This book is provided in digital form with the permission of the rightsholder as part of a
Google project to make the world's books discoverable online.

The rightsholder has graciously given you the freedom to download all pages of this
book. No additional commercial or other uses have been granted.

Please note that all copyrights remain reserved.
About Google Books

Google’s mission is to organize the world’s information and to make it universally
accessible and useful. Google Books helps readers discover the world’s books while
helping authors and publishers reach new audiences. You can search through the full
text of this book on the web at hffp://books.qgoogle.com/

http://google.co.in/books?id=XEk2ueVxwIQC

Digitized by GOOS[Q

Digitized by GOOS[Q

Contents

1 Exponential Algorithms................, 1
1.1 Independent Setcoeuuniieineeenneeennneennneennn, 2
1.2 Chromaticnumber......... i, 6
1.2.1 Three-coloringc.ouveeuineenneeenneennnennnn. 7
1.3 Domatic partition....... ..ottt 8
1.4 The traveling salesman problem, 10
1.5 SeLCOVEL vttt e i e 11
1.6 Dominating Set......c.ovviiuuniiiinitiineieinneennneeenn. 12
1.7 SUDSELSUIM .. vvvvnt ettt ittt iiiianeeeeeenenns 15
1.8 Problemsoounnniiii i e 16
2 Graph Classesoviiiiintiiin ittt 19
2.1 Perfect graphs 20
2.2 COgraphS .ottt e 23
221 COtrEeS .ottt ittt it i it s 25
2.2.2 Finding cliquesin cographsccvviin... 25
2.3 Distance-hereditary graphs.............ooiiiiiiiiiit 26
2.3.1 Decomposition trees for DH-graphs 28
2.3.2 Feedback vertex set in DH-graphs.................... 29
2.4 Chordal graphs.........uuiiiiiiiiii it 31
2.4.1 CliQUe treesS. .ottt ettt 35
2.4.2 Algorithms for independent set, clique and vertex
coloring in chordal graphs, 37
2.5 Interval graphs.......c..uuiiiiiiiiii i 38
2.6 Permutation graphscoeiumuiiiiiiiiiinnennn 41
2.6.1 Cliques and independent sets in permutation graphs ... 43
2.7 Problems . ..ottt e 44
3 Fixed-parameter Algorithms 49
3.1 VerteX COVET vttt ittt ittt iie i iae i eennn 52

3.2 Akernel for VErteX COVET .. vivtintn ittt it 55

VI Contents
3.3 A better search-tree algorithm for vertex cover............... 58
3.4 Minimum fill-in ... 60
3.5 Homogeneous coloring of perfect graphs.................... 63
3.6 Problemsvniit i e 66
4 Decomposition Treesccuuuuuiiiiiiiininnenenennnnn. 69
4.1 Graph minors .. cvvettine ettt et eiaeeeneeaenns 69
4.2 Parameterized feedback vertex setoiiiiiin. 74
4.3 Treewidthcooiiunii i e e 75
4.3.1 An algorithm for treewidth two...................... 79
4.3.2 KTT@ES ..ottt ittt et e e 81
4.3.3 An O(nk*2) algorithm for treewidth 82
4.3.4 Mazximum clique in graphs of bounded treewidth 85
4.3.5 Chromatic number for graphs of bounded treewidth.... 86
4.4 Rankwidth....... .o 87
4.5 Monadic second-orderlogic............iiiiiiiiit 92
4.6 Problemsoouuiunii i e 94
Referencescoiiunuiiiitiiiiiii ittt 99

1

Exponential Algorithms

Let’s face it: lots of interesting problems on graphs are NP-complete. In this
chapter we have a look at exponential algorithms.

Let’s look at an example. Suppose we want to solve the maximum indepen-
dent set problem on some graph G = (V, E). An independent set is a subset
M C V of vertices such that no two vertices in M are adjacent. The maximum
independent set problem asks for an independent set M in G such that |[M]| is
maximal. An answer to the problem is called a ‘maximum’ independent set.
We denote the cardinality of a maximum independent set in G with (G).

An easy way to solve the problem is as follows. First, make a list of all sub-
sets of vertices. Next, check which subsets are independent sets. Then count
the number of vertices in each independent set and take the largest one.

What is the time-complexity of this algorithm? Let n be the number of
vertices in the graph G. Obviously, there are 2™ subsets of vertices. Let M
be a subset. We need to check if M is an independent set. We assume that
the graph G is represented by an adjacency matrix A. Then we can check if
two vertices are adjacent in constant time. Since M has O(n?) pairs we can
check if M is an independent set in O(n?) time. Thus our algorithm runs in
O(n?-2™) time. In the next section we show that we can do better.

When we are dealing with exponential algorithm we don’t care so much
about the polynomial factors in the time-bound. The O*-notation neglects the
polynomial factors. So instead of O(n? - 2™) we write O*(2™).

The O*-notation is pretty useful. For example, suppose our graph G is
represented by adjacency lists. That is, for each vertex x in G there is a linked
list L(x) of its neighbors. Now, to check if two vertices x and y are adjacent
we need to check if y appears in the list L(x) or not. In the worst case L(x)
contains n — 1 vertices, so checking if y is in this list takes more than constant

2 1 Exponential Algorithms

time. (Of course, we can construct the adjacency matrix A in O(n?) time and
then proceed as before.)

If we use the O*-notation then we don’t need to worry about such details.
Let p(n) be some polynomial, for example p(n) = 10 - n°. Suppose we can
check if any subset M is an independent set in at most p(n) time. Then the
algorithm described above runs in O(p(n) -2™) = O*(2"™) time.

1.1 Independent set

An independent set M in a graph G = (V,E) is maximal if any vertex in
V \ M has at least one neighbor in M. Moon and Moser! have shown that
any graph with n vertices has at most 3™/ maximal independent sets. Notice
that a graph which is the union of Z triangles achieves this bound.

There are algorithms that list all the maximal independent sets with poly-
nomial delay. That means that there exists some polynomial p(n) such that
the algorithm spends at most p(n) time before it generates the next (or the
first) independent set. For example, the algorithm of Tsukiyama, et al., takes

O(nm) time per maximal independent set, where n and m are the num-
ber of vertices and edges in the graph.? These two results yield the following
theorem.

Theorem 1.1. There exists an O*(1.4422™) algorithm that solves the maximum
independent set problem on a graph G, where n is the number of vertices in G.

Proof We use an algorithm which lists all maximal independent sets in G in
O(p(n) - 3™/3) time for some polynomial p(n). Notice that

O(p(n)-3™3) = 0*(3™3) = O*(1.4422™).

This proves the theorem. O

Of course, this algorithm is much better than the O*(2"™) algorithm that
we started with. In the rest of this section we show that we can still do a little
bit better.

1 J. W. Moon and L. Moser, On cliques in graphs, Israel Journal of Mathematics 3
(1965), pp. 23-28.

2 8. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm for generating
all the maximal independent sets, SIAM Journal on Computing 6 (1977), pp. 505—
517.

1.1 Independent set 3

Let x be a vertex of G. As usual we use the notation N(x) for the set of
neighbors of a vertex x. The degree of x is [N(x)|. We also use the notation
N[x] for the closed neighborhood of x, which is

N[x] = N(x) U{x}

Let x be a vertex in G. There are two types of independent sets, namely
those that contain x and those that do not contain x. Consider a maximum
independent set M. The next two lemmas show how to reduce the graph in
each of the two cases.

Lemma 1.2. Let M be a maximum independent set in G and let x ¢ M. Then
M is a maximum independent set in G — x.

Proof The graph G — x is the subgraph of G induced by V \ {x}. Let M be a
maximum independent set in G and let x ¢ M. Then M is an independent set
in G —x.

Of course, any independent set in G — x is also an independent set in G.
Thus G — x cannot have an independent set M’ with |[M’| > |M]| since this
contradicts the assumption that M is a maximum independent set in G.

This proves the lemma. O

Lemma 1.3. Let M be a maximum independent set in G and let x € M. Then
M\ {x} is a maximum independent set in G — N[x].

Proof The graph H = G — N[x] is the subgraph of G induced by V \ N[x].

Let M be a maximum independent set in G and assume that x € M. Notice
that M \ {x} is an independent set in G — N|[x].

Suppose that H has an independent set M’ which is larger than M \ {x}. Since
M’ is an independent set in G — N[x], M’ contains no neighbors of x. Thus
M’U{x}is an independent set in G which is larger than M and this contradicts
the assumption.

This proves the lemma. O

In other words, Lemmas 1.2 and 1.3 show that, for any vertex x, a maxi-
mum independent set M can be derived from a maximimum independent set
in G — x or from a maximum independent set in G — N[x].

The algorithm builds a rooted binary tree T as follows. The root of T cor-
responds with the graph G. If the graph has only one vertex, then T consists
of the root only. Otherwise, choose a vertex x in G. The root has two children.

4 1 Exponential Algorithms

The left child is the root of a binary tree which corresponds with the graph
G — x. The right child is the root of a binary tree which corresponds with the
graph G — N[x].

Our algorithm computes a maximum independent set in G as follows. If
G has only one vertex then «(G) = 1. Otherwise, the algorithm recursively
computes the maximum independent set in the left subtree and in the right
subtree. By the two lemmas above,

a(G) =max { (G —x), 1+ (G — N[x]) }. (1.1)

We need to make a remark here. If x is the only vertex in G then G — x is
not a graph since, by definition, a graph has at least one vertex. (The ‘empty
graph’ is the graph without any edge.) In Formula (1.1), if V = {x} then we
define «(G —x) = 0. A similar situation occurs when x is adjacent to all other
vertices, i.e., when N[x] = V. In that case we define «(G — N[x]) = 0.

For example, assume that the graph G is a clique. A clique is a subset C
of vertices such that every pair of vertices in C is adjacent. In other words, a
clique in the graph is an independent set in the complement G of the graph G
and vice versa.

Since G is a clique, any maximal independent set in G has only one vertex.
Thus G has exactly n maximal independent sets. In this case, every pair of
vertices in G is adjacent, thus N[x] = V for any vertex x. If x is the only vertex
in G then «(G — x) = 0 and otherwise «(G — x) = 1.

In order to obtain a good timebound we like to reduce the graph in at least
one of the two branches as much as possible. One branch only removes the
vertex x and this reduces the graph by one vertex. The other branch removes
[N[x]| vertices from the graph. To make this graph as small as possible we
choose the vertex x such that it has the largest degree.

Lemma 1.4. Let G be a graph and assume that every vertex of G has degree at
most 2. Then a maximum independent set in G can be computed in linear time.

Proof Since every vertex has degree at most 2, the graph is the union of a
collection of paths and cycles.

To compute the maximum independent set of G we can compute the maxi-
mum independent set in each of the (connected) components of G and add
them up. We leave it as an exercise to check the following claims, for example
by using (1.1).

The length of a path or cycle is the number of edges in the path or the cycle.
An isolated vertex in G is a vertex without neighbors.

1.1 Independent set 5

(1) If Cis a cycle of length 2k then «(C) = k.
(2) If Cis acycle of length 2k + 1 then «(C) = k.

(3) If Pis a path of length 2¢ > 0 then «(P) = ¢+ 1.

(4) If Pis a path of length 2 4+ 1 > 0 then «(P) = ¢+ 1.

Thus, in order to compute «(G) it suffices to compute the lengths of the com-
ponents of G, and this can be done in linear time. O

We now change the algorithm a little bit, as follows. As long as there exists
a vertex x in the graph with degree at least three, then the algorithm chooses
such a vertex to build the tree T. When, at some point, a reduced graph H
has no more vertices of degree more than two then the algorithm uses the
linear-time algorithm described in Lemma 1.4 to compute o(H).

Let T(n) be the worst-case timebound that the algorithm needs to com-
pute «(G) for a graph G with n vertices. Then, by the Formula (1.1) and by
Lemma 1.4 we have the following recurrence relation for T(n).

TM) KT —1)+T(n—4)+ O(n+m). (1.2)

Perhaps you wonder why we write T(n — 4). If x is a vertex of degree i then
the Formula (1.1) says T(n —i— 1) instead of T(n — 4). However, notice that
T(n) is a non-decreasing function (see Exercise 1.3), and since the degree of
x is at least three

i3 = Tm—-1i-1)<T(n—4).

It is an easy exercise to check that T(n) < w™ - p(n), where p(n) is some
polynomial and w is the largest real root of the equation

wt=w?+1.
Some calculations yield w &~ 1.3803. This proves the following theorem.

Theorem 1.5. There exists an O*(1.3803™) algorithm which solves the maxi-
mum independent set problem on a graph G, where n is the number of vertices
in G.

Remark 1.6. The technique that we used is sometimes called a ‘pruned search
tree technique.” Pruning means that the search tree is cut short. In our case
the leaves of the search tree are graphs in which every vertex has degree at
most two. There are many ways to prune the search tree further (see, e.g.,
Exercise 1.2). It is one of the well-known techniques that are used in the
design of exponential algorithms.

6 1 Exponential Algorithms

Remark 1.7. Very often the timebound for an exponential algorithm follows
from a recurrence relation like Formula (1.2). If you want to study exact al-
gorithms it’s a good idea to obtain some basic knowledge about solving recur-
rence relations.

Remark 1.8. The best time-bound for an algorithm that solves the maxi-
mum independent set problem seems to be Robson’s algorithm.® This al-
gorithm uses exponential space. Robson claims that he improved his algo-
rithm such that it runs in O*(1.1844™). This algorithm uses a computer-
generated case analysis with thousands of different cases. Recently, Fomin and
Kratsch developed an algorithm for maximum independent set which runs in
0*(1.2786™).* This algorithm uses only polynomial space.

1.2 Chromatic number

Definition 1.9. The chromatic number of a graph G is the minimal number of
colors needed to color the vertices of G such that no two adjacent vertices in G
have the same color.

Usually, one denotes the chromatic number of a graph G by x(G).

The chromatic number problem is one of the most studied problems in
graph algorithms. The problem is NP-complete for graphs in general. Even
the problem to color a planar graph with three colors is NP-complete. (By
the 4-color theorem every planar graph can be colored with four colors, but
checking if a planar graph can be colored with three colors is NP-complete.) In
this section we look at an exact algorithm for the chromatic number problem.

Consider a coloring of a graph G = (V, E) with k colors. Consider a set T of
vertices that all have the same color. Then, by definition, T is an independent
set. Notice also that we may assume that T is maximal. This can be seen as
follows. Suppose T is contained in a maximal independent set T'. Then we
can re-color the vertices of T\ T such that all the vertices of T’ have the same
color. Thus we obtain a coloring of G with k colors and now T’ is maximal.
This proves that the chromatic number of G is determined by the following
formula.

X(G)=1+4min {1+x(G—T)|T is a maximal independent set in G }. (1.3)

When G is an independent set then V— T = & and then G — T is not a graph.
In that case we define x(G —T) = 0.

3 J. M. Robson, Algorithms for maximum independent sets, Journal of Algorithms 7
(1986), pp. 425-440.
4 F. Fomin and D. Kratsch, Exact exponential algorithms, Springer, 2010.

1.2 Chromatic number 7

Recall the result of Moon and Moser: every graph with n vertices has at
most 3™/3 maximal independent sets and these can be listed in O(p(n)-3™/3)
time, where p(n) = n¢ is some polynomial (in Tsukiyama’s algorithm ¢ < 3).

Our algorithm considers all possible subsets S of vertices in G and it colors
G[S]. Here, G[S] is the graph induced by S. The subsets are processed in order
of increasing cardinality. Thus, when S is considered by the algorithm, all
the subsets of S have already been colored. When S has ¢ vertices, then the
algorithm lists all the maximal independent sets in G[S] in O(p(¢) -3%/3) time.

By Formula (1.3) the algorithm computes x(G[S]) in O(p(£) - 3%/3) time,
since all the values of
G[S]—T=GI[S\T]
were determined earlier (because S\ T C S), for all maximal independent sets
T in G[S].

When G has n vertices, then there are (Te‘) subsets S with £ vertices. This
shows that our algorithm has a running time proportional to

> (3)pos<pm (3)3 = s+ 3

£=0 £=0

An easy calculation shows that 1 + 31/3 ~ 2.4422 and this proves the
following theorem.

Theorem 1.10. There exists an O*(2.4422™) algorithm to compute the chro-
matic number of a graph G, where n is the number of vertices in G.

Remark 1.11. Notice that this algorithm uses exponential space.

Remark 1.12. Recently, some improvements were obtained by Bjorkland, et
al.> They show that the chromatic number problem can be solved in O*(2™).

1.2.1 Three-coloring

In this section we consider the problem whether x(G) < 3 for a graph G.
Lawler describes the following algorithm, which is a pruning of the search
tree.®

Consider a 3-coloring of G. Notice that the graph induced by vertices of
any two colors is bipartite. A graph is bipartite when it has a 2-coloring.

5 A. Bjérklund, T. Husfeldt and M. Koivisto, Set partitioning via inclusion-exclusion,
SIAM Journal on Computing 39 (2009), pp. 546-563.

% E. L. Lawler, A note on the complexity of the chromatic number problem, Informa-
tion Processing Letters 5 (1976), pp. 66-67.

8 1 Exponential Algorithms

Lawler’s algorithm is very simple. Generate all maximal independent sets
in G and check if G — S is bipartite for some maximal independent set S. It is
easy to see that one can check if a graph is bipartite in linear time. Thus the
time needed to check if a graph G can be colored with three colors is simply
the time needed to list all the maximal independent sets, i.e., O*(1.4422™).

Theorem 1.13. There exists an O*(1.4422™) algorithm which checks if a graph
G with n vertices can be colored with three colors.

Remark 1.14. Until now, the best algorithm for solving the 3-coloring problem
is an algorithm by Eppstein.” This algorithm runs in O*(1.3289™).

1.3 Domatic partition

Definition 1.15. A dominating set in a graph G = (V,E)isaset D C V of
vertices such that every vertex x € V \ D has at least one neighbor in D.

In other words, a set D C V is a dominating set in G = (V, E) if and only if
N[x]ND # & for every vertex x € V,

where N[x] is the closed neighborhood of x.

By definition, if G = (V,E) is a graph, then V # @. It follows that the
empty set is not a dominating set in G. On the other hand, for any graph
G = (V, E), the set V is a dominating set. Also, any maximal independent set
in G is a dominating set.

