $G = (V, E)$, partition the set of vertices V into two equal halves A and B such that the edges going across them is minimized.
- Fundamental problem in Approximation Algorithms.
- Real applications in high performance computing, VLSI design, image processing, etc.
Local Search for Graph Partitioning

\[\text{Cut}(S, S') > \text{Cut}(T, T') \]
Traveling Salesman Problem (TSP)

- Given a set of \(n \) cities and distances between them, find a tour that visits every city exactly once and comes back to the starting city such that the total distance traveled is minimized. The distances are "metric", i.e., they satisfy triangle inequality.

- Again, a fundamental problem. One of the six problems that Karp proved to be NP-Complete.

Local Search for TSP
THANK YOU
Some notation

\[S_j \]

\[S = \{ \bullet \bullet \bullet \bullet \bullet \} \]

\[|S| = k \]

\[N_S(s) \]

\[cost(S) = \text{the sum of lengths of all the red segments} \]
Some more notation

\[O = \{ \bullet \bullet \bullet \bullet \bullet \} \quad |O| = k \]
Some more notation

\[N_s^o = N_O(o) \cap N_S(s) \]
Local optimality of S

- Since S is a local optimum solution,
Local optimality of S

Since S is a local optimum solution, we have,

$$cost(S - s + o) \geq cost(S) \quad \text{for all } s \in S, o \in O.$$
Local optimality of S

- Since S is a local optimum solution, we have,
 \[\text{cost}(S - s + o) \geq \text{cost}(S) \quad \text{for all} \ s \in S, \ o \in O. \]

- We shall add k of these inequalities (chosen carefully) to show that,
 \[\text{cost}(S) \leq 5 \cdot \text{cost}(O) \]
What happens when we swap $<s, o>$?

All the points in $N_S(s)$ have to be rerouted to one of the facilities in $S - \{s\} + \{o\}$.

We are interested two types of clients: those belonging to N_s^o and those not belonging to N_s^o.
Rerouting \(j \in N_s^o \)

Rerouting is easy. Send it to \(o \). Change in cost = \(O_j - S_j \).
Rerouting $j \notin N_s^O$

Map j to a unique $j' \in N_O(o_i)$ outside $N_s^{o_i}$ and route via j'. Change in cost = $O_j + O_{j'} + S_{j'} - S_j$.

Ensure that every client is involved in exactly one reroute.

Therefore, the mapping need to be one-to-one and onto.
We desire a permutation $\pi : NO(o) \rightarrow NO(o)$ that satisfies the following property:

Client $j \in N_s^o$ should get mapped to $j' \in NO(o)$, but outside N_s^o.
Notion of Capture

We say that \(s \in S \) captures \(o \in O \) if

\[
|N_s^o| > \frac{|N_O(o)|}{2}.
\]

Note: A facility \(o \in O \) is captured precisely when a mapping as we described is not feasible.
A mapping π

We consider a permutation $\pi : N_O(o) \rightarrow N_O(o)$ that satisfies the following property:

if s does not capture o then a point $j \in N^o_s$ should get mapped outside N^o_s.
A mapping π

We consider a permutation $\pi : NO(o) \rightarrow NO(o)$ that satisfies the following property:

if s does not capture o then a point $j \in N_s^o$ should get mapped outside N_s^o.
A mapping π
Construct a bipartite graph $G = (O, S, E)$ where there is an edge (o, s) if and only if $s \in S$ captures $o \in O$.

Capture graph
Swaps considered

\[l \geq l/2 \]
Swaps considered

Why consider the swaps?

\[\geq l/2 \]
Properties of the swaps considered

If $\langle s, o \rangle$ is considered, then s does not capture any $o' \neq o$.

\begin{itemize}
\item $l \geq l/2$
\end{itemize}
Properties of the swaps considered

If \(\langle s, o \rangle \) is considered, then \(s \) does not capture any \(o' \neq o \).

