Static Single Assignment (SSA) Form

A sparse program representation for data-flow.
Computing Static Single Assignment (SSA) Form

Overview:

- What is SSA?
- Advantages of SSA over use-def chains
- “Flavors” of SSA
- Dominance frontiers
- Inserting ϕ-nodes
- Renaming the temporaries
- Translating out of SSA form

What is SSA?

- Each assignment to a temporary is given a unique name
- All of the uses reached by that assignment are renamed
- Easy for straight-line code

\[
\begin{align*}
v &\leftarrow 4 \\
&\leftarrow v + 5 \\
v &\leftarrow 6 \\
&\leftarrow v + 7 \\
v_0 &\leftarrow 4 \\
&\leftarrow v_0 + 5 \\
v_1 &\leftarrow 6 \\
&\leftarrow v_1 + 7
\end{align*}
\]

- What about control flow?

⇒ \(\phi\)-nodes
What is SSA?
What is SSA?

\[B_1: \ t \leftarrow 1 \]

\[B_2: \ t \leftarrow t + 1 \]

\[B_1: \ t_0 \leftarrow 1 \]

\[B_2: \ t_1 \leftarrow \phi(t_2, t_0) \]

\[t_2 \leftarrow t_1 + 1 \]
Advantages of SSA over use-def chains

- More compact representation

- Easier to update?

- Each use has only one definition

- Definitions explicitly merge values
 May still reach multiple ϕ-nodes
“Flavors” of SSA

Where do we place \(\phi \)-nodes?

Condition:
If two non-null paths \(x \rightarrow^+ z \) and \(y \rightarrow^+ z \) converge at node \(z \), and nodes \(x \) and \(y \) contain assignments to \(t \) (in the original program), then a \(\phi \)-node for \(t \) must be inserted at \(z \) (in the new program)

minimal
As few as possible subject to condition

semi-pruned
As few as possible subject to condition, and \(t \) must be live across some basic block

pruned
As few as possible subject to condition, and no dead \(\phi \)-nodes
Dominance Frontiers

From v’s point of view, these are the nodes at which other control paths that don’t go through v make their earliest appearance.

The dominance frontier of v is the set of nodes $\text{DF}(v)$ such that:

- v dominates a predecessor of $w \in \text{DF}(v)$, but x does not strictly dominate $w \in \text{DF}(v)$
 \[
 \text{DF}(v) = \{w \mid (\exists u \in \text{PRED}(w))[v \text{ DOM } u] \land v \overline{\text{DOM}}! w\}
 \]

- d dominates v, $d \text{ DOM } v$, in a CFG iff all paths from Entry to v include d

- d strictly dominates v:
 \[
 d \text{ DOM! } v \iff d \text{ DOM } v \land d \neq v
 \]

- The immediate dominator of v, $\text{IDOM}(v)$, is the closest strict dominator of v:
 \[
 d \text{ IDOM } v \iff d \text{ DOM! } v \land (\forall w \mid w \text{ DOM! } v)[w \text{ DOM } d]
 \]

$\text{IDOM}(v)$ is v’s parent in the dominator tree.
Dominance Frontier: Example

\[A = \]
\[DF(8) = \]
\[DF(9) = \]
\[DF(2) = \]
\[DF({8,9}) = \]
\[DF(10) = \]
\[DF({2,8,9,10}) = \]
Iterated Dominance Frontier

Extend the dominance frontier mapping from nodes to sets of nodes:

\[\text{DF}(S) = \bigcup_{n \in S} \text{DF}(n) \]

The *iterated* dominance frontier \(\text{DF}^+(S) \) is the limit of the sequence:

\[
\begin{align*}
\text{DF}_1(S) &= \text{DF}(S) \\
\text{DF}_{i+1}(S) &= \text{DF}(S \cup \text{DF}_i(S))
\end{align*}
\]

Theorem:

The set of nodes that need \(\phi \)-nodes for any temporary \(t \) is the iterated dominance frontier \(\text{DF}^+(S) \), where \(S \) is the set of nodes that define \(t \)
Iterated Dominance Frontier Algorithm: $\text{DF}^+(S)$

Input: Set of blocks S

Output: $\text{DF}^+(S)$

\[
\begin{align*}
\text{workList} & \leftarrow \{\} \\
\text{DF}^+(S) & \leftarrow \{\} \\
\textbf{foreach} \; n \in S \; \textbf{do} \\
\quad & \text{DF}^+(S) \leftarrow \text{DF}^+(S) \cup \{n\} \\
\quad & \text{workList} \leftarrow \text{workList} \cup \{n\} \\
\textbf{end} \\
\textbf{while} \; \text{workList} \neq \{\} \; \textbf{do} \\
\quad & \text{take } n \; \text{from } \text{workList} \\
\quad & \textbf{foreach} \; c \in \text{DF}(n) \; \textbf{do} \\
\quad & \quad \textbf{if} \; c \not\in \text{DF}^+(S) \; \textbf{then} \\
\quad & \quad \quad \text{DF}^+(S) \leftarrow \text{DF}^+(S) \cup \{c\} \\
\quad & \quad \quad \text{workList} \leftarrow \text{workList} \cup \{c\} \\
\quad & \quad \textbf{end} \\
\textbf{end} \\
\textbf{end}
\end{align*}
\]
Inserting \(\phi \)-nodes (minimal SSA)