The dominating set problem asks for a dominating set of minimal cardi-
nality. Usually, one denotes the minimal cardinality of a dominating set in G

by v(G).

Remark 1.16. 1t is easy to see that the dominating set problem can be solved
in O*(2™) time, by simply testing every subset of V. In Section 1.6 we show
that the problem can be solved in O*(1.7088™). In their recent book, Fomin
and Kratsch improve this. They show that the dominating set problem can be
solved in O*(1.5259™) time.®

7 D. Eppstein, Improved algorithms for 3-coloring, 3-edge-coloring, and constraint
satisfaction, Proceedings of the 12" ACM-SIAM Symposium on Discrete Algorithms
SIAM, 2001.

8 Corollary 6.11 in: F. Fomin and D. Kratsch, Exact exponential algorithms, Springer,
2010.

1.3 Domatic partition 9

The dominating set problem is NP-complete. Notice that it is easy to check
whether a set D is a dominating set in G or not, namely, simply check if each
vertex x € V \ D has a neighbor in D. Since there are 2™ subsets of V, there
is an easy O*(2™) algorithm which solves the dominating set problem.

Definition 1.17. A domatic partition of a graph G = (V, E) is a partition
{ Dl) L) Dk }

of V such that each D; is a dominating set in G.

Remark 1.18. The set {D,..., Dy} is a partition of V if

(i) foreach1 < i< k,D; # @, and
(i) forall 1 <i<j < k,DiND; =&, and
(i) Uk Dy = V.

The domatic partition problem asks for a domatic partition of the graph
with a maximal number of dominating sets.

The domatic partition problem is NP-complete. In this section we show
that the domatic partition problem can be solved in O*(3™) time on graphs
with n vertices.

Let G = (V,E) be a graph and let X C V be some subset of vertices. An
X-partition is a partition
{ Dl) L) DZ }

of X such that each D; is a dominating set in G. Notice that there can be an
X-partition only if X is a dominating set in G.

If X is a dominating set in G then let f(X) denote the maximal £ for which
there is an X-partition into £ dominating sets. If X is not a dominating set then
let f(X) = 0. Notice that f(V) solves the domatic partition problem.

Our algorithm computes the maximal ¢ for which there is an X-partition
into ¢ dominating sets for each X C V.

Consider subsets X of V in order of increasing cardinality. Let X be a subset
of cardinality k. We assume that for all subsets X’ with |X’| < |X| the algorithm
has determined f(X'). By definition, if X is not a dominating set then f(X) = 0.
Otherwise,

f(X)=max {1+ f(X\Y)|YC X andYisadominating setin G}. (1.4)

This simple observation gives us the following theorem.

10 1 Exponential Algorithms

Theorem 1.19. There exists an O*(3™) algorithm which solves the domatic par-
tition problem for graphs with n vertices.

Proof The timebound is upperbounded by

S ()5 () -5 ()=

k=0 £=0

O

Remark 1.20. Notice that the algorithm described above uses exponential
space. The result can be improved to O*(2.8718™) time and polynomial
space.’

1.4 The traveling salesman problem

Suppose there are n cities, numbered 1,...,n. A traveling salesman has to
visit the cities 1,...,n. He starts in city 1 and travels through the remaining
cities in arbitrary order and at the end he returns to city 1. The distance
between city i and j is denoted by d(i, j). The problem is to minimize the total
travel length.

The traveling salesman problem is NP-hard.

For each subset S C {2,...,n} and for each i € S let f(S,1i) denote the
length of a shortest path that starts in city 1, then visits the cities in S \ {i} in
some order and then stops in city 1i.

We now have

(5, 1) = {d(.l’” o is=land g
min { f(S\{i},j) +d(,1) |j € S\{i}} otherwise.

The following theorem was proved by Held and Karp.°

Theorem 1.21. There exists an O*(2™) algorithm which computes the mini-
mum length of a traveling salesman tour.

° Proposition 8 in: A. Bjérklund, T. Husfeldt and M. Koivisto, Set partitioning via
inclusion-exclusion, SIAM Journal on Computing 39 (2009), pp. 546-563.

10 M. Held and R. Karp, A dynamic programming approach to sequencing problems,
Journal of SIAM 10 (1962), pp. 196-210.

1.5 Set cover 11

Proof The algorithm processes the subsets S C {2,...,n}in order of increas-
ing cardinality.

The values f(S, i) can be computed by Formula (1.5) in O(n) time. Notice that
the solution to the traveling salesman problem is given by the value of

min { f({2,...,n}j)+d(, 1) [2<j<n } (1.6)

There are O(n-2™) pairs (S, 1) where S is a subset of {2,...,n}and i € S. The
computation of each f(S,1i) takes O(n) time and so the overall complexity is
bounded by O(n? - 2™) = O*(2™) time. O

Remark 1.22. As far as I know, there is no algorithm that solves the traveling
salesman problem in time O*(c"™) for ¢ < 2.

1.5 Set cover

Let U be a finite set and let n = |U|. Let
S={Sl) ey Sm}

be a collection of subsets of U. A subset 8’ C $ is a cover for U if

U s=u

Ses’

The set cover problem asks for a cover 8’ such that [§'| is minimal.

Of course, a cover can exist only if every element of U is an element of at
least one subset S;.

Consider the sets
8i ={S1,...,Si} fori=1,...,m.

Let W C U and let f(U,1) be the minimal cardinality of a cover for W
with subsets from 8;. If
uwe s

Ses;
then define f(U,1) = co.

The values f(UW, 1), for W' C Uandi=1,...,m, can be computed via the
following formulas. First consider the case i = 1. Then

12 1 Exponential Algorithms

U C
f(U’,l]:{l if W C S, and 1.7

oo otherwise.

The value of f(U,1+ 1) follows from the following formula.

f(u/ i+1) = [e e} isteg.‘_HS # U/, and
’ * | min { f(W,1),1 + f(W\ Si+1))} otherwise.
(1.8)

Here is the proof that Formula (1.8) is correct. Either the set S;; is used
to cover U and then U’ \ S;,; has to be covered with sets from §;, or the set
Si+1 is not used in the cover, and then U’ has to be covered with subsets from
S;.

Theorem 1.23. There exists an O*(2™) algorithm for the set cover problem.

Proof The algorithm processes the subsets W C U in order of increasing car-
dinality. For each U’ the algorithm computes the values f(U’,1) for increasing
i=1,..., mvia the Formulas (1.7) and (1.8).

There are O(m - 2™) pairs (W,1). First consider Formula (1.7). It can be
checked in O(n) time if U is covered by S; or not. Therefore, the values
f(W, 1) can be determined in O(n - 2™) time.

Now consider the computation of f(Ll’,1+ 1) via Formula (1.8). In this case
the algorithm needs to compute U’ \ S;i;1, which takes O(n) time. Thus the
total time complexity is bounded by O(nm - 2™) = O*(2™).

This proves the theorem. O

1.6 Dominating set

Recall Definition 1.15. Let G = (V, E) be a graph. A dominating set for G is a
set D C V such that every vertex x € V \ D has at least one neighbor in D.
The dominating set problem asks for a dominating set of minimal cardinality.

The dominating set problem can be reduced to the set cover problem as
follows. Let U = V and let

S={N[x]l|xeV]

A solution for this set cover problem corresponds to a solution for the domi-
nating set problem. This can be seen as follows.

Assume that

1.6 Dominating set 13

8 ={NKl|xeV'}

is a solution for the set cover problem, for some V' C V. Then V' is a domi-
nating set in G because every vertex y € V' \ V' is covered by some set in §'
and so y € N[z] for some z € V.

To see the converse, let D be a dominating set in G. Then let
8 ={N[x]|xeD}

Since every vertex y € V \ D has a neighbor in D, there exists some z € D
such that y € N[z]. Thus 8§ covers V.

Let I be a maximal independent set and let W = V'\ L. Our algorithm finds
for every subset D’ C W an extension &(D’) C I such that D’ U &(D’) is a
dominating set and such that |£(D’)| is minimal. Notice that, when we have
an extension for every D’ C W, then this solves the domination problem,
namely by taking the set D’ C W which minimizes

ID’U E(D’)| = [D’| + [E(D')I.

Let D/ C W and define
I(D') ={ x € I | x has no neighbor in D’ }.
Then any extension of D’ contains I(D’).
The vertices that have no neighbors in D’ U I(D’) are the vertices of
X={xeW|N[xn (D' UlD)) =2} (1.9

To obtain a minimum extension of D’ we need to add a minimum set Q of
vertices from I\ I(D’) such that every vertex of X has a neighbor in Q.

We now show how to compute minimum extensions.
Order the vertices of I, say

I={x%1,...,%t)
Let XCW.For{=1,...,tdefine
Ie={x, ..., x¢ }.
For each X C Wand for £ =1,...,1, define f(X, £) as a subset Q,(X) C I,

such that every vertex of X has a neighbor in Q¢(X) and such that |Q¢(X)| is
minimal. We obtain formulas similar to (1.7) and (1.8).

14 1 Exponential Algorithms

First consider the case £ = 1.

i C
f(X,1) = {x1} 1fX_N(x1],and (1.10)
I otherwise.
For f(X, £+ 1) we have the following recurrence relation.
e = d 060 IF 0, O] < 1+ X\ NOxes),)
f(X\ N(xe+1),8) U{x¢s1} otherwise.
(1.11)

According to Theorem 1.23 the sets f(X,¢) for XC Wand¢=1,...,tcan
be computed in O*(2/W) time.
Now let D’ C W. Then the cardinality of an extension &(D’) of D’ is
[€(D)] = [I(D") U (X,)],
where t = |I| and X is defined by Formula (1.9).

It follows that the time for solving the dominating set problem is bounded
by some polynomial factor times

2Wiy 3 ('W|> =2/t (1.12)

/
prow D'l

Theorem 1.24. There exists an O*(1.7088™) algorithm which solves the domi-
nating set problem on graphs with n vertices.

Proof. We consider two cases. First assume that |I| > an, for some
0.2271 < « < 0.22711.

Then, according to Formula (1.12), a minimum dominating set can be com-
puted in
O*(z(l—oc]n) — O*(20.7729n) — O*(17088n]

Now assume that |[] < an. Then y(G) < || £ an. In that case we test every
subset of V with cardinality at most an. Notice that

n n
< .
(om) (0.2271 1n)

By Stirling’s formula one can obtain that

oan
Z (?) < 2M®n where h(a) = —alog, & — (1 — &) log,(1 —).
i=0

Some calculations show that 2M®)n 20.7729n < 1 7088™.

This proves the theorem. O

1.7 Subset sum 15

1.7 Subset sum

Let’s do an easy one.

Let ai,...,an be n natural numbers, thus each a; is a positive integer.
Let also K be a natural number. The subset sum problem asks if there is a set
SC{l,...,n}such that } ;. ga;=K.

The subset sum problem is NP-complete.

Theorem 1.25. There exists an O(K - n) algorithm which solves the subset sum
problem.

Proof Define
Si={1,...,1i} fori=1,...,n.

Fori=1,...,n, our algorithm computes a set

0; ={0 <t < K|there exists some I C S; such that Z ai=t}
iel

Thus Q; contains all the sums that can be made with numbers from{a;,..., ai}
and which are at most K.

First consider i = 1. Then,

i <
Ql={{0, a; } ifa; €K, and (1.13)

{0} if a; > K.

Next, the set Q;1 can be computed via the following formula.

Qi1 =0Q;U{0< t< K |thereexistsat € Q; such thatt' + aj;; =t}
(1.14)

This can be seen as follows. Let t’ be a sum which can be made with numbers
from {aj,...,ai}. Then t' and t' + ai+; can be made with numbers from

{a1,..., ai11)

To see the converse, let t be a sum that can be made with numbers from
{ai,...,aiy1}. If aj;1 is used to obtain the sum t, then t' = t — a;41 can be
made with numbers from {ag,..., ai}. If aj;1 is not used to obtain the sum t
then t is a sum with numbers from {a;, ..., ai}.

It is easy to see that Q,, can be computed via Formulas (1.13) and (1.14) in
O(K - n) time. The answer to the subset problem is YEs if K € Q,, and NO
otherwise. O

16 1 Exponential Algorithms
1.8 Problems

1.1. In the maximum independent set algorithm we used a linear-time algo-
rithm for the case where every vertex in G has degree at most two. Suppose
that, instead, we keep branching until every vertex has degree at most one.
Show that this changes Formula (1.2) on Page 5 into

TM) < TM—-1)+Tn—2)+ O(n+m). (1.15)

Show that the solution of Formula (1.15) is the n® Fibonacci number times
some polynomial. Use the exact formula for the Fibonacci numbers to show
that this gives

T(n) = 0*(1.6181™).

1.2. Let x and y be two vertices of a graph G and assume that
N[x] € N[yl.
Notice that this implies that x and y are adjacent. Show that
«(G) = x(G —y).
This is one of the prunings that is used in the algorithm of Fomin and Kratsch.

1.3. Let T(n) be the worst-case time-bound for any algorithm which solves the
maximum independent set problem on graphs with n vertices. In this exercise
we show that

Tm—1)< T(n) foralln > 1.

Suppose that T(n — 1) > T(n) for some n > 1. We obtain a contradiction
as follows.

(a) Let G be a graph with n — 1 vertices. Let G’ be the graph obtained from G
by adding an isolated vertex to G. Prove that

a(G') = a(G) + 1.

(b) Show that this proves that the maximum independent set problem for
G can be determined in T(n) time. This contradicts the assumption that
Tn—1) > T(n).

1.4. Find a linear-time algorithm which checks if a graph is bipartite.
1.5. Find an exact algorithm for 4-coloring.

1.6. Check Formula (1.4) on Page 9.

1.7. Check Formula (1.5) on Page 10.

1.8 Problems 17

1.8. Let G = (V, E) be a graph.

(a) A Hamiltonian cycle is a cycle in G which contains all vertices. Show that
there is an O*(2™) algorithm which solves the Hamiltonian cycle problem.
Hint: Reduce the Hamiltonian cycle problem to the traveling salesman
problem. For any two vertices i and j in G define

..)1 if{i,j}e€ E,and
d(i,j) = {oo L) ¢ E. (1.16)

(b) A Hamiltonian path is a path in G which contains all vertices. The differ-
ence with the Hamiltonian cycle problem is that the two endpoints of the
path are not necessarily adjacent. Design an O*(2™") algorithm that solves
the Hamiltonian path problem on graphs with n vertices.

1.9. Check the Formulas (1.10) and (1.11) and show that the sets f(X, ¢), as
defined by these formulas, can be computed in O*(2/W1).

1.10. The subset sum problem described in Section 1.7 is NP-complete. The-
orem 1.25 on Page 15 shows that it can be solved in O(K - n) time. Does this
prove that P = NP?

Digitized by GOOS[Q

2

Graph Classes

In this chapter we have a close look at a few important graph classes and we
look at some NP-complete problems that become polynomial when the graphs
are restricted to these.

A graph class, or a class of graphs, is simply a set of graphs. For example
§={G | Gis a planar graph } (2.1)

is the class of all planar graphs. A class of graphs may be finite or infinite. The
class above, of all planar graphs, is of course infinite (it contains an infinite
number of elements).

Obviously, many NP-complete problems can become polynomial when one
restricts the graphs to some special graph class. For example, the four-coloring
problem is NP-complete but it can be solved trivially when one restricts the
graphs to the class of planar graphs.

For algorithmic problems one considers usually only infinite classes of
graphs. The reason is that for finite classes of graphs most problems can be
solved in constant time by exhaustive search.

Usually, one restricts the research on infinite classes of graphs to classes
that are hereditary. A class G of graphs is hereditary if G € G implies that every
induced subgraph of G is also in §G. For example, the class of planar graphs is
hereditary, since if G is planar then so is every induced subgraph of G. All the
classes that we study in this chapter are hereditary.

When one studies some graph class G then the membership of graphs in
§G is an important issue. One refers to this as the recognition problem for the
class G:
Input: A graph G.
Question: Is G € §?

20 2 Graph Classes

For example, the planar graphs are recognizable in linear time, but there
are many classes of graphs for which the recognition problem is not clear. For
example, consider the class

H ={ G| G is aplanar graph and x(G) < 3 }.

The recognition problem for H is NP-complete, since the 3-coloring problem
is NP-complete for planar graphs.

A lot of research is done on subclasses of perfect graphs. All classes that
we study in this chapter are perfect. We introduce the class of perfect graphs
in the next section.

2.1 Perfect graphs
Definition 2.1. A graph G is perfect if for every induced subgraph H of G
x(H) = w(H),
where x(H) is the chromatic number of H and w(H) is the clique number of H.
If one wants to color a graph G such that adjacent vertices have different

colors, then all vertices of a clique in G must receive different colors. Thus for
all graphs we have

X(G) 2 w(G). (2.2)

For perfect graphs equality holds, not only for the graph itself but also for
all induced subgraphs of it. Notice that the class of perfect graphs is hereditary,
simply by definition.

Perhaps we should emphasize this. Assume that for some graph G,
x(G) > w(G).
For example, if G is an odd cycle of length more than 3 then
x(G)=3 and w(G)=2.

It is easy to construct a graph G’ such that x(G’) = w(G’) by adding a clique
of size at least x(G) to G. The graph G’ is of course not perfect, since G is an
induced subgraph of G’ and equality in (2.2) does not hold for G.

Since the structure of G’ is not essentially different from the structure of G
it cannot be expected that there are many problems that are easier to solve for

2.1 Perfect graphs 21

G’ than for G. For example, a dominating set for G’ consists of a dominating
set in G plus one vertex in the clique that is added to G. Thus the dominating
set problem for G’ is just as hard as it is for G.

The complement of a graph G is the graph G with the same set of vertices
as G, and with two vertices in G adjacent if and only if they are not adjacent
in G. Concerning perfect graphs one of the first and most important theorems
was proved by Lovész in 1972.1

Theorem 2.2 (The perfect graph theorem). The complement of a perfect
graph is perfect.

Thus, if G is perfect then for every induced subgraph H of G we have that
x(H) = k(H), (2.3)

where k(H) = x(H) is the smallest number of cliques that partition the set of
vertices and «(H) = w(H) is the cardinality of a largest independent set in H.

In Exercise 2.2 we ask you to prove that bipartite graphs are perfect. By
Theorem 2.2 also the complements of bipartite graphs are perfect. (Can you
prove this without using Theorem 2.2?)

