Hardware Software Co-design and SoC

Neeraj Goel
IIT Delhi
Introduction

- What is hardware software co-design
 - Some part of application in hardware and some part in software
 - Mpeg2 decoder example
Introduction

- **MPEG2 Decoder example**
 - Prediction and IDCT are most computation intensive
 - Best candidates for hardware
MPEG2 Decoder example

- Deadline time for each frame = 1/25 sec = 40msec
- Achievable with 1GHz processor in 20msec
- With 100MHz processor = 200msec
- IDCT and prediction is 90% computation
 - A hardware IDCT and prediction = 10msec
- Suggested architecture
 - 10% computation on hardware + 90% on hardware
 - 20msec + 10msec + overhead < 40msec
Why Hardware Software Codesign

- **Hardware Advantages**
 - Less area, low power, high performance
 - Low flexibility (difficult to modify)
 - More design time

- **Software Advantage**
 - More area, power, less performance
 - High flexibility (easy to modify)
 - Less design time

- **Embedded system issues**
 - Area, power and performance matters
 - Solution is hardware-software codesign
Issues with Hardware-Software Codesign

- Partitioning
 - Selecting modules for hardware and software
- Testing
 - Co-simulation and verification
- Code generation
 - Software controls for hardware
- Design issues
 - Hardware Software interface
 - Communication between h/w and s/w
Target Architecture

- Platform based solutions (fixed interface)
 - Use standard communication buses (AMBA, AHB..)
 - Use cores from third party

![Diagram of the target architecture: Processor core1, IDCT, Memory, Processor core2, Prediction, core connected by an AMBA Bus.]
Codesign Methodology

- C Specification
- Thread Model
- Partitioning
 - S/W Synthesis
 - H/W Synthesis
- Co-simulation
- Prototyping
Partitioning

- **Hardware Estimation**
 - Input: Resources available
 - Functional units (type and number)
 - Memory (port and size)
 - Output: Number of cycles

- **Software Estimation**
 - Input: Instruction set architecture
 - Output: Cycles, program memory, data memory
Partitioning (IITD approach)

- SUIF based infrastructure
- Hardware estimation
 - Input
 - C function
 - HMDES: Machine description (FU, memory and latency)
 - Methodology
 - Data flow graph
 - List scheduling estimates

- Software Estimation
 - Architecture supported: ALPHA, PISA
Partitioning

- Application Profiling
 - GCC Compiler
 - Gprof: function level profiling
 - Gcov: line by line profiling
 - Intel’s compiler
 - VTune performance analyzer
Prototyping (Leon Based)

- **Leon**: A Sparc based microprocessor core
 - RTL level VHDL
 - Instruction slot available

- **Co-design Possibilities**
 - Hardware can access registers and memory
 - No communication overhead
 - Decoder design of processor effected
 - Hardware and processor has shared memory
 - Less communication overhead
 - Hardware has local memory and communication is by BUS
 - Communication overhead,
 - Least interference with Leon core
Prototyping (Commercial FPGA)

- **Xilinx support for Hardware-Software codesign**
 - Available core
 - Microblaze (Softcore)
 - PowerPC Hardcore
 - Software support
 - EDK (Embedded Design Kit)
 - Simulation and synthesis support for co-design
 - Instruction extension in microblaze is possible
 - Various cores are available with EDK

- **Altera support for hardware-software codesign**
 - NIOS based system
 - GUI support, Instruction extension to NIOS
Prototyping (Possible Student projects)

- **Image Processing**
 - Image kernels (DCT, equalization, histogram)

- **Scientific application**
 - Crypro – factoring algorithm
 - Linear equation solver