\[
\textbf{foreach} \; t \in \text{Temporaries} \; \textbf{do} \\
S \leftarrow \{ n \mid t \in \text{Def}(n) \} \cup \text{Entry} \\
\text{Compute } \text{DF}^+(S) \\
\textbf{foreach} \; n \in \text{DF}^+(S) \; \textbf{do} \\
\quad \text{Insert a } \phi \text{-node for } t \text{ at } n \\
\textbf{end} \\
\textbf{end}
\]
Inserting ϕ-nodes for globals (semi-pruned SSA)

Compute *local* liveness: globals are those live across block boundaries (*ie*, used before definition in *any* basic block)

\[
\textbf{foreach } t \in \text{Temporaries do} \\
\textbf{if } t \in \text{Globals then} \\
\quad S \leftarrow \{ n \mid t \in \text{Def}(n) \} \cup \text{Entry} \\
\quad \text{Compute } DF^+(S) \\
\quad \textbf{foreach } n \in DF^+(S) \textbf{ do} \\
\quad \quad \text{Insert a } \phi \text{-node for } t \text{ at } n \\
\textbf{end} \\
\textbf{end} \\
\textbf{end}
\]
Inserting fewest ϕ-nodes (pruned SSA)

Compute \textit{global} liveness: nodes where each temporary is live-in

\texttt{foreach } $t \in$ \texttt{Temporaries do}

\hspace{1em} \textbf{if } $t \in$ \texttt{Globals then}

\hspace{2em} $S \leftarrow \{ n \mid t \in \text{Defs}(n) \} \cup \text{Entry}$

\hspace{2em} Compute $\text{DF}^+(S)$

\hspace{2em} \texttt{foreach } $n \in \text{DF}^+(S)$ \texttt{do}

\hspace{3em} \textbf{if } t live-in at n \texttt{then}

\hspace{4em} Insert a ϕ-node for t at n

\hspace{3em} \texttt{end}

\hspace{2em} \texttt{end}

\hspace{1em} \texttt{end}

end
Renaming the temporaries

After ϕ-node insertion, uses of t are either:

original: dominated by the definition that computes t.

If not, then \exists path to use avoiding definition, which means separate paths from definitions converge between definition and use, thus inserting another definition.

i.e., each use dominated by an evaluation of t or a ϕ-node for t

ϕ: has a corresponding predecessor p, dominated by the definition of t (as before)

Thus, walk dominator tree, replacing each definition and its dominated uses with a new temporary.

Use a stack to hold current name (subscript) for each set of dominated nodes.

Propagate names from each block to corresponding ϕ-node operands of its successors.
Renaming the temporaries

foreach \(t \in \text{Temporaries} \) do \(\text{count}[t] \leftarrow 0; \text{stack}[t] \leftarrow \text{empty}; \text{stack}[t].\text{push}(0) \)

\(\text{Rename(Entry)} \)

proc\(\text{Rename}(n) \) \(\equiv \)

foreach statement \(I \in n \) do

if \(s \neq \phi \) then foreach \(t \in \text{Uses}(I) \) do

\(i \leftarrow \text{stack}[t].\text{top} \)

replace use of \(t \) with \(t_i \) in \(I \)

foreach \(t \in \text{Defs}(I) \) do

\(i \leftarrow \text{++count}[t]; \text{stack}[t].\text{push}(i) \)

replace def of \(t \) with \(t_i \) in \(I \)

foreach \(s \in \text{SUCC}(n) \) do

given \(n \) is the \(j \)th predecessor of \(s \)

foreach \(\phi \in s \) do

given \(t \) is the \(j \)th operand of \(\phi \)

\(i \leftarrow \text{stack}[t].\text{top} \)

replace \(j \)th operand of \(\phi \) with \(t_i \)

foreach \(c \in \text{Children}(n) \) do \(\text{Rename}(c) \)

foreach statement \(I \in n, t \in \text{Defs}(I) \) do \(\text{stack}[t].\text{pop()} \)
Translating Out of SSA Form

Replace \(\phi \)-nodes with copy statements in predecessors

\[
\begin{align*}
B_1 \quad & \text{if (...) } \\
B_2 \quad & x_0 \leftarrow 5 \\
B_3 \quad & x_1 \leftarrow 3 \\
B_4 \quad & x_2 \leftarrow \phi(x_0, x_1) \\
& y \leftarrow x_2
\end{align*}
\]

\[
\begin{align*}
B_1 \quad & \text{if (...) } \\
B_2 \quad & x_0 \leftarrow 5 \\
B_3 \quad & x_1 \leftarrow 3 \\
B_4 \quad & x_2 \leftarrow x_0 \\
& y \leftarrow x_2
\end{align*}
\]
Next Time

Static Single Assignment

- Induction variables (standard vs. SSA)
- Loop Invariant Code Motion with SSA