Another important example of perfect graphs is the set of linegraphs of
bipartite graphs. The linegraph L(G) of a graph G has as its vertices the
edges of G and as its edges those pairs of edges in G that share an endpoint.
As an introductory example, let us prove that linegraphs of bipartite graphs
are perfect.

Lemma 2.3. Let G be bipartite. Then L(G) is perfect.

Proof. First of all, it is sufficient to prove Equation (2.3) for L(G), since re-
moving an edge from a bipartite graph leaves it bipartite. (That is, the class
of linegraphs of bipartite graphs is hereditary.)

Notice that an independent set in L(G) is a set of edges in G of which no two
share an endpoint, i.e.,
«(L(G)) =v(G),

where v(G) is the cardinality of a maximum matching in G.

One of the earliest results in graph theory is the Theorem of Kénig-Egervary:?

! L. Lovész, Normal hypergraphs and the perfect graph conjecture, Discrete Mathe-
matics 2 (1972), pp. 253-267.
2 D. K8nig, Graphen und Matrizen, Math. Lapok 38 (1931), pp. 116-119.

22 2 Graph Classes

If G is bipartite then v(G) = 7(G), where T(G) is the cardinality of a
smallest vertex cover in G.

A vertex cover is a set C of vertices such that every edge in G has at least one
endpoint in C.

Let C = {x1,...,xs} be a vertex cover of G. The set L; of edges that have the
vertex x; in common forms a clique in L(G). Since C is a vertex cover, every
edge in G is in some L;. Thus {Ly,...,Ls} is a clique cover in L(G). Possibly
some pairs L; and Lj are not disjoint, but it is easy to change the clique cover
into a partition of the vertices of L(G) into s cliques.

Thus, if C is a minimum vertex cover then

since, by (2.2), a(H) < k(H) for any graph H.
Thus «(L(G)) = k(L(G)) and by Theorem 2.2 this proves the lemma. O

Obviously, if a graph G is perfect then it cannot have an induced odd
cycle of length at least five. By Theorem 2.2, when G is perfect it cannot
have the complement of an induced cycle of length at least five as an induced
subgraph. Claude Berge conjectured in 1961 that this characterizes perfect
graphs.® The proof of the conjecture sent a shock wave through the graph
theory community.*

Definition 2.4. Let G be a graph. A hole in G is an induced cycle of length at
least five. An antihole in G is an induced subgraph of G which is isomorphic to
the complement of a cycle of length at least five. An odd hole in G is a hole of
odd length. An odd antihole is an antihole of odd cardinality.

Theorem 2.5 (The strong perfect graph theorem). A graph is perfect if and
only if it has no odd hole and no odd antihole.

Theorem 2.5 was proved using a certain decomposition of the graph into
four basic classes of perfect graphs, namely,

(1) bipartite graphs,

(2) complements of bipartite graphs,

(3) linegraphs of bipartite graphs, and

(4) complements of linegraphs of bipartite graphs.

3 C. Berge, Firbung von Graphen, deren séimtliche bzw. deren ungerade Kreise starr
sind, Wiss. Zeitschr. Martin-Luther Univ. Halle-Wittenberg 10 (1961), pp. 114-115.
4 M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph

theorem, Annals of Mathematics 164 (2006), pp. 51-229.

2.2 Cographs 23

This decomposition theorem for perfect graphs also led to a polynomial
algorithm for recognizing perfect graphs.®

Theorem 2.6. There exists an O(n®) algorithm which tests if a graph with n
vertices is perfect.

One of the reasons for the popularity of perfect graphs is the following
theorem.®

Theorem 2.7. There exist polynomial algorithms to compute w(G) and x(G)
for graphs G that satisfy w(G) = x(G).

The Shannon capacity of the complement of a graph is a graph parameter
which is sandwiched between the clique number and chromatic number. In
turn, the Lovasz number is sandwiched between the Shannon capacity and
the clique cover number. Thus, if we write ®(G) for the Shannon capacity
and 9(G) for the Lovasz number, then

w(G) = «(G) < O(G) < H(G) < k(G) = x(G). (2.4

The theorem above was proved by showing that the Lovadsz number §(G) of a
graph G is computable in polynomial time.”

2.2 Cographs

One of the most elegant classes of graphs is the class of cographs.

Definition 2.8. A graph G is a cograph if it has no induced P4, which is a path
with four vertices.

*——=—0o0—0

Fig. 2.1. A P, is a path with four vertices. Notice that P, = P,.

By definition, the class of cographs is hereditary, namely, if G has no in-
duced P4 then no induced subgraph of G has an induced Py4.

5 M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vuskovié, Recognizing
Berge graphs, Combinatorica 25 (2005), pp. 143-186.

6 M. Grotschel, L. Lovdsz and A. Schrijver, Polynomial algorithms for perfect graphs.
In (Berge, Chviétal eds.): Topics on perfect graphs, North-Holland Math. Stud. 88
(1984), pp. 325-356.

7 L. Lovdsz, On the Shannon capacity of a graph, IEEE Transactions on Information
Theory 25 (1979), pp. 1-7.

24 2 Graph Classes

Lemma 2.9. If G is a cograph then G is perfect.

Proof Let G be a cograph. We show that G nor G has a hole (an induced cycle
of length at least 5).

The graph G has no hole, otherwise it has an induced P4. Notice that P4 is
isomorphic to P4. Thus if G is a cograph then G is also a cograph. Thus G has
no antihole.

Since G has no hole it has no odd hole and the same holds true for G. The
claim now follows from Theorem 2.5. O

Theorem 2.10. A graph G = (V, E) is a cograph if and only if for every induced
subgraph H of G one of the following properties holds.

(a) H has only one vertex, or
(b) His disconnected, or
(¢) H is disconnected.

Proof. Notice that P4 is isomorphic to P4. This implies that if G is a cograph
then G is a cograph.

A graph with less than four vertices is a cograph. Therefore, since the class
of cographs is hereditary, it is sufficient to prove that G or G is disconnected
when G is a cograph with at least two vertices.

It is easy to check that the claim holds true when G has at most three vertices.

Assume that G has at least four vertices. Assume also that G is connected.
Let x be a vertex of G. By induction G — x or the complement of G — x is
disconnected.

Assume that G — x is disconnected and let Cq,..., C; be the components of
G — x. Assume that x has a neighbor and a nonneighbor in C;. Then there
exist vertices a and b in C; such that [a,b,x] is an induced P3 in G. Since
G is connected, x has a neighbor ¢ in C,. Now [a,b,x,c] is an induced P4
which is a contradiction. Thus x is adjacent to all other vertices in G. Then G
is disconnected, since {x} is a component of G.

Assume that the complement of G — x is disconnected. (We now ‘copy’ the
argument above.) Let C/,...,C} be the components of the complement of
G — x. Assume that x has a neighbor o’ and a nonneighbor b’ in C). Since
G[C}]is connected and since there is no induced P4, a’ and b’ are nonadjacent
in G.

If x is adjacent to all vertices in C, then G is disconnected with a component
C5. Thus x has a nonneighbor ¢’ in C,. Now [x, a’,¢’,b’] is an induced Py,
which is a contradiction.

Thus we may assume that x is not adjacent to any other vertex in G, and so G
is disconnected.
This proves the theorem. O

2.2 Cographs 25
2.2.1 Cotrees

Let G be a cograph. By Theorem 2.10 we can build a decomposition tree for
the graph G.

The decomposition tree is a pair (T,f) where T is a binary tree and f
is a bijection from the leaves of T to the vertices of G. Each internal node,
including the root, is labeled with a ® - or an @-operator. Consider an internal
vertex t. Let V; and V, be the two sets of vertices in G that are mapped to the
leaves of the left - and right subtree. If t is labeled with ® then every vertex
of V; is adjacent to every vertex of V,. If t is labeled by & then no vertex of
V1 is adjacent to any vertex of V.

Let G be a cograph. We can build a decomposition tree as follows. If G has
only one vertex, the tree consists of a single leaf, which is mapped by f to the
vertex of G.

Otherwise, by Theorem 2.10, either G or G is disconnected.

Assume that G is disconnected and let Cy,...,C¢ be the components of
G. Group the components into two nonempty sets, say A and B. Recursively,
build decomposition trees (Tq, f1) and (T, f5) for G[A] and G[B]. Create a new
root, and make it adjacent to the root of T; and to the root of T,. Label the
new root by &.

_ Assume that G is disconnected. In that case, build a decomposition tree
(T, f) for G as described above. Change all labels from & to ® and vice versa.

A decomposition tree for cographs as described above is called a cotree.
Notice that a graph G is a cograph if and only if it has a cotree (see Exer-
cise 2.6).

Corneil, Perl and Stewart proved the following theorem.®

Theorem 2.11. There exists a linear-time algorithm that recognizes cographs.
When G is a cograph then this algorithm builds a cotree for G.

2.2.2 Finding cliques in cographs

To illustrate the usefulness of cotrees, we show how to use it for the compu-
tation of the clique number.

Theorem 2.12. There exists a linear-time algorithm that computes the clique
number w(G) of a cograph G.

8 D. Corneil, Y. Perl and L. Stuwart, A linear recognition algorithm for cographs, SIAM
Journal on Computing 14 (1985), pp. 926-934.

26 2 Graph Classes

Proof let G = (V, E) be a cograph. First, the algorithm builds a cotree (T, f)
for G. By Theorem 2.11 this step takes linear time.

First assume that G has only one vertex. Then w(G) = 1.

Now assume that [V| > 2. For an internal node p of T let V; and V; be the two
sets of vertices that are mapped to the leaves in the left - and right subtree.
Let Gy = G[V;] for i€ {1,2}and let

Gy = G[V3 U V4.

First assume that the label of p in T is ®. Then G, is the join of G; and G,
that is, every vertex of G; is adjacent to every vertex of G,. Notice that

w(Gp) = w(Gy1) + w(Gy). (2.5)

Now assume that the label of p is @. Then G, is the union of G; and G, that
is, no vertex of G; is adjacent to any vertex of G,. Now

w(Gp) =max{ w(Gy), w(Gz) } (2.6)

Assume that p is the root of T. The algorithm recursively computes w(G;) and
w(Gy). Since p is the root, G, = G and w(G) follows from Formulas (2.5)
and (2.6).

The amount of work in each internal node takes O(1) time. So, in total the
algorithm runs in time O(n), where n = |V|, since the depth of the cotree is at
most n. In other words, when the cotree is a part of the input this algorithm
runs in O(n) time.

This proves the theorem. O

2.3 Distance-hereditary graphs

Fig. 2.2. A graph is distance hereditary if it has no induced house, hole, domino or
gem.

Edward Howorka introduced distance-hereditary graphs.’

° E. Howorka, A characterization of distance-hereditary graphs, The Quarterly Journal
of Mathematics 28 (1977), pp. 417-420.

2.3 Distance-hereditary graphs 27

Definition 2.13. A graph G is distance hereditary if for every pair of nonadja-
cent vertices x and y and for every connected, induced subgraph H of G which
contains x and vy, the distance between x and y in H is the same as the distance
between x and y in G.

In other words, a graph G is distance hereditary if for every nonadjacent
pair x and y of vertices, all chordless paths between x and y in G have the
same length. (A path P is chordless if G[P] is a path; that is, P has no short-
cuts.)

Notice that, by definition the class of distance-hereditary graphs is hered-
itary.

There are various characterizations of distance-hereditary graphs. One of
them states that a graph is distance hereditary if and only if it has no induced
house, hole, domino or gem.

Distance-hereditary graphs are also characterized by the property that ev-
ery induced subgraph has either an isolated vertex, or a pendant vertex, or a
twin. An isolated vertex is a vertex with no neighbors. A pendant vertex is a
vertex with exactly one neighbor. A twin is a pair of vertices x and y such that
either

N(x) =N(y) or N[x]=N[yl

Let G be distance hereditary and let G’ be the graph obtained from G by
adding an isolated vertex or a pendant vertex, or a twin x of some vertex y in
G. In Exercise 2.10 we ask you to check that G’ is also distance hereditary.

Theorem 2.14. Distance-hereditary graphs are perfect.

Proof Let G = (V, E) be distance hereditary. Then G has no hole. It remains
to show that G has no odd antihole.

Let x € V be a vertex which is either isolated, or a pendant adjacent to some
vertex y, or a twin of some vertex y. Consider G — x. By induction we may
assume that G — x has no odd hole or odd antihole.

Assume that G has an odd antihole H. Let V' be the vertex set of H. Then
x € V'. Since H is connected, x is not isolated. Since H is biconnected, x is
not a pendant vertex. Thus x is a twin of some vertex y. Notice that y ¢ V' is
not a vertex of H, since H has no twins. Let

V"= (VI Uy}

Then V" induces an odd antihole in G — x which is a contradiction.
This proves the theorem. O

28 2 Graph Classes
2.3.1 Decomposition trees for DH-graphs

A decomposition tree for a graph G = (V,E) is a pair (T, f) consisting of a
rooted binary tree T and a bijection f from V to the leaves of T.

When G is distance hereditary it has a decomposition tree (T, f) with the
following three properties.'®

Consider an edge e = {p, c} in T where p is the parent of ¢. Let W, C V
be the set of vertices of G that are mapped by f to the leaves in the subtree
rooted at c. Let Q. C W, be the set of vertices in W, that have neighbors in
G — W.. The set Q. is called the twinset of e. The first property is that the
subgraph of G induced by Q. is a cograph for every edge e in T.

Consider an internal vertex p in T. Let ¢; and ¢, be the two children of p.
Let e; = {p,c,} and let e; = {p, cy}. Let Q; and Q, be the twinsets of e; and
e2. The second property is that there is a join- or a union-operation between
Q1 and Q. Thus either all vertices of Q; are adjacent to all vertices of Qa, or
they are not adjacent to any vertex of Q,. As in cotrees, there is a label & or
® at the vertex p in T that indicates which operation is performed on Q; and

Qa.

Remark 2.15. Notice the difference with the labels in cotrees. The ®- or ®-
operator in the decomposition tree for distance-hereditary graphs works on
the twinsets, and not, as in the cotrees, on all the vertices of W,, and W,,.

Let p be an internal vertex of T which is not the root. Let e be the line
that connects p with its parent. Let Q. be the twinset of e. Let ¢; and ¢, be
the two children of p in T. Let e; = {p, ¢} and let e; = {p, cs}. Let Q; be the
twinset of e;, for i € {1, 2}. The third, and final, property is that

Qe=2 or Qe=Q; or Qe=Qz or Q.=Q;UQ.,.

The vertex p in T has an extra label that indicates which of these four opera-
tions that define Q. occur.

Notice that the first property is a consequence of the other two. As an
example, notice that cographs are distance hereditary. A cotree is a decompo-
sition tree for a cograph with the three properties mentioned above.

Lemma 2.16. Let G be distance hereditary. Then G has a decomposition tree as
described above.

10 p, Hammer and F. Maffray, Completely separable graphs, Discrete Applied Mathe-
matics 27 (1990), pp. 85-99.

2.3 Distance-hereditary graphs 29

Proof Let G = (V, E) be distance hereditary. We use the property that G has
an isolated vertex, a pendant vertex or a twin.

Let x be an isolated vertex, a pendant vertex with neighbor y, or a twin of a
vertex y. Let G’ = G — x. By induction G’ has a decomposition tree (T’, ') as
described above. We now show how to construct a decomposition tree (T, f)
for G.

First assume that x is a twin of a vertex y. The vertex y is mapped by f' to
some leaf ¢ of T'. Create two leaves ¢; and ¢, and let £ be the parent of {;
and £, in T. Let f map x to ¢; and y to {5, and let f be the same as ' for
all other vertices z € V' \ {x, y}. If x and y are adjacent, then the new internal
node £ receives an ®-operator and otherwise it receives an @-operator. Finally,
update the twinsets by adding x to all twinsets that contain y. The edges {¢, {1}
and {¢, £} have twinsets {x} and {y}.

Assume that x is a pendant vertex with a neighbor y. The tree T and the map
f are obtained in the same manner as described above. The internal node ¢
receives an ®-operator since x and y are adjacent. Finally, x appears in only
one twinset, namely in the twinset of the new edge {¢,¢;}in T.

Assume that x is isolated in G. Choose an arbitrary vertex y in V \ {x}. Create
the tree T and the map f as above. In this case, the vertex x appears in no
twinset.

This proves the lemma. O

When G is distance hereditary then a tree-decomposition for G with the
three properties described above can be obtained in linear time.

2.3.2 Feedback vertex set in DH-graphs

To illustrate the usefulness of the decomposition tree for DH-graphs we show
how it is used to solve the feedback vertex set problem.

Definition 2.17. Let G = (V,E) be a graph. A set F C V is a feedback vertex set
if G — F has no cycles, that is, G — F is a forest.

Let G be a graph. The feedback vertex set problem asks for a feedback
vertex set in G of minimal cardinality. The feedback vertex set problem is
NP-complete.

A graph G is a join of two graphs G; and G, if G is obtained from the
graphs G; and G, by making every vertex of G; adjacent to every vertex of
Go.

A graph G is the union of two graphs G; and G, if

30 2 Graph Classes

1. the vertex set of G is the union of the vertex sets of G; and G,, and
2. the edge set of G is the union of the edge sets of G; and G,.

Lemma 2.18. If G is the join of G, and G, and if F is a feedback vertex set of G
then
[Vi—F| <1 or |V,—F <1 orboth.

Proof Otherwise G — F contains a 4-cycle. O

Lemma 2.19. Let G be a cograph which is the join of cographs G; and G,. Let
F be a feedback vertex set of G. Assume that |V; — F| = 1. Then G, — F is an
independent set.

Proof Otherwise G — F contains a triangle. O

Theorem 2.20. There exists a linear-time algorithm that solves the feedback
vertex set problem on distance-hereditary graphs.

Proof Let G = (V, E) be distance hereditary. First construct a decomposition
tree (T, f) for G. This takes linear time.

Extend the tree with a new root v and make the parent of the old root r this
new root 1’. Define the twinset of the edge {r, '} as &. For ease of description,
call this new decomposition tree again (T, f).