Any \(o \in O \) is considered in exactly one swap.
Properties of the swaps considered

- If \(\langle s, o \rangle \) is considered, then \(s \) does not capture any \(o' \neq o \).
- Any \(o \in O \) is considered in exactly one swap.
- Any \(s \in S \) is considered in at most 2 swaps.
Consider a swap \(\langle s, o \rangle \) that is one of the \(k \) swaps defined above. We know \(\text{cost}(S - s + o) \geq \text{cost}(S) \).
Upper bound on $\text{cost}(S - s + o)$

- In the solution $S - s + o$, each point is connected to the closest median in $S - s + o$.
Upper bound on $\text{cost}(S - s + o)$

- In the solution $S - s + o$, each point is connected to the closest median in $S - s + o$.
- $\text{cost}(S - s + o)$ is the sum of distances of all the points to their nearest medians.
Upper bound on $\text{cost}(S - s + o)$

- In the solution $S - s + o$, each point is connected to the closest median in $S - s + o$.

- $\text{cost}(S - s + o)$ is the sum of distances of all the points to their nearest medians.

- We are going to demonstrate a possible way of connecting each client to a median in $S - s + o$ to get an upper bound on $\text{cost}(S - s + o)$.
Upper bound on $\text{cost}(S - s + o)$

Points in $N_O(o)$ are now connected to the new median o.
Upper bound on $\text{cost}(S - s + o)$

Thus, the increase in the distance for $j \in N_O(o)$ is at most

$$O_j - S_j.$$
Upper bound on $\text{cost}(S - s + o)$

Consider a point $j \in N_S(s) \setminus N_O(o)$.
Consider a point \(j \in N_S(s) \setminus N_O(o) \).

Suppose \(\pi(j) \in N_S(s') \). (Note that \(s' \neq s \).)
Upper bound on $\text{cost}(S - s + o)$

- Consider a point $j \in N_S(s) \setminus N_O(o)$.
- Suppose $\pi(j) \in N_S(s')$. (Note that $s' \neq s$.)
- Connect j to s' now.
Upper bound on $\text{cost}(S' - s + o)$

- New distance of j is at most $O_j + O_{\pi(j)} + S_{\pi(j)}$.
Upper bound on $\text{cost}(S' - s + o)$

- New distance of j is at most $O_j + O_{\pi(j)} + S_{\pi(j)}$.
- Therefore, the increase in the distance for $j \in N_S(s) \setminus N_O(o)$ is at most

$$O_j + O_{\pi(j)} + S_{\pi(j)} - S_j.$$
Upper bound on the increase in the cost

- Let's try to count the total increase in the cost.
Let's try to count the total increase in the cost.

Points $j \in N_O(o)$ contribute at most

$$(O_j - S_j).$$
Upper bound on the increase in the cost

- Lets try to count the total increase in the cost.
- Points $j \in N_O(o)$ contribute at most
 $$(O_j - S_j).$$
- Points $j \in N_S(s) \setminus N_O(o)$ contribute at most
 $$(O_j + O_{\pi(j)} + S_{\pi(j)} - S_j).$$
Upper bound on the increase in the cost

- Lets try to count the total increase in the cost.
- Points $j \in N_O(o)$ contribute at most
 $$O_j - S_j.$$
- Points $j \in N_S(s) \setminus N_O(o)$ contribute at most
 $$O_j + O_{\pi(j)} + S_{\pi(j)} - S_j.$$
- Thus, the total increase is at most,
 $$\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j).$$
Upper bound on the increase in the cost

\[
\sum_{j \in NO(o)} (O_j - S_j) + \sum_{j \in NS(s) \setminus NO(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)
\]
Upper bound on the increase in the cost

\[
\sum_{j \in NO(o)} (O_j - S_j) + \sum_{j \in NS(s) \setminus NO(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \\
\geq cost(S - s + o) - cost(S)
\]
Upper bound on the increase in the cost

\[\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq \text{cost}(S - s + o) - \text{cost}(S) \]

\[\geq 0 \]
Plan

- We have one such inequality for each swap $\langle s, o \rangle$.