Let p be an internal vertex of T which is not the root v’ and let ¢; and ¢, be the
two children of p. Let W; and W, be the two sets of vertices that are mapped
to the leaves in the subtrees at c; and ¢, respectively and let W = W; U W,
Let Q; € W; and Q; C W, be the two twinsets of {p, c;} and {p, c,}. The ®
or @ label at p indicates whether there is a join or a union of the two twinsets

Q1 and Qo.

Let e be the edge in T that connects p with its parent p’ (possibly p’ = ') and
let e; = {p,c;i} for i € {1,2}. The twinset Q. is either one of Q; or Q,, or it is
Q1 U Qg, or it is the empty set.

In our dynamic programming algorithm we maintain the following four values
for each edge e in T with twinset Q:

(1) the minimal cardinality of a feedback vertex set of G[W];
(2) the minimal cardinality of a feedback vertex set F of G[W] such that

Q —F induces an independent set;

2.4 Chordal graphs 31
(3) the minimal cardinality of a feedback vertex set F of G[W] such that
[Q—F =1 and
(4) the minimal cardinality of a feedback vertex set F of G[W] with

QCF

It is easy to see that these four values for an edge e = {p,p’} in T can be
obtained from the values at the edges {p, c1} and {p, ¢} (see Exercise 2.11).

The minimal cardinality of a feedback vertex set for G can be read from
the first value i.e., Item (1) above, at the root-edge {r, 1’} of the binary tree-
decomposition.

The completes the proof. O

2.4 Chordal graphs

One of the oldest classes of graphs that have been studied in great detail is
the class of chordal graphs.

Definition 2.21. A graph is chordal if it has no induced cycle of length more
than three.

For example, the class of chordal graphs contains all trees.

Notice that, by definition, the class of chordal graphs is hereditary. Let’s
first prove that chordal graphs are perfect.

Theorem 2.22. Chordal graphs are perfect.

Proof. Let G = (V,E) be chordal. Then, by definition, G has no holes. We
show that G has no antiholes. Since Cs = Cs any antihole must have at least
six vertices.

Notice that any cycle of length at least six has an induced 2K,, which is the
complement of a 4-cycle. Thus G has no antihole. O

Our first characterization of chordal graphs is in terms of minimal separa-
tors.

Definition 2.23. Let G = (V,E) be a graph and let x and y be nonadjacent
vertices. A set
SCVA\{xy}

is an x, y-separator if x and y are in different components of G — S.

32 2 Graph Classes

Definition 2.24. An x,y-separator S is a minimal x, y-separator if no proper
subset of S is an x, y-separator.

Definition 2.25. A set S is a minimal separator if there exist nonadjacent ver-
tices x and y such that S is a minimal x, y-separator.

Remark 2.26. Notice that one minimal separator may properly contain an-
other minimal separator. For example, consider a 4-cycle [a,b,c,d]. Add a
pendant vertex e adjacent to c. Then {a, c} is a minimal b, d-separator and {c}
is a minimal a, e-separator.

Fig. 2.3. This graph has a minimal separator contained in another one.

Theorem 2.27. A graph is chordal if and only if every minimal separator is a
clique.

Proof Assume that G = (V, E) is chordal. Let S be a minimal x, y-separator
for nonadjacent vertices x and y in G. Let C, and C, be the components of
G — S that contain x and y.

Notice that every vertex of S has at least one neighbor in C, and at least one
neighbor in C. To see this, assume some z € S has no neighbors in Cy. Then
S\ {z} is also a minimal x, y-separator. This contradicts the minimality of S.

Now assume that S is not a clique. Then S contains two vertices a and b that
are not adjacent. Consider two chordless paths P, and P, from a to b. One
with internal vertices in Cyx and the other with internal vertices in Cy.

A chordless path is a path without a chord, that is, the path is induced.
(In Exercise 2.13 we ask you to prove that Py and Py exist.) The two paths
together form an induced cycle of length at least four.

This proves the theorem. O

Our second characterization of chordal graphs is in terms of simplicial
vertices.

2.4 Chordal graphs 33

Definition 2.28. Let G = (V, E) be a graph. A vertex x in G is simplicial if N(x)
induces a clique in G.

Theorem 2.29. A graph is chordal if and only if every induced subgraph has a
simplicial vertex.

Proof Let G = (V,E) be a graph. First assume that every induced subgraph
of G has a simplicial vertex. Let Q be a subset of vertices such that G[Q] is a
cycle of length at least four. Then G[Q] is an induced subgraph of G without
simplicial vertex. This is a contradiction.

Now assume that G is chordal. Let x be a vertex such that the largest compo-
nent C of G — N[x] is as large as possible. Let S C N(x) be the set of neighbors
of x that have a neighbor in C. Then S is a minimal x,y-separator for any
y € C. Thus S is a clique.

We claim that every vertex of
V\ (CUS)

is adjacent to all vertices in S.

Clearly, x is adjacent to every vertex in S since S C N(x). Assume that there
exists a vertex
ze V\(SUCU{x})

which is not adjacent to some vertex s € S. Then C U {s} is contained in a
component of G — N[z] since G[C] is connected and s has a neighbor in C.
Thus G — N[z] has a component which is larger than C. This contradicts the
choice of x.

Let
G'=G-(Suq).

By induction we may assume that G’ has a simplicial vertex z. Let N’(z) be
the neighborhood of z in G’. Then N’(z) is a clique. Notice that

N(z) = N'(z) US.

Now N(z) is simplicial, since

(i) Sis aclique, and
(ii) N’(z)is a clique, and
(iii) every vertex of N’(z) is adjacent to every vertex of S.

This proves that z is simplicial in G. O

34 2 Graph Classes

Definition 2.30. Let G = (V, E) be a chordal graph. A perfect elimination or-
dering for G is an ordering of the vertices

(x1,.. ., %n]

such that fori=1,...,n the vertex x; is simplicial in the subgraph of G induced
by {xi,...,%Xn}

Theorem 2.31. A graph is chordal if and only if it has a perfect elimination
ordering.

Proof This is an immediate consequence of Theorem 2.29. O

In Exercise 2.17 we ask you to prove that a perfect elimination ordering
in a chordal graph can be obtained in linear time. One of the oldest and eas-
iest algorithms to do this is an algorithm of Tarjan and Yannakakis.!! Their
algorithm computes an ordering [x1,. .., Xn] of the vertices in any graph. This
ordering is a perfect elimination ordering if and only if the graph is chordal.
Their paper describes first a linear-time algorithm that computes an order-
ing and next it describes a linear-time test to see if the ordering is a perfect
elimination ordering.

Their algorithm computes an ordering as follows. It labels the vertices one
by one. In each step, the unlabeled vertex that has the most labeled neighbors
is labeled next. Ties are broken arbitrarily (so, the first vertex to get a label
is arbitrary). This produces the perfect elimination ordering backwards, i.e.,
the last vertex that gets a label is the first vertex in the perfect elimination
ordering.

Lemma 2.32. Every chordal graph has at most n maximal cliques, where n is
the number of vertices in the graph.

Proof Let G = (V, E) be a chordal graph. Let x be a simplicial in G. The only
maximal clique in G that contains x is N[x]. Thus all other maximal cliques in
G are maximal cliques in G — x. The claim follows by induction. O

11 R, Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,
SIAM Journal on Computing 13 (1984), pp. 566-579.

2.4 Chordal graphs 35
2.4.1 Clique trees

Chordal graphs have a special decomposition tree, which is called a clique
tree. These clique trees can be defined in two ways. We describe both.

Definition 2.33. Let G = (V,E) be a graph. Let (T,8) be a pair where T is a
tree and 8 is a collection of subsets of V which are in 1-1 correspondence with
the vertices of T. For a vertex iin T Let S; € 8 be the subset that is assigned to
the vertex i.

The pair (T, 8) is a clique tree for G if the following conditions are true.

(a) 8 is the set of maximal cliques in G, and
(b) for every vertex x € V, if x is in two subsets S; and S; then x is in every S;
for which (lies on the path in T from i to j.

In other words, a clique tree for G is a tree of which the vertices represent
the maximal cliques in G such that, for every vertex x in G, the maximal
cliques that contain x form a subtree of T.

Theorem 2.34. A graph is chordal if and only if it has a clique tree.

Proof. First assume that the graph G = (V, E) has a clique tree (T, 8). Let £ be
aleafin T and let S; € 8 be the maximal clique in G which is assigned to .
We claim that S, contains a vertex which is simplicial in G.

Let p be the neighbor of ¢ in T. The cliques S; and S, are maximal cliques in
G, so there must be a vertex
z€ Sp\ Sp.

The maximal cliques that contain z form a subtree of T, by definition of the
clique tree. Since z ¢ S,,, the vertex z is contained only in one maximal clique
S¢ in G. Thus z is simplicial.

Assume that G = (V, E) is a chordal graph. We may assume that G is not a
clique, otherwise we are done. Let S be a minimal separator in G such that |S]
is as small as possible.

Let Cy,...,C¢ be the components of G — S. Since S is a minimal separator,
there are at least two components. We claim that every vertex in S has a
neighbor in each C;. Assume that s € S has no neighbors in Cj.

Let
S" =S\ {s}

Then C; is a component of G — §’. Thus §' is an x, y-separator for a pair
x€C; and vy € U_,C;.

This contradicts the choice of S.

36 2 Graph Classes

Consider clique trees T; for the subgraphs G; of G induced by
CiusS forie{l,...,t}

Since S is a clique, it is contained in a maximal clique M; in G;. We leave it
as an exercise to check that M; # S, since G is chordal.

Construct a clique tree T for G as follows. For i = 2,...,t make the vertex in
T; that represents M; adjacent to the vertex in T; that represents M;.

We prove that this is a clique tree for G. Let x € C;. The maximal cliques that
contain x are all contained in G;i. Thus these form a subtree of T;.

Now let x € S. The cliques in G; that contain x form a subtree of T; and M,; is
one of them. By the construction, all the maximal cliques in G that contain x
form a subtree of the clique tree T for G.

This proves the theorem. O

The other way to describe clique trees is as follows.

Theorem 2.35. A graph G = (V, E) is a chordal graph if and only if it is the
intersection graph of a collection of subtrees of a tree. By that we mean that there
exists a tree T and a collection of subtrees

{TxIxeV}

such that two vertices x and y of G are adjacent if and only if T, and T, have at
least one vertex of T in common.

Proof First assume that G is chordal. Consider a clique tree (T,8) for G. Let
x be a vertex of G. By definition of the clique tree, the maximal cliques in G
that contain x form a subtree T, of T.

Assume that two vertices x and y are adjacent in G. The edge {x,y} is con-
tained in some maximal clique in G. So Ty N Ty #* @.

Assume that x and y are two vertices and assume that p € Tx N Ty. The
maximal clique S, which is assigned to the vertex p in T contains x and y.
Thus x and y are adjacent.

Now assume that G is the intersection graph of a collection of subtrees of a
tree T. Consider a leaf ¢ of T. If £ is not in any subtree Ty, then we may remove
the leaf from T.

If every subtree that contains ¢ contains also the neighbor of £ in T, then we
may remove £ from T.

Finally, assume that there is a tree Ty which consists of the single vertex £. If
y and z are two neighbors of x, then T, and T, both contain ¢, and so y and
z are adjacent. That means that x is a simplicial vertex. Now remove x from
the graph and Ty from the collection of subtrees. It follows by induction that
G has a perfect elimination ordering. By Theorem 2.31, G is chordal.

This proves the theorem. O

2.4 Chordal graphs 37

2.4.2 Algorithms for independent set, clique and vertex coloring in
chordal graphs

Theorem 2.36. There exists a linear-time algorithm to compute a maximum
independent set in chordal graphs.

Proof Let G = (V, E) be a chordal graph. Let s be a simplicial vertex in G.

We first prove that there exists a maximum independent set I in G which
contains s.

To see this, let I be a maximum independent set and assume that s ¢ I. If
N(s)Nnl=g,

then T U {s}is also an independent set, which is a contradiction.

Since s is a simplicial vertex in G, N(s) induces a clique in G. Thus
IN(s)n I =1.

Let u € N(s) N L. Then consider

I'= (I\{u}) U{s}
Then I’ is also a maximum independent set and s € I'.

The algorithm computes a maximum independent set in G as follows. Take
any simplicial vertex s and start with I = {s}. Now let

G’ =G —NIs.

Then G’ is chordal, and by induction there exists a linear time algorithm that
computes «(G’). Then
«(G) =1+ (G).

This proves the theorem. O

Theorem 2.37. There exists a linear-time algorithm that computes w(G) for
chordal graphs G.

Proof Let G = (V, E) be a chordal graph. Then, by Theorem 2.31 on Page 34,
G has a perfect elimination ordering

T=[X1,...,%Xn)

Let
Ni = [N[xi] N {xi,...,%xn])l.

Then
w(G)=max{N;|ie{l,...,n}L

This proves the theorem. O

38 2 Graph Classes

Let G = (V, E) be a chordal graph. Then G is perfect, and x(G) = w(G).
By Theorem 2.37 there exists a linear-time algorithm that computes x(G). An
actual coloring is also very easy to obtain, as we show next.

Theorem 2.38. There exists a linear-time algorithm that computes a vertex col-
oring for G with x(G) colors for chordal graphs G.

Proof Let G = (V,E) be a chordal graph. Let [xq,...,x,] be a perfect elim-
ination ordering for G. We color the vertices of G greedily with w(G) colors
from the color set

Q={1,..., w(G)}

as follows.

For i = n down to 1, color the vertex x; with an arbitrary color from Q that
is not used by vertices in

N(xi) n{Xi+1, cees Xn }' (2-7)

To see that this is possible, notice that the set in Formula (2.7) contains at
most w(G) — 1 vertices. Thus there is a color in QQ available to color x;.

The claim follows by induction. O

2.5 Interval graphs

As far as practical applications are concerned, the class of graphs that steals
the show is the class of interval graphs. Indeed, practical applications range
from archeology, sociology, scheduling classes at school, DNA-sequencing
problems in biology, time-schedules for airliners, et cetera, etc, &tc.

In this section we have a short look at the definition and some of the most
important properties of interval graphs.

Definition 2.39. A graph G is an interval graph if it is the intersection graph

of a collection of intervals on the real line. By that we mean that there is an
interval 1, for every vertex x in G such that two vertices x and y are adjacent in
Gifandonly if I, N1y # @.

Remark 2.40. We only look at finite graphs. Then it is easy to see that we
can have intervals such that no two endpoints coincide. Thus the question
whether the intervals are closed or open is not an issue. Also, we may assume
that all intervals are finite.

2.5 Interval graphs 39

Theorem 2.41. Interval graphs are chordal.

Proof It is not difficult to see that one cannot construct any cycle of length
more than three as the intersection graph of intervals. If one interval I, is
completely contained in some other interval I, then, for the corresponding
vertices x and y in G we have

N[x] C N[yl.

Consider a cycle [x1,. .., xk]. Suppose it has an interval representation. By the
previous observation we may assume that

Lh<lhh<rm<la<r<ly<ry<...,

where ¢; and r; are the left- and right endpoint of the interval I; that repre-
sents xi. Now, [y intersects [; and I_q, but then x; is adjacent to all vertices
in {x1,...,Xk—1}. Thus it is a chordless cycle (that is an induced cycle) only
for k = 3. O

Corollary 2.42. Interval graphs are perfect.

Let G = (V, E) be a graph. An orientation directs every edge {x,y} from x
to y or from y to x. The orientation is transitive if the following holds true for
every three vertices x, y and z. If there is a directed edge (x,y) from x to y
and a directed edge (y, z) from y to z, then x and z are adjacent in G and the
edge {x, z} is directed from x to z.

Definition 2.43. A graph is a comparability graph if it has a transitive orienta-
tion of its edges.

Lemma 2.44. If G is an interval graphs then its complement G is a comparabil-
ity graph.

Proof Let G = (V,E) be an interval graph. Consider an interval model for
G. Let x and y be two nonadjacent vertices in G. Then the interval I, lies
completely to the left, or completely to the right of the interval I,,. Say we
direct the edge {x,y} of G from x to y if I lies to the left or I,,. We claim that
this is a transitive orientation of G.

We need to check that if (x,y) and (y, z) are arcs pointing from x to y and
from y to z, that there is an edge {x, z} and that it is oriented from x to z.

I'm sure you agree that this is obvious: If I lies left of I, and I lies left of I,
then I, lies left of I,. O
Actually, Lemma 2.44 ‘almost’ characterizes interval graphs. Gilmore and

Hoffman proved the following characterization.'?

12 p, Gilmore and A. Hoffman, A characterization of comparability graphs and of in-
terval graphs, Canadian Journal of Mathematics 16 (1964), pp. 539-548.

40 2 Graph Classes

Theorem 2.45. A graph G is an interval graph if and only if G has no induced
4-cycle and G is a comparability graph.

By Theorem 2.41 every interval graph is chordal and by Theorem 2.34 on
Page 35 every chordal graph has a clique tree. We show next that interval
graphs have a clique tree which is a path.!?

Theorem 2.46. An interval graph G has a consecutive clique arrangement, that
is, there is a linear ordering
Mi1,..., M¢]

of the maximal cliques in G such that for every vertex x, the maximal cliques
that contain x form a subsequence.

Proof Consider an interval model for interval graph G = (V,E). Scan the
real line from left to right. At each point w on the real line, consider all the
intervals that contain w. Let

Mw)={xeV|welk}

Then M(w) is a clique in G (possibly empty).

We need to prove the ‘Helly property for intervals,’ that is, if M is a clique in
G then there exists aw € R such that each interval that represents a vertex in
M contains w.

If IM| = 3 then this is easy to check (see Exercise 2.21).

Assume that [M| > 3. Let x and y be two elements of M. Replace the intervals
I and I by I« N I. Each pair of intervals of this new collection intersects,
by the previous observation. By induction, there exists a w € R which is
contained in every interval of this collection. Then w is also contained in
every interval that represents a vertex of M.

We now have that every maximal clique is in the set
{Mw)|weR}.

This defines the linear order of the maximal cliques in G: For each maximal
clique M fix a real number w such that w is in each interval which represents
a vertex of M. By the finiteness of the system, we can choose the real numbers
such that no two maximal cliques are represented by the same real number. If
M(w;) and M(w,) are two maximal cliques, then M(w;) precedes M(w,) if
and only if w; < w,. Obviously, since I is an interval, for every vertex x the
maximal cliques that contain x are consecutive in this ordering. O

13 R. Halin, Some remarks on interval graphs, Combinatorica 2 (1982), pp. 297-304.

2.6 Permutation graphs 41

Definition 2.47. An asteroidal triple {x, y, z}, AT for short, in a graph G is a set
of three pairwise nonadjacent vertices in G such that for every pair of them there
is a path connecting them that avoids the neighborhood of the third.

Remark 2.48. Notice that, if some x,y-path contains no neighbor of z then it
also does not contain z, since z is not adjacent to x nor y.

For example, consider a 6-cycle. Let x, y and z be three vertices that are
pairwise not adjacent. Then {x,y, z} is an asteroidal triple.

Lemma 2.49. Interval graphs are AT-free, that is, they have no asteroidal triple.

Proof Let G = (V, E) be an interval graph. Consider an interval model for G.
take three intervals I, I, and I, which pairwise do not intersect. Then one of
the intervals is between the other two. Say I is left of I, and I, is left of I.

Let P = [x = xq1,...,Xx = z] be an x, z-path. Assume that y € P. Then an in-
terval [; of some vertex x; must intersect I,,. Thus {x, y, z} is not an asteroidal
triple. O

Theorem 2.50. Let G be a graph. The following statements are equivalent.

(a) G is an interval graph.

(b) G is AT-free and chordal.

(c) For every three maximal cliques M1, My and M3 in G there is one that
separates the others. Here we say that M separates My and M3 if My \ M1
and M3 \ M; are contained in different components of G — M.

2.6 Permutation graphs

A permutation diagram is obtained as follows. Let L; and L, be two horizontal
lines in the plane, one above the other. Label n points on the topline and on
the bottom line by 1, 2,...,n. Connect each point on the topline by a straight
linesegment with the point with the identical label on the bottom line. A graph
G is a permutation graph if it is the intersection graph of the linesegments of
a permutation diagram.!* By that we mean that the vertices of the graph G
are the linesegments of the permutation diagram and two vertices in G are
adjacent if the two linesegments cross each other.

If G is a permutation graph then its complement G is also a permutation
graph. This is easy to see; simply reverse the ordering of the points on one of
the two horizontal lines.

14 A. Pnueli, A. Lempel and S. Even, Transitive orientation of graphs and identification
of permutation graphs, Canadian Journal of Mathematics 23 (1971), pp. 160-175.

42 2 Graph Classes

Fig. 2.4. A permutation graph and its permutation diagram

Lemma 2.51. Permutation graphs are perfect.

Proof. It is easy to check that one cannot construct a permutation diagram for
a graph which is a cycle of length more than four. Thus permutation graphs
have no holes.

A permutation graph G can also not have an antihole, since G is also a per-
mutation graph. O

Recall Definition 2.43. A comparability graph is a graph which has a tran-
sitive orientation; so we can direct any edge {x, y} either from x to y or from
y to x such that the directed graph is transitive.

Theorem 2.52. A graph G is a permutation graph if and only if G and G are
comparability graphs.

Proof Let G be a permutation graph. Consider a permutation diagram for G.
Notice this: for any independent set in G the corresponding linesegments are
noncrossing. So they can be ordered left to right, which is of course a transi-
tive ordering. By that we mean that if a linesegment x is left of a linesegment
y and the linesegment of y is to the left of a linesegment z, then the lineseg-
ment of x is left of the linesegment z.

This shows that G is a comparability graph. Then G is also a comparability
graph since the class of permutation graphs is closed under complementa-
tions.

Let G be a graph such that G and G are both comparability graphs. We show
that G is a permutation graph by constructing a permutation diagram.

Let F; and F, be transitive orientations of G and G. We claim that F; + F, is
an acyclic orientation of the complete graph. Otherwise there is a directed
triangle, and so two edges in the triangle are directed according to one of F;

2.6 Permutation graphs 43

and F, and the third is directed according to the other one of F; and F,. But
this contradicts the transitivity of F; or the transitivity of F,.

Likewise, F;! + F, is acyclic. Order the vertices on the topline according to
F; + F2 and the vertices on the bottom line according to Fl_1 + F,. It is easy to
check that this yields the permutation diagram. O

The following characterization of permutation graphs illustrates the rela-
tion of this class of graphs to the class of interval graphs. Consider a collection
of intervals on the real line. Construct a graph of which the vertices are the
intervals and make two vertices adjacent if one of the two intervals contains
the other. Such a graph is called an interval containment graph.

Theorem 2.53. A graph is a permutation graph if and only if it is an interval
containment graph.

Proof Consider a diagram of a permutation graph. When one moves the bot-
tom line to the right of the topline then the linesegments in the diagram
transform into intervals. It is easy to check that two linesegments intersect if
and only if one of the intervals is contained in the other one. This proves that
permutation graphs are interval containment graphs.

Now consider an interval containment graph. Construct a permutation dia-
gram as follows. Put the left endpoints of the intervals in order on the topline
and the right endpoints in order on the bottom line of the diagram. Then one
interval is contained in another interval if and only if the two linesegments
intersect. This proves that every interval containment graph is a permutation
graph. O

Tedder, et al. proved the following theorem.®

Theorem 2.54. Permutation graphs can be recognized in linear time. If G is a
permutation graph then this algorithm can be used to construct a permutation
diagram in linear time.

2.6.1 Cliques and independent sets in permutation graphs

Let G be a permutation graph. Consider a permutation diagram for G. By
Theorem 2.54 this diagram can be computed in linear time.

Let the vertices on the topline be numbered from left to right as 1,...,n.
Let

15 M. Tedder, D. Corneil, M. Habib and C. Paul, Simpler linear-time modular de-
composition via recursive factorizing permutations, Proceedings ICALP’08, Springer,
LNCS 5125 (2008), pp. 634-645.

44 2 Graph Classes

7= 11,70, ..., 7]

be the sequence of numbers as they appear in left to right order on the bottom
line.

Two vertices 1 and j with i < j are adjacent if i appears to the right of j on
the bottom line. Thus a clique in G corresponds with a decreasing sequence
in .

This shows that finding w(G) is equivalent to finding the longest decreas-
ing subsequence in 7. Given the sequence 7t this can be done very efficiently.'®

Let G = (V,E) be a permutation graphs. Then G is also a permutation
graph and «(G) = w(G).

Theorem 2.55. There exist O(nloglogn) algorithms to compute «(G) and
w(G) for permutation graphs G. Here we assume that the permutation 7t is
a part of the input.

2.7 Problems

2.1. Let G be a 5-cycle. Is G perfect?
2.2. A graph G is bipartite if x(G) < 2. Show that G is perfect.

2.3. Prove that a graph G is bipartite if and only if all cycles in G are even. Is
it also true that G is bipartite if and only if all induced cycles are even?

2.4. Let G = (V, E) be a graph. A vertex cover in G is a set C of vertices such
that every edge in G has at least one endpoint in C. Let T(G) be the cardinality
of a smallest vertex cover in G. Prove that

o(G)+ T(G)=n wheren =|V|. (2.8)

2.5. A P;3 is a path with three vertices. Let G be a graph without induced Ps.
Show that G is the union of cliques.

2.6. Show that a graph G is a cograph if and only if it has a decomposition
tree.

2.7. Let G = (V, E) be a graph. Two vertices x and y are twins if either
N[x] = Nyl or N(x)=N(y).

16 J. Hunt and T. Szymanski, A fast algorithm for computing longest common subse-
quences, Communications of the ACM 20 (1977), pp. 350-353.

2.7 Problems 45

(a) Show that every cograph with at least two vertices has a twin.
(b) Show also the converse: If every induced subgraph of a graph G has either
only one vertex, or else has a twin, then G is a cograph.

Hint: Consider a cotree (T, f) of G. Let x and y be two vertices in G that are
mapped by f to two leaves in T that have the same parent in T. Prove that x
and y are twins in G.

2.8. In Section 2.2.2 on Page 25 we showed how to compute the clique num-
ber in cographs in linear time. Devise linear-time algorithm to compute x(G),
x(G) and k(G).

Hint: Use the fact that G is perfect and that G is a cograph.

2.9. Check that the house, hole, domino and gem depicted in Figure 2.2 on
Page 26 are not distance hereditary.

2.10. Let G = (V, E) be distance hereditary and let G’ be the graph obtained
from G by adding one vertex x to G which is either isolated, or a pendant
vertex with a neighbor y € V, or a twin of some vertex z € V. Show that G’ is
distance hereditary.

2.11. Finish the proof of Theorem 2.20 on Page 30 by showing how the four
values, that are mentioned in the proof, are computed for an edge e in the
decomposition tree T.

2.12. Which of the graphs in Figure 2.2 on Page 26 is chordal?

2.13. Finish the proof of Theorem 2.27 by showing that the paths Py and P,
exist.

Hint: There is an a, b-path P, with internal vertices in Cy since a and b both
have a neighbor in C, and G[C,] is connected. You need to show how to get
rid of all the shortcuts.

2.14. Let G be a chordal graph and let S be a minimal x, y-separator for non-
adjacent vertices x and y. Let C, be the component of G — S that contains the
vertex x. Then C, contains a vertex x’ such that

SC N(K).

2.15. Let G = (V, E) be a chordal graph and let S C V be a separator in G.
Show that S is a minimal separator if and only if there exist two components
C; and C; in G — S such that every vertex of S has at least one neighbor in C;
and in C,, that is,

Vses N(s)NC1 # @ and N(s)NCy # 2.

2.16. Consider a tree T. If T is not a clique then T has two simplicial vertices
which are not adjacent. Prove the analogue for chordal graph: If G is a chordal
graph and if G is not a clique, then G has two nonadjacent simplicial vertices.

46 2 Graph Classes

2.17. Design an algorithm to compute a perfect elimination ordering of a
chordal graph in linear time.

Hint:Number the vertices from n to 1 in decreasing order. For the next ver-
tex to number, choose one that has the largest number of neighbors that are
already numbered, braking ties arbitrarily.

This exercise is not easy; perhaps you like to have a look at Tarjan and Yan-
nakakis’ paper.

2.18. The proof of Theorem 2.37 is perhaps a bit sketchy. Rub the sleep out
of your eyes and make sure that you agree with all the details.

2.19. Show that the coloring algorithm of Theorem 2.38 on Page 38 can be
implemented to run in linear time.

2.20. Design a polynomial-time algorithm which check if a graph has an as-
teroidal triple.

Hint: Try all triples {x,y,z} of pairwise nonadjacent vertices in a graph G.
Notice that there is an x, z-path that avoids N(y) if and only if x and z are
both contained in a component of G — N(y). What is the timebound of your
algorithm?

2.21. Consider three intervals I, I, and I on the real line. If any two have a
nonempty intersection then

LnNnhbnls #o.

2.22. Prove that the Helly property also holds for a collection of subtrees of a
tree. That is the following. Let T be a tree, and let 8 be a collection of subtrees
of T such that

V1,8 V1,es T1 and T, have at least one vertex of T in common.

Then there is a vertex of T which is a vertex of every subtree of 8.

2.23. Design an efficient algorithm to compute a feedback vertex set on inter-
val graphs. What is the timebound for your algorithm? Extend the algorithm
such that it works on chordal graphs.

Hint: Use the clique tree. How many vertices can a clique have that are not
in the feedback vertex set?

2.24.Let G = (V,E) be a chordal graph. By Theorem 2.35 there exist a tree
T and a collection of subtrees

T={Tx|xeV}

such that and two vertices x and y in G are adjacent if and only if T,N Ty # @.
We say that G is the intersection graph of 7.
Make a subtree T, for every edge e = {a,b} € E in G by defining

2.7 Problems 47
Te =TaUTp.
Consider the intersection graph G* of the subtrees
E={T.|leeEl

Prove that G* is the square of the linegraph L(G) of G. By that we mean that
the vertices of G* are the edges of G, and two vertices e; and e, of G* are
adjacent if and only if

Jece e1Ne#2 and exNe# Q.
This proves that, if G is chordal then G* is also chordal.

2.25. Prove that every cograph G is a permutation graph by showing that
there exists a permutation diagram for G.

2.26. Are permutation graphs Al-free?

2.27. Consider a circle C drawn in the plane. A chord of C is a straight line-
segment that connects two points on C. A circle graph G is the intersection
graph of a collection of chords in a circle. By that we mean that every vertex
of G is represented by a chord and that two vertices are adjacent in G if and
only if the two chords intersect. The diagram that represents G is called a
circle diagram.

(i) Show that every permutation graph is a circle graph.

(ii) Prove that every distance-hereditary graph is a circle graph.
Hint: Use the fact that a graph is distance-hereditary if and only if every
induced subgraph has an isolated vertex, or a pendant vertex, or a twin.
Prove by induction that a distance-hereditary graph has a circle diagram.

Digitized by GOOS[Q

3

Fixed-parameter Algorithms

For most NP-complete problems one can attach a parameter to the problem
and consider the parameterized version of the problem.

For example, consider the clique number w(G) of a graph G. The clique
number problem asks to find the maximal value w for which the graph G has
a clique with w vertices.

Suppose that, instead, we ask the following.

Given a graph G and some number k.
Is w(G) > k?

Any algorithm, exponential or not, that solves this parameterized clique
number problem, can be used to solve the clique number problem: Just check
for k = 1,...,n whether G has a clique of k vertices, and determine the
largest k for which it has.

Just coming up with some parameter like that doesn’t help much, of
course. Well, maybe it does, a little bit. Suppose that w(G) is at most two.
For example, any bipartite graph has clique number at most two, so there are
lots of them.

It is easy to check if w(G) > 3: just run the following algorithm.

1. If G is an independent set then w(G) = 1. Of course, it takes only linear
time to check if G has an edge or not.

2. When G has at least one edge, then the next step is to check if G has a
triangle {x, y, z}. If so, then w(G) is at least three. If not, then w(G) < 3.

To check if G has a triangle, we can check for every three vertices x, y and
z if {x,y, z} is a triangle or not. There are O(n?) triples to check. If we use
the adjacency matrix to represent G we can check if a given triple {x, y, z}

50 3 Fixed-parameter Algorithms

is a triangle or not in constant time, since we only need to check if the
three pairs {x, y}, {x, z} and {y, z} are three edges or not. So we can check
in O(n?) time if w(G) > 3 or not.

Of course, we can generalize this. We can check in O(k? - n*) time if
w(G) > k or not. Namely, to check if G has a clique with k vertices we can
try all subsets with k vertices and see if one of them is a clique. In a graph G
with n vertices there are O(nk) subsets with k vertices. Let Q = {x1,..., Xk}
be such a subset. To check if Q is a clique, check if every pair in Q is adja-
cent. There are O(k?) pairs, so, when we use the adjacency matrix to check
adjacencies, this algorithm can be implemented to run in O(k? - n¥) time.

The above algorithm shows that for each CONSTANT k, the algorithm
to check if w(G) > k runs in polynomial time. So we have a polynomial
algorithm to check if a graph G has a clique with three vertices, or a clique
with 10 vertices, or even if G has a clique with one million vertices. In fact,
for each CONSTANT k, the algorithm to check if w(G) > k runs in polynomial
time.

Of course, we can say that the algorithm is polynomial only for constant k.
An algorithm that runs in O(n™), or an algorithm that runs in O(nv™) is not
polynomial. Even an algorithm that runs in O(nl°81°8(™)) is not polynomial.

The inverse Ackermann function a(n) is one of the slowest growing func-
tions that exist. For example, when n is the number of atoms in the universe,
then «(n) < 5 (at least, that's what people think.) No computer can ever be
built that contains more components than the number of atoms in the uni-
verse. An algorithm that runs in O(n*(™)) is not polynomial, since «(n) is
a growing function of n. For any practical situation this algorithm runs in
O(n®), but it is not polynomial. That’s where the ‘theoretical’ in ‘theoretical
computer science’ kicks in; it takes us where no man has gone before.

When we really want to run that algorithm to check if w(G) > 10° then
we run into trouble. I mean, a polynomial-time algorithm that runs in O (n1%)
is not very appetizing! So, “Big Deal!” you say, and you're right, so far it is not
a big deal.

Here’s a definition.

Definition 3.1. A parameterized problem (P,X) is fixed-parameter tractable if
there exist

1. some function f : N — R, and
2. some constant c, and
3. some algorithm that solves (P, k) and that runs in O(f(k) - n¢) time.

3 Fixed-parameter Algorithms 51
For example, when
f(k)=2% and c=2

a fixed-parameter algorithm to solve the parameterized problem (P, k) runs
in O(2% - n?).

Notice the difference with an algorithm that runs in O(k? - n¥). In a fixed-
parameter algorithm the parameter k does not appear in the exponent of
n. An algorithm that runs in O(k? - n¥) is not a fixed-parameter algorithm
because the k appears in the exponent of n.

Which of the two timebounds, O(k? - n¥) or O(2¥ - n?) would you prefer?
For constant k, say k = 10°, both algorithms run in polynomial time. Also,
in both cases, the algorithms are practical only for small values of k. When
k = y/n, the algorithms are not polynomial.

To compare them, let’s fix k = 10. The fixed parameter algorithm runs in
time O(21° . n?), so actually it is a quadratic algorithm. The other algorithm
runs in O(100 - n'%). I think everybody agrees, the fixed-parameter algorithm
is better, unless we are fooled, for example by some crazy constant that is
hidden in the big O.

An example of a parameterized problem (P, k) is (w(G), k) and it asks if
w(G) > k. Or, another example of a parameterized problem is whether G
has a dominating set with at most k vertices, that is, (y(G), k) is the problem
that asks if y(G) < k. One more example is the problem (yx, k) which asks if
x(G) < k.

Notice that you have to be a bit careful with the sign; sometimes you
want to maximize the cardinality of some subset and sometimes you want to
minimize it. The question whether there is a vertex coloring of G with at least
k colors makes little sense. As long as you have enough vertices you can give
each vertex a different color; a graph with n vertices has an n-coloring.

In this chapter we look at some problems for which there are fixed-
parameter algorithms. Not every problem is like that. For example, it is
unlikely that the parameterized clique number problem (w(G), k) is fixed-
parameter tractable. It can be shown that,

unless P = NP, there is no fixed-parameter algorithm that solves
the parameterized clique number problem (w(G), k) on graphs.

Unless P=NP, any algorithm that solves (w(G), k) will have a running time
where the k appears in some way in the exponent of n.