$$
\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
$$
Plan

- We have one such inequality for each swap \(\langle s, o \rangle \).

\[
\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]

- There are \(k \) swaps that we have defined.
Plan

- We have one such inequality for each swap $\langle s, o \rangle$.

$$\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.$$

- There are k swaps that we have defined.
Plan

- We have one such inequality for each swap \(\langle s, o \rangle \).

\[
\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]

- There are \(k \) swaps that we have defined.

- Lets add the inequalities for all the \(k \) swaps and see what we get!
The first term . . .

\[
\left[\sum_{j \in N_O(o)} (O_j - S_j) \right] + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]
The first term . . .

\[
\left\lfloor \sum_{j \in N_O(o)} (O_j - S_j) \right\rfloor + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]

Note that each \(o \in O \) is considered in exactly one swap.
The first term . . .

\[
\left[\sum_{j \in N_O(o)} (O_j - S_j) \right] + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]

Note that each \(o \in O \) is considered in exactly one swap. Thus, the first term added over all the swaps is

\[
\sum_{o \in O} \sum_{j \in N_O(o)} (O_j - S_j)
\]
The first term . . .

\[
\left[\sum_{j \in \mathcal{N}_O(o)} (O_j - S_j) \right] + \sum_{j \in \mathcal{N}_S(s) \setminus \mathcal{N}_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]

Note that each \(o \in \mathcal{O} \) is considered in exactly one swap. Thus, the first term added over all the swaps is

\[
\sum_{o \in \mathcal{O}} \sum_{j \in \mathcal{N}_O(o)} (O_j - S_j)
\]

\[
= \sum_{j} (O_j - S_j)
\]
The first term . . .

\[
\left[\sum_{j \in N_{O}(o)} (O_j - S_j) \right] + \sum_{j \in N_{S}(s) \setminus N_{O}(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \geq 0.
\]

Note that each \(o \in O \) is considered in exactly one swap. Thus, the first term added over all the swaps is

\[
\sum_{o \in O} \sum_{j \in N_{O}(o)} (O_j - S_j)
\]

\[
= \sum_{j} (O_j - S_j)
\]

\[
= \text{cost}(O) - \text{cost}(S).
\]
The second term...

\[
\sum_{j \in N_O(o)} (O_j - S_j) + \left[\sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_\pi(j) - S_j) \right] \geq 0.
\]
The second term . . .

\[\sum_{j \in N_O(o)} (O_j - S_j) + \left[\sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \geq 0. \]

Note that

\[O_j + O_{\pi(j)} + S_{\pi(j)} \geq S_j. \]
The second term . . .

\[
\sum_{j \in N_O(o)} (O_j - S_j) + \left[\sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \geq 0.
\]

Note that

\[
O_j + O_{\pi(j)} + S_{\pi(j)} \geq S_j.
\]

Thus

\[
O_j + O_{\pi(j)} + S_{\pi(j)} - S_j \geq 0.
\]
The second term . . .

\[
\sum_{j \in NO(o)} (O_j - S_j) + \left[\sum_{j \in NS(s) \setminus NO(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \geq 0.
\]

Note that

\[
O_j + O_{\pi(j)} + S_{\pi(j)} \geq S_j.
\]

Thus

\[
O_j + O_{\pi(j)} + S_{\pi(j)} - S_j \geq 0.
\]

Thus the second term is at most

\[
\sum_{j \in NS(s)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j).
\]
The second term ... Note that each $s \in S$ is considered in at most two swaps.
The second term . . .

Note that each $s \in S$ is considered in at most two swaps.

Thus, the second term added over all the swaps is at most

$$2 \sum_{s \in S} \sum_{j \in N_S(s)} \left(O_j + O_{\pi(j)} + S_{\pi(j)} - S_j \right)$$
The second term . . .