52 3 Fixed-parameter Algorithms

The book by Downey and Fellows examines which problems have a fixed-
parameter algorithm.! The book contains a list of problems that are fixed-
parameter tractable, and a list of problems that are not fixed-parameter
tractable unless P=NP.

It is not always easy to tell. As in the usual NP-completeness theory one can
show that some parameterized problem (P, k) is not fixed-parameter tractable
by reducing it to some other parameterized problem (Q, k’).

Suppose it is known that some parameterized problem (Q, k’) has no fixed-
parameter solution. To reduce a problem (P, k) to (Q, k’) one first reduces P
to Q in polynomial time. Furthermore, the reduction has to be so that there is
some function that connects the parameters k and k/, say k = g(k’). Just as in
ordinary NP-completeness proofs, we now need that (P, g(k’)) has a solution
if and only if (Q, k') has a solution.

Now suppose we have an algorithm that solves (P, k) in time O(f(k) - n¢)
for some function f and some constant c¢. Then a parameterized reduction as
above solves (Q, k') in time O(f(g(k’))-h(n)¢) where h is the polynomial that
reduces P to Q. Since we know that (Q, k') has no fixed-parameter solution
unless P=NP, any fixed-parameter solution for (P, k) implies that P=NP.

Notice that the difference with the ordinary NP-completeness reductions
is the function that relates the parameters. People who are familiar with NP-
completeness proofs will have little trouble doing similar proofs for parame-
terized problems.

We show a very easy example of a parameterized reduction at the start of
the next section.

3.1 Vertex cover

Definition 3.2. Let G = (V,E) be a graph. A vertex cover for G is a set S of
vertices such that every edge in G has at least one endvertex in S.

The vertex cover problem asks for a vertex cover of smallest cardinality.

The vertex cover problem is of course equivalent to the independent set
problem.

Lemma 3.3. Let G = (V, E) be a graph. Then S is a vertex cover if and only if
V\ S is an independent set.

! R. Downey and M. Fellows, Parameterized complexity, Springer-Verlag, 1999.

3.1 Vertex cover 53

Proof Let S be a vertex cover. By definition, there is no edge with both ends
in V\ S. So V\ S is an independent set.

Suppose 1is an independent set. Then every edge must have at least one end
in V\ L. So V'\ lis a vertex cover. a

We know that the independent set problem is NP-complete, so Lemma 3.3
shows that the vertex cover problem is NP-complete as well.

As we mentioned in the introduction, there is probably no fixed-parameter
algorithm that solves the parameterized clique number problem (w(G), k).

There is a trivial parameterized reduction from («(G), k) to (w(G), k).
The reduction takes the complement G of the graph G. The function that
relates k and k' is just the identity function g(k) = k. Notice that G has a
clique with at least k vertices if and only if G has an independent set with k
vertices.

Since the reduction from G to G is polynomial, this shows that (x(G), k)
is not fixed-parameter tractable, unless something funny happens.

Let’s introduce some fancy notation for the vertex cover number of a
graph. Denote the smallest cardinality of a vertex cover in a graph G by ¢(G).
(That greek letter is “zeta,” or “z,” the last letter in the English alphabet. The
greek o« is “a,” the first letter in the English alphabet.) Then, by Lemma 3.3,

((G) =n—«a(G), where n is the number of vertices in G.

(At least when n = 27 is looks OK in the English alphabet.)

Here comes the surprise.

Theorem 3.4. The vertex cover problem is fixed-parameter tractable. The prob-
lem (Z(G), k) can be solved in O(2% - n?) time.

Proof Let G = (V,E) be a graph. Let e = {x,y} be an edge in G. If Z is a
vertex cover then
xe€Z or yeL

Consider the following algorithm.

Start with Z = @. Build a binary tree as follows. The root consists of the pair
(G, @). If G — Z has no edge, then we are done; Z is a vertex cover.

Now assume that {x,y} is an edge with both ends in G — Z. Then construct
two children in the tree. One for the pair

(G—(Zu{x}), ZU{x})

54 3 Fixed-parameter Algorithms

and one for the pair
(G—(Zufy}), ZU{y}).

Thus in one case we put x in the vertex cover and in the other case we put y
in the vertex cover. In both cases we remove the vertex from the graph that
we put in the vertex cover.

Of course, we can keep growing the binary tree until each leaf is some pair
(G —2Z*,Z*), where Z* is a minimal vertex cover. When we scan all the leaves
and find the smallest cardinality of the sets Z* then we find {(G).

Here’s the trick. We want to find a vertex cover Z of size at most k. Thus, if
some node in the binary tree has a pair (G — Z/, Z') with

1Z'l=k

then we don’t need to grow it any further. We let the algorithm check if G — Z’
is an independent set or not. If so, then Z’ is a vertex cover with k vertices.
Otherwise, we let the algorithm backtrack to its parent, and continue the
search from there.

In this way, the binary tree has a depth at most k, since each branching adds
one vertex to the set Z. Any full binary tree of depth k has 2* leaves and 2k —1
internal nodes.

In each vertex (G — Z*, Z*) of the binary tree we have to check if there is an
edge {x,y} with both ends in G — Z*. This we can do in O(n?) time. The total
time complexity is therefore O(2* - n?). O

Remark 3.5. We have seen that (o(G), k) is not fixed-parameter tractable and
that ({(G), k') is. Furthermore, we have that

((G)=n—u(G)

for any graph G.

Obviously, we cannot have a parameterized reduction from ({(G), k') to
(x(G), k). What is the problem?

The problem is that we need to relate the parameters in the two prob-
lems if we want to have a parameterized reduction. The parameters should

relate like k' = n — k. There is no function doing that; there would be an “n
somewhere in that function.

Remark 3.6. The technique used in Theorem 3.4 is called a bounded search-
tree technique. In this technique you build a search-tree of a size which is
some function of the parameter k. The bounded search-tree technique is one
of the most successful techniques that one can use to prove that some problem
is fixed-parameter tractable.

3.2 A kernel for vertex cover 55
3.2 A kernel for vertex cover

In this section we describe another technique which is very often useful to ob-
tain fixed-parameter algorithms. We illustrate it for the vertex cover problem.

Lemma 3.7. Let G be a graph and assume that {(G) < k. Let Z be a vertex
cover for G with |Z| < k. If a vertex x in G has at least k + 1 neighbors then
x € Z

Proof Suppose that x ¢ Z. Consider k + 1 edges

{X, yl}: ey {X’yk-l—l}’ Where {yla“ ~,Uk+1} g N(X).

Every edge must have one endvertex in Z, thus if x ¢ Z then y; € Z, for all
ie{1,...,k}. But then |Z| > k, which is a contradiction. O

Lemma 3.8. Let G be a graph and assume that every vertex in G has degree at
most k. Furthermore, assume that G has no isolated vertices. Assume that G has
a vertex cover Z with at most k vertices. Let n and m be the number of vertices
and edges in G. Then

n<k+k* and m<2K2

Proof Let Z be a vertex cover in G. Since G has no isolated vertices, and since
Z is a vertex cover, every vertex of V' \ Z has at least one neighbor in Z.

Since the degree of any vertex in G is at most k, any vertex in Z has at most
k neighbors in V' \ Z. This proves that the number of vertices is at most

n<|Zl+1Z-k=1|Z|(k+1) < k(k+1)

Any edge has either two ends in Z or exactly one end in Z. Thus the number
of edges in G satisfies

m< |ZP? +1Z] - k < 2K2.

This proves the lemma. O

Lemmas 3.7 and 3.8 can be used to reduce the graph G in polynomial time
to a graph H of which the number of vertices is bounded by some function
of the parameter k. Such a graph H is called a kernel for the parameterized
problem. Notice that the exponential part of the algorithm runs only on the
kernel.

56 3 Fixed-parameter Algorithms

Theorem 3.9. Let G be a graph with n vertices. The parameterized vertex cover
problem (C(G),k) is fixed-parameter tractable. There exists an algorithm for
(€(G), k) which runs in O(n2 + 2k . k*) time.

Proof Reduce G to a kernel H by removing vertices that have at least k + 1
neighbors in G. Let Z, be this set of vertices. Then Z, C Z for any vertex cover
Z with at most k vertices.

If some vertices of the remaining graph G — Z, are isolated, then remove
them. The subgraph H induced by the remaining vertices of G — Z, is called
the kernel. The part of the algorithm described above is called the reduction
to the kernel, and it runs in O(n?) time.

By Lemma 3.8 we may assume that the number of vertices in H is at most
k% + k. We need to find a vertex cover in H with at most k — |Z,| vertices. By
Theorem 3.4 there is an O(2% - (k? + k)2) = O(2% . k*) algorithm that solves
the parameterized vertex cover problem in the kernel.

In total, our algorithm runs in O(n? + 2% . k*) time. To see that this is a fixed-
parameter algorithm, we need to show that it has the form f(k)n®) for some
function f and constant c. This is obvious; namely, since k < n we have that

n2+2% .kt < (2¥+1) -n*

This proves the theorem. O

The following theorem is pretty useless in practice, but it may answer a
question that you had in mind.

Theorem 3.10. Any parameterized problem that is fixed-parameter tractable
can be reduced to a kernel in polynomial time.

Proof Assume that there exists an algorithm that runs in O(f(k)-n°) for some
function f and some constant c. We use this algorithm to reduce the input to
a kernel as follows.

1. When f(k) < n then the algorithm above runs in time proportional to
f(k)n® < n¢*l, ie., it is polynomial. This part of the algorithm is the
reduction to the kernel.

2. Otherwise, when f(k) > n, then we have a kernel of size n < f(k).

This proves the theorem. O

An alternative algorithm for finding a kernel for the parameterized vertex
cover problem uses a maximum matching.

Definition 3.11. A matching in a graph G = (V, E) is a subset M of edges such
that no two edges in M have an endvertex in common.

3.2 A kernel for vertex cover 57

The maximum matching problem asks for a matching in a graph G of max-
imal cardinality. The maximum matching problem can be solved in O(n®/?)
on graphs G with n vertices.?

Lemma 3.12. Let G = (V, E) be a graph. Assume that {(G) < k. Then
v(G) <k,
where v(G) is the cardinality of a maximum matching in G.

Proof If Z is a vertex cover in G then Z contains at least one endvertex of
each edge in a maximum matching M. O

Theorem 3.13. Let G = (V, E) be a graph and assume that G has no isolated
vertices. There exists a kernel with at most 3k vertices for ({(G), k).

Proof The algorithm first computes a maximum matching M. By Lemma 3.12
if IM| > k then any vertex cover has at least k + 1 vertices.

Now assume that [M| < k. Let V(M) be the set of endvertices of edges in M
and let [= V\ V(M). Then I is an independent set.

Consider the graph B with vertex set V and edge set the edges with one
endpoint in V(M) and the other endpoint in I. Then B is bipartite. By the
Konig-Egervary theorem

¢(B) =v(B).

By the maximum matching algorithm, we can find in polynomial time a maxi-
mum matching M’ in B and a minimum vertex cover Z’ for B with endvertices
in V(M/).

We now consider two cases.
First assume that Z’ has at least one vertex in V(M). Define

Uu=vMm)nZz.
Define I as the set of other endvertices of edges in M’ that have one endvertex
in L.

We claim that there exists a minimum vertex cover Z in G which contains U.
To see this, notice that each edge e € M’ must have an endvertex in Z. If this
endvertex is in I, then we may replace it with the other endvertex of e in L.
Then the new set of vertices is also a vertex cover.

So, in this case we can reduce the graph by removing the vertices of

2 J. Edmonds, Paths, trees, and flowers, Canadian Journal of Mathematics 17 (1965),
pp. 449-467.

58 3 Fixed-parameter Algorithms
uur

and put the vertices of U in Z. The algorithm proceeds to look for a vertex
cover with at most k — |U| vertices in

G—(Uur).

In the second case we assume that Z’ has no vertices in V(M). Then the
minimum vertex cover Z’' has only vertices in I. Since there are no isolated
vertices,

Z =1

Then the number of vertices is at most
Il +V(M)| < k+ 2k = 3k.

In other words, this set is a kernel. O

3.3 A better search-tree algorithm for vertex cover

In this section we develop a better search-tree algorithm for the parameter-
ized vertex cover problem. The improvement follows from two simple obser-
vations.

Lemma 3.14. Let G = (V, E) be a graph. Let x be a vertex of degree at most
one. Then there exists a minimum vertex cover Z for G with x & Z.

Proof Assume that x is isolated. Then x is not in any minimum vertex cover.

Assume that x has one neighbor, say y. If Z is a minimum vertex cover, and
x € Z, then
Z' = (Z\{x}) u{y}

is also a minimum vertex cover.
This proves the lemma. O

Lemma 3.15. Let G be a graph and let x be a vertex with two neighbors, say y
and z. Then there exists a minimum vertex cover Z for G such that either

@D {y,z}CZandx ¢ Z, or

(ii) x € Z and
(N(y) UN(z)) \ N(x) € Z.

3.3 A better search-tree algorithm for vertex cover 59

Proof Let G = (V, E) be a graph and let Z be a minimum vertex cover for G.
Let x be a vertex with two neighbors, say y and z.

Obviously, wheny € Z and z € Z then x ¢ Z, since Z is minimum.

Assume thatx € Z,y € Zand z ¢ Z. Then
Z' = (Z\{x})u{z}

is a minimum vertex cover and |Z'| = |Z|.

Thus, we may assume that either both y and z are in Z or neither of them is
in Z. If neither y nor z is in Z, then x € Z and

(N(y)UN(z))\ N(x] € Z.

This proves the lemma. O

Theorem 3.16. There exists an O(1.47% - n?) algorithm that solves the param-
eterized vertex cover problem (((G), k).

Proof The algorithm builds a search-tree as follows. The root of the search-
tree is the pair (G, @).

At each vertex (G’, Z') in the search tree the algorithm proceeds as follows.

(1) If there is an isolated vertex x in G’, then remove it from G’'.

(2) If G’ has a vertex x with one neighbors y, then put y in Z’ and remove x
and y from the graph G’.

(3) If G’ has a vertex x with at least three neighbors, the the algorithm
branches; the vertex in the search tree gets two children. In one child
the vertex x is put in Z’ and it is removed from G’. In the other child, all
the neighbors of x are put in Z’ and all vertices of N[x] are removed from
the graph G’.

(4) Assume that G’ has a vertex x with two children, y and z. Assume that
neither y nor z has a neighbor which is not a neighbor of x. If y and z are
not adjacent then put x in Z' and remove x, y and z from G'. If y and z
are adjacent the put two of x, y and z in Z’ and remove x, y and z from
G’

Otherwise, when at least one of y and z has a neighbor which is not a
neighbor of x, the algorithm branches. In one child both y and z are put
in Z’' and they are removed from G’. In the other child, x and all vertices
of

(N(y) UN(z)) \ N(x)

are put in Z’ and they are removed from G’. Notice that the correctness
of this step follows from Lemma 3.15.

60 3 Fixed-parameter Algorithms

Notice that each vertex in the search tree is a leaf or it has two children.

Let T(k) be the amount of work done by the algorithm. In the first and second
case, the algorithm is greedy. We may assume that these cases do not occur.
In the third case, the branching gives the recurrence

T(k) < T(k—1)+ T(k—3) + O(n?). (3.1)
In the fourth case, we have
T(k) € 2T(k—2) 4+ O(n?), (3.2

since in each of the two branches at least two vertices are put in the vertex
cover.

The solution for the Recurrence (3.1) is T(k) = O(1.47% - n?). The solution
for the Recurrence (3.2) is T(k) = O(1.42% - n?). (In Exercise 3.5 we ask you
to check that.) Clearly, the worst case occurs when the algorithm branches all
the time as in the third case. O

Remark 3.17. The best algorithm that we know of for the parameterized ver-
tex cover problem ({(G), k) runs in O*(1.28%). Here we suppressed the poly-
nomial in n.? This algorithm does a more extensive case analysis.

3.4 Minimum fill-in

Recall Definition 2.21 on Page 31 of a chordal graph. A graph is chordal if it
has no induced cycle of length more than three.

Of course, when a graph G = (V, E) is not chordal then we can add some
edges to the graph such that it becomes chordal. For example, if we add all
edges between any pair of vertices x and y that are not adjacent in G, then
the new graph is a clique, and a clique is obviously chordal.

Definition 3.18. Let G = (V, E) be a graph. A graph H = (V, ') is a chordal
embedding of G if

1. G and H have the same set of vertices, and
2. H is chordal, and
3.ECFE.

A chordal embedding H is minimal if the deletion of any edge that is added

to G, makes H non-chordal.

3 J. Chen, I. Kanj, and G. Xia, Improved parameterized upperbounds for vertex cover,
Proceedings 31% MFCS, Springer, LNCS 4162 (2006), pp. 238-249.

3.4 Minimum fill-in 61

Definition 3.19. The minimum fill-in problem asks for a chordal embedding H
of a graph G such that the number of edges in H is minimal.

The minimum fill-in problem is NP-complete.

Let f(G) be the minimal number of edges that needs to be added to G
in order to make G chordal. In this section we look at the parameterized
(f(G), k) problem.

For example, when G is a 4-cycle we need to add one edge. Furthermore,
there are two choices to add the edge. If G is a 5-cycle, we need two edges
and there are 5 choices to make G chordal by adding two edges.

If H is a t-cycle, then adding t — 3 edges from one vertex x to all vertices
of H—N|[x] makes the graph chordal. In fact, any minimal chordal embedding
of H adds t — 3 edges to H, although not all chordal embeddings are like the
one above.

Lemma 3.20. Let C be a cycle of length t. Then f(C) = t — 3. There are
L (20-2)) _ s
t—1\ t—2
different embeddings of C into a chordal graph with t + f(C) edges.

Proof. We leave most of the proof as an exercise.

The Catalan number C,, is defined as

1 2n
Cn = n+1 (n) ’
(They are named after the Belgian mathematician E. Catalan (1814-1894).

The Chinese mathematician Antu Ming discovered these numbers around
1730.)

The Catalan numbers satisfy the recurrence relation

202n+1
Crst = %cn and C;=1.

Notice that the bound C,, < 4™ ! follows easily by induction from the recur-
rence relation:

2(2n+1) 4n+2An_1<4(n+2)An—l_4n
n+2 " n+2 S n42 T 77

Cn+1 =

62 3 Fixed-parameter Algorithms

Theorem 3.21. The minimum fill-in problem is fixed-parameter tractable. The
parameterized problem (f(G), k) can be solved in O(4% - n°) time.

Proof We use the bounded search-tree technique.

First we show how to find an induced cycle of length at least four. Let x be
a vertex and let y and z be two neighbors of x such that y and z are not
adjacent. Then {x,y, z} is contained in a chordless cycle of length at least four
if and only if y and z are contained in a component of the graph induced by

(VANI]) U{y, z}.

So, to look for an induced cycle of length at least four, we try all possible
triples {x, y, z} as above. For each such triple the algorithm finds a y, z-path

G — (NIxI\ {y,z}).
Adding the vertex x yields the chordless cycle of length at least four.

Notice that the number of these triples is bounded by

Y d)(d(x)—1)<n) d(x)=2nm.

xX€V xeV

At each vertex in the search-tree T, the algorithm finds an induced cycle C
of length at least four. Let t be the length of C. By Lemma 3.20 C cannot be
made chordal when t — 3 > k. Otherwise, the search-tree branches over the
=5 (")) possible minimal embeddings of C. The parameter k reduces by
t — 3 since there are t — 3 edges added to C.

Let Ly be the number of leaves in the search-tree T. We claim that
Ly < 4.

We prove this by induction. If k = 0 then the algorithm does not branch. It
checks in linear-time if the graph is chordal. If so, we are done, and if not,
there is not suitable chordal embedding of G since we cannot add any edge.

By Lemma 3.20 and by induction, for k > 1,

Ly <477 Ly (1-3) < 4%

We claim that the search-tree T has at most 2 -4k + 1 vertices. To see this, first
note that it has at most one vertex of degree two, namely the root. All other
internal vertices have one parent and at least two children, since every cycle
of length at least four has at least two possible minimal embeddings.

Let n’ and m’ be the number of vertices and edges in T. We write L instead
of Ly for the number of leaves in T. For a vertex x in T we write dt(x) for the
number of neighbors of x in T. Then we have

3.5 Homogeneous coloring of perfect graphs 63

am'=2(n'—1)= Y 1+ Y 2+ Y 3+...

x,d7(x)=1 x,d1(x)=2 x,d7(x)=3

>L+) 3+) 4+...

x,d7(x)=3 x,d7(x)=4

>L+3(Y 1+) 1+..)

x,dr(x)=3 x,dT1(x)=4
>L43n—-L—-1)=3n"—-2L-3.

This implies that
n<2l+1<2-4+ 1.

At each vertex in the search-tree we spend at most O(n?®) time to look for for
a suitable triple {x,y, z} and O(n?) time to find the y, z-path. Thus, a cycle of
length at least four is found in O(n®) time, if it exists. The total time that is
used by this algorithm is therefore bounded by O((2-4%+1)-n>) = O(4%.n%).
This proves the theorem. O

3.5 Homogeneous coloring of perfect graphs

Definition 3.22. A homogeneous coloring of a graph is a partition of its vertices
into cliques and independent sets.

We refer to the sets of the partition as color classes. Each color class is
either a clique or an independent set. The homogeneous coloring problem
asks for a homogeneous coloring with a minimum number of color classes.

A (k, €)-coloring of a graph is a partition of its vertices into k cliques and 1
independent sets, of which some may be empty.

Recall that a graph G is perfect when w(H) = x(H) for every induced
subgraph H of G. By the perfect graph theorem, when G is perfect, also G is
perfect. Recall also Theorem 2.7 on Page 23 which shows that the coloring
and clique number problem can be solved in polynomial time for G, and also
for G, when G is a perfect graph.

This is no longer true for homogeneous colorings. Wagner showed that
finding a homogeneous coloring of a permutation graph with a minimal num-
ber of colors is NP-complete. However, for every fixed k and ¢, the class of
permutation graphs that admit a (k,£)-coloring is characterized by a finite
collection of forbidden induced subgraphs. This holds true even for the class
of all perfect graphs.*

4 K. Wagner, Monotonic coverings of finite sets, Elektronische Informationsverar-
beitung und Kybernetik 20 (1984), pp. 633-639.
T. Feder and P. Hell, Matrix partitions of perfect graphs, Discrete Mathematics 306
(2006), pp. 2450-2460.

64 3 Fixed-parameter Algorithms

Theorem 3.23. For every k,{ € N there exists a polynomial time algorithm that
checks if there exists a (k, £)-coloring of a perfect graph.

Proof There exists a finite set of graphs F(k, £) such that any perfect graph G
has a (k, £)-coloring if and only if it has no element of F(k,¢) as an induced
subgraph.

Let H € F(k,{). Let ¢ be the number of vertices of H. To check if H is an
induced subgraph of G = (V,E), the algorithm checks all subsets Q) with
c vertices of V and checks if H and the induced subgraph G[Q] of G are
isomorphic. This algorithm can clearly be implemented to run in O(n°*?)
time, where n is the number of vertices in G.

Since F(k,{) is a finite set, it contains only a constant number of elements.
Thus there are only a constant number of elements H € F(k, ¢) that need to
be checked. O

Although the algorithm of Theorem 3.23 is polynomial for each fixed k
and ¢, this is not a fixed-parameter algorithm. Furthermore, the theorem only
shows the existence of a polynomial-time algorithm. To write down the algo-
rithm we would need the set F(k, £). Not only contains this set a huge number
of graphs but also, nobody knows what it is.

In the following theorem we show that the (k, ¢)-coloring problem is fixed-
parameter tractable on perfect graphs.

Theorem 3.24. There exists an O(f(k, ¢)n®) algorithm which solves the (k, {)-
coloring problem on perfect graphs. Here

f(k,0) = (k4)2t and c is a constant.
Proof Letxy,...,%x, be an arbitrary ordering of the vertices and define
Gi = G[V;] where V;={xy,...,%i}

If there exists a partition of G into k cliques and 1 independent sets, of which
some may be empty, then such a partition exists for each of the graphs G;.

In each step the algorithm checks if the current graph G; has a partition of the
vertices with k cliques and ¢ independent sets. Let P be a partition of G;_1
into k cliques and ¢ independent sets. Then, obviously, the graph G; has a
partition into k + 1 cliques and ¢ independent sets. To see this, just consider
the partition

PuUlfxilk

Consider a partition P of V; into cliques and independent sets. Consider a
bitvector L of length i where the t™ bit is one if the vertex x, is in a clique of
P and zero if the vertex x; is in an independent set of P.

Assume that we are given the bitvector L. Then we can check in polynomial
time if it is valid by checking if

3.5 Homogeneous coloring of perfect graphs 65

(a) the vertices with a 1 in L induce a perfect graph that has a clique cover
with at most k cliques, and

(b) the vertices with a 0 in L induce a perfect graph that has chromatic num-
ber at most ¢.

Let P and Q be two homogeneous colorings of G;. Assume that P has k cliques
and ¢ independent sets and that Q has k’ cliques and ¢’ independent sets. Let
Lp and Lo be the bitvectors of P and Q. The Hamming distance H(Lp,Lg)
of Lp and L is the number of bits that are different in Lp and Lg. We claim
that

H(Lp,Lo) < k- +K - ¢ (3.3)

To see this, simply observe that any independent set in P and clique in Q can
intersect in at most one vertex.

The algorithm runs as follows. Let P be a partition of G;_;. Add the vertex
x; as a separate clique to P and let L be the bitvector of this partition. Let
X be the set of vertices that have a 1 in L and let Y be the set of vertices
with a 0 in L. First check if G;[X] has a clique cover with at most k cliques
and if G;[Y] has chromatic number at most {. If that is the case, then we are
done; the algorithm outputs a clique cover and a coloring with k cliques and
¢ independent sets for the graph G;.

Now assume that the clique cover number of G;[X] is k+1. Since G; is perfect,
it has an independent set S with k + 1 vertices. Since G; is a perfect graph it
can find a maximum independent set S in polynomial time.

If there is a partition Q of G; with k cliques and ¢ independent sets, then, by
Equation (3.3),
H(LLg) < p=2k-0+¢L (3.4)

If there exists an independent set S with k+ 1 vertices in G;[X], then there is a
vertex z € S of which the corresponding bit is 0 in L. For each bit in L which
corresponds with a vertex z of S the algorithm does the following. It switches
the bit of zin L to 0. Let L’ be this bitvector. Then the algorithm recurses and
tries to find a partition Q which is at distance at most p — 1 from L.

The case where G;[Y] has chromatic number k + 1 is similar.

To analyze the time complexity, observe that we may assume that k > 1 and
£ > 1, since otherwise we can just check if there is a clique cover or coloring
with k or ¢ sets. The recursion tree has depth at most 2k - £+ £ since each time
the algorithm is recursively called the Hamming distance p is decreased by
one. Each node in the recursion tree corresponds with a clique of cardinality
¢+ 1 or an independent set of cardinality k + 1. Since

k+1<k+¢ and €+1<k+¢ (3.5)

every node in the recursion tree has at most k + £ children. Thus the total
number of recursions is bounded by

66 3 Fixed-parameter Algorithms

(k+ g2t (3.6)

The graph searches for a partition P in G; for i = 1,...,n. In each transition
from i to i+ 1 the graph spends O(n°®) time in each node of a recursion tree
with (k + £)%%¢+¢ nodes. This proves the time bound and the theorem. m]

3.6 Problems

3.1. Let’s start with a problem from elementary school. Which function grows
faster.
klog®) or (log(k))k.

How about

2k2 or 2zlog(k)+log(k2|

A tricky one:

the inverse Ackermann function «(k) or log(log(--- log(k))---).

3.2. Show that the parameterized chromatic number problem (x(G), k) is not
fixed-parameter tractable.
Hint: Recall that 3-coloring is NP-complete.

3.3. Let S be a set and let
8={Sh sssy Sn}

be a collection of n subsets of S such that |S;| = 3 foralli € {1,...,n}. The
3-hitting set problem asks for a subset S’ C S of minimal cardinality such
that every triple S; of 8 contains at least one element of S’. Use the bounded
search-tree technique to show that the parameterized 3-hitting set problem
can be solved in O(3* - n?) time.

Hint: Build a search-tree in which every vertex which is not a leaf has degree
at most three.

3.4. Find a kernel for the 3-hitting set that we defined in Exercise 3.3.

Hint: Consider an element x € S that appears in at least 2k? + 1 subsets S;.
Design a proof, similar to the proof of Lemma 3.8, which shows that x is in
any 3-hitting set with at most k elements.

3.5. Solve the recurrences in (3.1) and (3.2).

3.6. Check that there are 14 minimal chordal embeddings of a labeled 6-cycle.

3.6 Problems 67

3.7. Prove Lemma 3.20 on Page 61.

Hint: Prove that the number of minimal chordal embeddings C,, of an (n+2)-
cycle with vertices numbered 1,...,n + 2 satisfies the Catalan recurrence
relation

n
Cp1=) CiCni
i=0

3.8. Let G be a graph and let k € N, k > 3. Design an algorithm that checks
if G has a chordless cycle of length at least k and that out-puts one if it has. Is
your algorithm a fixed-parameter algorithm?

3.9. Can we use the linear-time recognition algorithm for chordal graph of
Tarjan and Yannakakis to find an induced cycle of length at least four?

3.10. Let H be a graph with c vertices. Design an algorithm that checks if
a graph G has an induced subgraph which is isomorphic to H. What is the
timebound for your algorithm?

Hint: This problem is not fixed-parameter tractable. That is easy to see. When
H is an independent set with « vertices, the induced subgraph problem asks
for an independent set in G with « vertices.

3.11. Check the details in the proof of Theorem 3.24. Especially

(a) check Formula 3.3, and
(b) check Formula 3.4, and
(c) check Formula 3.6.

Digitized by GOOS[Q

4

Decomposition Trees

We have seen a few examples of decomposition trees of graphs already.

1. When G is a chordal graph it has a clique tree. We explained that concept
in Section 2.4.1.

2. When G is a cograph then it has a cotree. We explained that in Sec-
tion 2.2.1.

3. In Section 2.3.1 we explained the notion of a decomposition tree for
distance-hereditary graph.

4. Interval graphs are chordal graphs. Interval graphs have a special clique
tree, which is a path. We explained that in Theorem 2.46 on Page 40.

In Section 2.1 we hinted at a decomposition tree for perfect graphs that de-
composes the graph into four basic classes of graphs. Furthermore, in Chap-
ter 2 we have seen a few examples that show that a decomposition tree for a
graph can be very useful for solving hard problems on that graph.

In this chapter we look at some parameterized decomposition trees. The
advantage of the parametrization is that we no longer are restricted to some
special class of graphs. Any graph can be decomposed using the tree decom-
positions by a suitable choice of the parameter.

We look at two kinds of decomposition trees. The first one is based on the
clique trees for chordal graphs and the second one is based on the decompo-

sition trees for distance-hereditary graphs.

Research on decomposition trees really took off with the graph minor the-
ory. We review some of that theory in the next section.

4.1 Graph minors

Let’s start with a basic lemma on natural numbers.

70 4 Decomposition Trees
Lemma 4.1. Consider a sequence of natural numbers

n, Ng, Ns, ... 4.1)
There exists an infinite subsequence which is nondecreasing.

Proof Define
I={i€N|V5>in5<ni}. 4.2)

The subsequence of (4.1) of the number n; with 1 € I is strictly decreasing.
Since it is bounded from below by 1, it is finite.

Now let
_{0 if | = @, and 4.3)

" |max{iliel} ifl#@.

Since [is finite this maximum exists. Consider the sequence

Net1, Mk42, ---

For each element n; with £ > k, there exists some element n., with m > € and
N, > Mg, since £ ¢ 1. Then it is easy to construct an infinite non-decreasing
subsequence. O

Consider an infinite sequence of graphs

G1, Ga, ... 4.4)

Let n; be the number of vertices of the graph Gj, for all 1. By lemma 4.1,
there exists an infinite subsequence of (4.4) in which the number of vertices
is nondecreasing. A similar proof shows that there is also an infinite subse-
quence of graphs of which the number of vertices and edges is nondecreasing.
So we may assume that the sequence of graphs is ‘nondecreasing,’ if we order
them by their numbers of vertices and edges.

Can we take a different ordering? Suppose that we order the set of all
graphs by the induced subgraph relation. For two graphs G and H define
G < Hif the graph G is an induced subgraph of H. Notice that this relation is
transitive, that is,

if FXG and G<XH then F=<H.

Not every pair of graphs is related by <. We call < a quasi-order. If we call
two graphs G and H ‘the same’ if G < H and H < G, then the order is called a
partial order. (In that case, we call two graphs that are isomorphic ‘the same.”)

4.1 Graph minors 71

Question:
Is it true that there always exists some integers i and j with 1 < j such
that G; < G)'?

Notice that, by Lemma 4.1 this is true for a sequence (4.1) of natural
numbers; just take two elements of a (infinite) nondecreasing subsequence.
Thus, if < is the ordering of graphs by numbers of vertices and edges, then
the answer to the question is yes.

No; for the sequence of graphs this is not true if < is the ordering by
induced subgraphs. An easy counterexample is

C35 C45 C55 sesy

where C; is a cycle of length i. No cycle C; is an induced subgraph of another
cycle Cj.

For the sequence of paths
Pl: PZ: P35 R

where P; is the path i vertices, the statement is true of course, since any path
P; is an induced subgraph of a path P; with j > i. But for general sequences
of graphs we cannot have that.

To make the statement above true for general sequences of graphs, we
need to relax the condition that some graph G; is an induced subgraph of an-
other graph Gj. If we take the subgraph-relation, that is, if we only insist that
G; is a subgraph of Gj, then this is still not true. The same counterexample
applies.

The way to make the statement true is to look at graph minors. To define
graph minors we need the concept of an edge contraction.

Definition 4.2. Let G = (V, E) be a graph. Let e = {x,y} be an edge in G. Con-
tracting the edge e in G is the following operation which transforms G into a
graph G’. Replace the two vertices x and y by one vertex, say xy. The neighbor-
hood of xy in G’ is the set

N(x) UN(y) \ {x,y}.

Thus, contracting the edge e = {x,y} squeezes the edge down to a single
vertex xy. When z is a vertex that is adjacent to both x and y, then squeezing
the edge {x, y} to a single vertex xy, creates two edges {xy, z} in G’. The double
edge {xy, z} is then replaced in G’ by a single edge.

For example, let C be a cycle with n vertices. If we contract an edge in C
we get a cycle with n — 1 vertices.

72 4 Decomposition Trees

We now have the following. If (4.4) is an infinite sequence of graphs G;
such that each G; is a cycle, then there exist i < j such that G; is obtained
from Gj by a sequence of edge contractions. Just take two cycles G; and G;
with i < j such that G; has at least as many vertices as G;. We can obtain G;
from G; by contracting sufficiently many edges in G; (zero when G; = Gj).

In other words, we now have the following. Define G < H if G is obtained
from H by a sequence of edge contractions. If (4.4) is a sequence of cycles,
then there exist i < j such that G; =< G;j.

The minor ordering is a little bit more general.

Definition 4.3. A graph G is a minor of a graph H if G can be obtained from H
by a sequence of operations, where each operation is one of the following.

(i) Deletion of a vertex.
(ii) Deletion of an edge.
(iii) Contraction of an edge.

In other words, G = (V, E) is a minor of a graph H = (V/, ¥) if for each
vertex x; € V there exists a subset of vertices X; C V’/ such that

() XiNX; =@, when x; # x;, and
(b) H[X;] is connected for all i, and
(c) Some vertex in X; is adjacent to some vertex in Xj when {x;, x;} € E.

Theorem 4.4 (The graph minor theorem). Let G <,,, H if G is a minor of H.
Then in any infinite sequence of graphs

G1, Gg, ...
there exist two elements i < j with Gi <m G;.

It took Robertson and Seymour more than ten years to prove this theorem.
They finished the proof in 2004, and they wrote it down in a sequence of 20
papers. The total length of the proof is more than 500 pages; so we skip it.

The first step in the proof is Kruskal’s theorem. Kruskal proved the theorem
in 1960 for the case where G,, Gy, ... is a sequence of trees.! Of course, for
trees it is sufficient to consider only edge contractions; if T; and T, are trees
then T; is a minor of T, if and only if T; can be obtained from T, by a sequence
of edge contractions.