Note that each $s \in S$ is considered in at most two swaps.

Thus, the second term added over all the swaps is at most

$$2 \sum_{s \in S} \sum_{j \in N_S(s)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)$$

$$= 2 \sum_j (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)$$
The second term . . .

Note that each $s \in S$ is considered in at most two swaps.

Thus, the second term added over all the swaps is at most

$$2 \sum_{s \in S} \sum_{j \in N_S(s)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)$$

$$= 2 \sum_j (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)$$

$$= 2 \left[\sum_j O_j + \sum_j O_{\pi(j)} + \sum_j S_{\pi(j)} - \sum_j S_j \right]$$
The second term . . .

Note that each $s \in S$ is considered in at most two swaps.

Thus, the second term added over all the swaps is at most

$$2 \sum_{s \in S} \sum_{j \in N_S(s)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)$$

$$= 2 \sum_{j} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j)$$

$$= 2 \left[\sum_{j} O_j + \sum_{j} O_{\pi(j)} + \sum_{j} S_{\pi(j)} - \sum_{j} S_j \right]$$

$$= 4 \cdot \text{cost}(O).$$
Putting things together

\[0 \leq \sum_{\langle s,o \rangle} \left[\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \]
Putting things together

\[0 \leq \sum_{\langle s, o \rangle} \left[\sum_{j \in N_O(o)} (O_j - S_j) \right. \]
\[+ \left. \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \]
\[\leq [\text{cost}(O) - \text{cost}(S)] + [4 \cdot \text{cost}(O)] \]
Putting things together

\[0 \leq \sum_{\langle s,o \rangle} \left[\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right] \]

\[\leq [\text{cost}(O) - \text{cost}(S)] + [4 \cdot \text{cost}(O)] \]

\[= 5 \cdot \text{cost}(O) - \text{cost}(S). \]
Putting things together

\[
0 \leq \sum_{\langle s,o \rangle} \left[\sum_{j \in N_O(o)} (O_j - S_j) + \sum_{j \in N_S(s) \setminus N_O(o)} (O_j + O_{\pi(j)} + S_{\pi(j)} - S_j) \right]
\leq [\text{cost}(O) - \text{cost}(S)] + [4 \cdot \text{cost}(O)]
= 5 \cdot \text{cost}(O) - \text{cost}(S).
\]

Therefore,

\[
\text{cost}(S) \leq 5 \cdot \text{cost}(O).
\]
A tight example

\[(k - 1)\)

\[(k - 1)/2\)

\[(k + 1)/2\)

\[O\]

\[S\]
A tight example

\[(k - 1) \]

\[(k - 1)/2 \]

\[O \]

\[S \]

\[(k + 1)/2 \]

\[cost(S) = 4 \cdot (k - 1)/2 + (k + 1)/2 = (5k - 3)/2 \]
A tight example

\[
\begin{array}{c}
\text{(} k - 1 \text{)} \\
\hline
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
\hline
(\frac{k - 1}{2}) \\
\end{array}
\]

\[
\begin{array}{c}
\text{(} k + 1 \text{)} \\
\hline
1 & 1 & \ldots & 1 \\
\hline
(\frac{k + 1}{2}) \\
\end{array}
\]

\[\text{cost}(S) = 4 \cdot \frac{(k - 1)}{2} + \frac{(k + 1)}{2} = \frac{(5k - 3)}{2}\]

\[\text{cost}(O) = 0 + \frac{(k + 1)}{2} = \frac{(k + 1)}{2}\]
Future directions

- We do not have a good understanding of the structure of problems for which local search can yield approximation algorithms.

- Starting point could be an understanding of the success of local search techniques for the curious capacitated facility location (CFL) problems.

- For CFL problems, we know good local search algorithms. But, no non-trivial approximations known using other techniques like greedy, LP rounding etc.