An important consequence of the graph minor theorem is the finite basis
theorem.

! J. Kruskal, Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture, Trans-
actions of the American Mathematical Society 95 (1960), pp. 210-225.

4.1 Graph minors 73

Theorem 4.5. Let G be a class of graphs which is closed under taking minors.
Thatis, if G € G and if H is a minor of G, then H € G. There exists a finite set of
graphs Q such that G € G if and only if no element of Q is a minor of G.

Proof Let Q be the set of graphs that are not in G but for which every proper
minorisin G. Soif G € Q then G ¢ G, but if we delete a vertex or an edge, or
if we contract an edge in G, then the new graph is in G.

Suppose that Q is not finite. Then we can construct an infinite sequence
Gy, Gy, ...,

of graphs in Q. Furthermore, we may assume that no two graphs G; and G;
are the same (isomorphic). By Theorem 4.4, there exist i < j such that G; is
a minor of Gj. Since G; and G; are not the same, G; is a proper minor of G;.
But this is a contradiction; every proper minor of Gj is in G, so G; ¢ Q. |

The set Q is called the obstruction set for the class G. |

Let’s look at an example. Let G be the class of all planar graphs. Let G € G.
If we delete a vertex x from G, then the remaining graph G — x is also planar.
It is also easy to see that, if we delete an edge from G, then the remaining
graph is planar. Finally, if we contract an edge in G, then it is fairly easy to
see that the new graph G’ is still planar. Thus the class G of planar graphs is
closed under taking minors. By Theorem 4.5 there is a finite obstruction set
Q. For the class of planar graphs this set is

Q={Ks, Kz3 1}

Thus a graph is planar if and only if it has no Ks or K33 as a minor. Probably
you know this theorem as Kuratowski’s theorem, which was originally formu-
lated a little bit different (without using edge contractions). Wagner showed
that Kuratowski’s theorem is equivalent to the formulation above.

In the next section we illustrate the power of the graph minor theorem
by another example. We end this section with another important result of
Robertson and Seymour.

Theorem 4.6. Let H be a graph. There exists an O(n®) algorithm that tests if
H <. G for graphs G, where n is the number of vertices of G.

In other words, the parameterized graph minor problem (=<,(G),H),
which asks if the fixed graph H is a minor of a graph G, is fixed-parameter
tractable. Notice that, when H is not fixed the problem is NP-complete. For

74 4 Decomposition Trees

example, when we take H a cycle with n vertices and G is a graph on n ver-
tices, then H =<, G if and only if G has a Hamiltonian cycle. To test if G is
Hamiltonian is NP-complete.

Notice that Theorem 4.6 provides an O(n?®) algorithm to test if a graph G
is planar. The theorem says we can test if G has a Ks-minor in O(n?) time.
Also, we can test if G has a K3 3-minor in O(n?) time. So, the total time to test
if a graph is planar takes O(n?), because the obstruction set is finite (it has
only two elements so we only need to do two tests).

Of course, we know that there is a linear-time algorithm to test planarity,
but the result is much more general; it says that the recognition problem (see
Page 19) for graph classes that are closed under taking minors can be solved
in polynomial time.

Theorem 4.7. Let G be a class of graphs which is closed under taking minors.
There exists an O(n?) algorithm to test of a graph G € G.

Proof By Theorem 4.5 the class G has a finite obstruction set. By Theorem 4.6
we can test for each element in Q) whether it is a minor of a graph G or not.
Since Q is finite we only need to perform a constant number of these tests.
This proves the theorem. O

4.2 Parameterized feedback vertex set

Recall Definition 2.17 on Page 29. A set F of vertices in a graph G = (V,E) is
a feedback vertex set in G if every cycle in G has at least one vertex in F. In
other words, F is a feedback vertex set in G if G — F is a forest.

For a graph G let f(G) denote the minimal cardinality of a feedback vertex
set in G. In this section we show that the parameterized feedback vertex set
problem (f(G), k) is fixed-parameter tractable.

Lemma 4.8. Let k € N U{0]}. Let G(k) be the class of graphs G with f(G) < k.
The class G(k) is closed under taking minors.

Proof Let G € G. We prove that every minor of G is in G.

Let F be a vertex set in G = (V, E) with |F| < k.

Letx € Vandlet G’ = G —x. If x € Fthen F = F\ {x} is a feedback vertex set
in G’, since G’ — F is a forest. When x ¢ F, then G’ — F is a forest, since the
class of forests is minor closed.

Let e = {x,y} € E. Let G’ be the graph obtained from G by deleting the edge
from E. Then F is a feedback vertex set in G’, since G’ — F is a forest.

4.3 Treewidth 75

Let e = {x,y} € E and let G’ be the graph obtained from G by contracting the
edge {x,y} to a single vertex xy. First assume that x ¢ F and that y ¢ F. Then
F is a feedback vertex set in G’ since the class of forests is closed under taking
minors.

Assume that x € F and that y ¢ F. Define

Fr=(F\ {x}) U {xy.

Then ¥ is a feedback vertex set for G’ since G’ — F = G — F —{y} is a forest.
Assume that x € F and that y € F. Define

F = (F\ {x,y}) U{xy}.
Then F is a feedback vertex set in G’ since G’ —F = G — F is a forest.

The proves the lemma, since |F'| < k in all cases. O

We’re done. The following theorem states the result.

Theorem 4.9. The parameterized feedback vertex set problem (f(G), k) is fixed-
parameter tractable.

Proof Let k € NU{0}. Let G(k) be the class of graphs that have a feedback
vertex set with at most k vertices. By lemma 4.8 the class G(k) is minor closed.
By Theorem 4.5 there is a finite obstruction set Q(k) such that

G € §(k) ifandonlyif Vheqk) HZm G.

By Theorem 4.6 we can test H <, G in O(n?®) time, for each H € Q(k).
Since |Q (k)| is constant, the total time needed to test if G € G(k) takes O(n?)
time. |

4.3 Treewidth

Robertson and Seymour came up with the graph parameter treewidth during
their research on graph minors.? It turns out that, if G is a class of graph which
is closed under taking minors, and if G does not contain all planar graphs then
there exists a k € N U {0} such that all graphs in G have treewidth at most k.

For example, let G be the class of graphs that have a feedback vertex set
with at most k vertices. By Lemma 4.8 this class is closed under taking minors.
Furthermore, G does not contain all planar graphs. For example, if we take a
sequence of larger and larger grids then it is easy to see that these have an

2 N. Robertson and P. Seymour, Graph minors. II. Algorithmic aspects of tree-width,
Journal of Algorithms 7 (1986), pp. 309-322.

76 4 Decomposition Trees

increasing number of vertices in a minimum feedback vertex set. The result
says that there exists a k’ such that all graphs in G have treewidth at most k.
In this section we take a close look at this important graph parameter.

Recall Definition 3.18 on Page 60. Let G = (V, E) be a graph. A chordal
embedding of G is a chordal graph H = (V, E/) with EC E’.

Definition 4.10. Let G = (V, E) be a graph. The treewidth of G is

tw(G) = min { w(H) — 1 | H is a chordal embedding of G }. (4.5)

For example, let T be a tree. Then T has no cycles. Thus T is chordal, since
it has no induced cycles of length more than three. Any chordal embedding
of T has a clique number at least equal to the clique number of T. Therefore,

(4.6)

tw(T) = 0 if T has only one vertex
" |1 if T has at least two vertices.

Thus any nontrivial tree has treewidth one. This explains why we sub-
tract one from w(H) in Definition 4.10. Namely, in this way we have that any
nontrivial tree has treewidth one, which is nice. In the following example we
show the converse, that is, if the treewidth of a graph G is at most one then
G is a forest.

Let’s look at another example. Consider a cycle C. We claim that the
treewidth of C is at least two. Assume that it is one. Let H be a chordal em-
bedding of C and assume that w(H) = 2. Recall Theorem 2.31. Since H is
chordal it has a perfect elimination ordering, say

[X1,...,%nl.
Every maximal clique in H is one of the sets
Qi={x1j>1 and je N[x]}
Since w(H) = 2, we have that
Qi <2 forallie{l, ..., n}L

Thus the perfect elimination ordering removes vertices one by one, and at
each step the vertex has at most one neighbor in the remaining graph. This
shows that H is a forest. Since C is a subgraph of H, also C is a forest, which
is a contradiction because C is a cycle. Thus the treewidth of C is at least two.

4.3 Treewidth 77

We now show that the treewidth of C is exactly two. Let x be a vertex of
C. Add edges from x to all other vertices in C. The new graph is chordal and
has clique number three. This proves that tw(C) = 2.

In Section 4.3.1 we look at a greedy algorithm that checks if the treewidth
of a graph G is at most two.

In the following theorem we prove that the class of graphs with treewidth
at most k is closed under taking minors. For k = 1 this is true, since the class
of graphs with treewidth at most one is the class of all forests.

To prove the general case we start with three easy lemmas.

Lemma 4.11. Let G be a graph and let G’ be a subgraph of G. Then
tw(G’) < tw(G).

Proof Let G = (V,E) be a graph. Write k = tw(G). Let G’ = (V/,E') be a
subgraph of G. Let H be a chordal embedding of G with w(H) = k + 1. Then
H[V'] is a chordal graph, since the class of chordal graphs is hereditary. The
graph H[V'] is a chordal embedding of G’ since every edge in E’ is also an
edge in E, and so it is an edge in H[V'] since H is a chordal embedding of G.
Obviously,

w(HV'T) < w(H) =k+1,

and this implies that tw(G’) < k.
This proves the lemma. O

Lemma 4.11 shows that the class of graphs with treewidth at most k is
closed under taking subgraphs. To prove that this class is also closed under
edge contractions, we prove this first for the class of chordal graphs.

Lemma 4.12. The class of chordal graphs is closed under edge contractions.

Proof Let G = (V, E) be a chordal graph. Let e = {x, y} be an edge in G and
let G’ be the graph obtained from G by contracting the edge e to a single
vertex xy. We prove that G’ is chordal.

Recall Theorem 2.35 on Page 36. Since G is chordal there exists a tree T and
a collection of subtrees of T
{TxIxe V) 4.7)

such that any two vertices a and b are adjacent if and only if T, N Ty, # 2.

Consider the subtrees Ty and T,,. Since x and y are adjacent T, N Ty # @. For
the new vertex xy define the subtree

78 4 Decomposition Trees
Tey = T UTy. (4.8)

Then Ty is a subtree of T. Any other vertex z is adjacent to xy in G’ if and
only if z is adjacent to x or to y in G. Any subtree T, intersects T, or T if and
only if T, intersects Tyy,.

Thus the graph G’ is the intersection graph of a set of subtrees of a tree, and
so, G’ is chordal. O

Lemma 4.13. Let G = (V, E) be a chordal graph and let e = {x,y} be an edge
in G. Let G’ be the graph obtained from G by contracting the edge e to a single
vertex xy. Then

w(G) < w(G). 4.9

Proof Let Q' be a maximal clique in G’. If xy ¢ Q' then Q' is a clique in G
and so
Q| < w(G). (4.10)

Now assume that xy € Q'. If x is adjacent to all other vertices z € Q' \ {xy}
then
Q= Q' \{xyhuix

is a clique in G and so (4.10) holds.
Of course, by symmetry, (4.10) also holds when y is adjacent to all other
vertices of Q' \ {xy}.

Assume that there exist vertices x’ and y’ in Q' \ {xy} such that
x € N(x)\ N(y) and vy € N(y)\ N(x). (4.11)

Then [x,%’,y’,y] is a 4-cycle in G which is a contradiction. O

The proof of the next theorem is now a piece of cake.
Theorem 4.14. Let k € NU{0}. Let T(k) be the class of graphs G with
tw(G) < k.
Then T(k) is minor closed.

Proof Let G = (V,E) be a graph and assume that tw(G) < k. Let G’ be a
minor of G. We prove that tw(G’) < k.

When G’ is a subgraph of G then the claim follows from Lemma 4.11.

Let e = {x,y} be an edge in G. Assume that G’ is obtained from G by contract-
ing the edge e to a single vertex xy.

4.3 Treewidth 79

By definition, there exists a chordal embedding H of G with w(H) = k + 1.
Since H is a chordal embedding of G, e is also an edge in H.

By lemma 4.12 the graph H’, obtained from H by contracting the edge e in H
to a single vertex xy, is chordal. Then H’ is a chordal embedding of G’.

By Lemma 4.13 w(H’) < w(H).
This proves the theorem. O

Via the theory on graph minors we immediately obtain the following the-
orem.

Theorem 4.15. The parameterized treewidth problem (tw(G), k), which asks
if a graph G has treewidth at most X, is fixed-parameter tractable. For each
k € N U {0} there exists an O(n?®) algorithm which checks if the treewidth of a
graph G is at most k.

Proof By Theorem 4.14 the class T(k) of graphs with treewidth at most k is
minor closed. By Theorem 4.5 there exists a finite obstruction set Q(k) and,
by Theorem 4.6 we can test for each element H € Q(k) in O(n?) time if it is
a minor of G. Now tw(G) < k if and only if none of the graphs in Q(k) is a
minor of G. |

Remark 4.16. The theorem above only shows that there exists an O(n?) al-
gorithm which checks if a graph has treewidth at most k. The graph minor
theory does not provide the algorithm since the obstruction set is unknown.
However, for each k € NU{0} there is an explicit linear-time algorithm which
checks if a graph has treewidth at most k.3 In Section 4.3.3 we show that
there exists an O(n**2) algorithm which checks if the treewidth of a graph
is at most k. Although this is not a fixed-parameter algorithm, it is useful for
small values of k.

4.3.1 An algorithm for treewidth two

Let’s do something easy first.

In this section we show that there exists a linear-time algorithm to check
if the treewidth of a graph is at most two.

We present the algorithm first. We prove that it is correct in theorem 4.18.

Let G = (V, E) be a graph. The algorithm to check if the treewidth of G is
at most two runs as follows.

3 T. Kloks, Treewidth - Computations and Approximations, Springer-Verlag, Lecture
Notes in Computer Science 842, 1994.

80 4 Decomposition Trees

1. If there exists a vertex x with at most one neighbor then delete it from the
graph. Let G’ = G — x. Check if the treewidth of G’ is at most two. The
treewidth of G is at most two if and only if the treewidth of G’ is at most
two.

2. Let x be a vertex with exactly two neighbors, y and z. Assume that y and
z are adjacent. Then let G’ = G — x. The treewidth of G is at most two if
and only if the treewidth of G’ is at most two.

3. Let x be a vertex with exactly two neighbors, y and z. Assume that y and
z are not adjacent. Then add the edge {y, z} to the graph and remove the
vertex x. Let G’ be this graph. The treewidth of G is at most two if and
only if the treewidth of G’ is at most two.

4. Assume that every vertex in G has at least three neighbors. Then the
treewidth of G is more than two.

As you see, in the algorithm we use the fact that every graph with
treewidth at most two has a vertex with at most two neighbors. We prove
that in the following lemma. In Exercise 4.18 we ask you to prove a similar
lemma for the graphs with treewidth at most k.

Lemma 4.17. Let G = (V, E) be a graph and assume that tw(G) < 2. Then
every subgraph of G has a vertex with at most two neighbors.

Proof ByLemma 4.11 the class of graphs with treewidth at most two is closed
under taking subgraphs. Therefore, it is sufficient to prove the claim for G.

Let H be a chordal graph embedding of G with w(H) < 3. To avoid confusion,
we use the notation Ny (x) to denote the neighborhood of a vertex x in the
graph H.

By Theorem 2.31 on Page 34 there exists a perfect elimination ordering for H,
say
o= [X1,...,%nl.

The vertex x; is a simplicial vertex in H and so its neighborhood is a clique.
Since w(H) < 3 we have that |[Ny(x;1)| < 2, and so x; has at most two
neighbors in H. Because H is a chordal embedding of G we have that

Ng(x1) € Nu(x1),
and so the vertex x; has at most two neighbors in G.

This proves the lemma. O

We now show that the algorithm above is correct.

4.3 Treewidth 81

Theorem 4.18. There exists an O(n) algorithm which checks if the treewidth of
a graph G is at most two.

Proof By Lemma 4.17, if G has n vertices and more than 2n edges then
tw(G) > 2. Assume that G has at most 2n edges. Then we can compute
the degree of every vertex x in O(n) time. This shows that the algorithm that
we described can be implemented to run in O(n) time.

Let x be a vertex with at most two neighbors.

First assume that x is isolated. Let G’ = G — x. By Lemma 4.11, if tw(G’) > 2
then also tw(G) > 2. Assume that tw(G’) < 2. Let H’ be a chordal embedding
for G’ with w(H’) < 3. Add the vertex x as an isolated vertex to H' and let H
be this graph. Then H is a chordal embedding of G and w(H) < 2.

Assume that x has one neighbor, say y. Let G’ = G — x. If tw(G’) > 2, then
also tw(G) > 2. Assume tw(G’) < 2 and let H’ be a chordal embedding of G’
with w(H’) < 3. Add the vertex x to H’ and make it adjacent to y. Let H be
this graph. Then H is a chordal embedding of G and w(H) < 3.

Assume that x has two neighbors, y and z, and assume that y and z are
adjacent. Let G’ = G—x. If tw(G’) > 2 then tw(G) > 2 and so we may assume
that tw(G’) < 2. Let H' be a chordal embedding of G’ with w(H’) < 3. Let

OJ = [XZ’“‘)XTI]

be a perfect elimination ordering for H’. Let H be the graph obtained from H’
by adding the vertex x to H’ and by making x adjacent to y and z. Consider

o= [X,%X2,...,%nl.

Since x is adjacent to y and z and since {y, z} is an edge in H, the vertex x is a
simplicial vertex in H. This proves that o is a perfect elimination ordering for
H. Thus, H is a chordal embedding for G and w(H) < 2.

Finally, assume that x has exactly two neighbors, say y and z, and assume that
y and z are not adjacent. Let G’ be the graph obtained from G by adding the
edge {y, z} and by removing the vertex x. We claim that G’ is a minor of G. To
see that, observe that contracting the edge {x,y} in G produces the graph G’.

By Theorem 4.14, if tw(G’) > 2 then tw(G) > 2. Assume that tw(G’) < 2
and let H' be a chordal embedding of G’ with w(H’) < 3. Notice that {y, z} is
an edge in H’. Add the vertex x as a simplicial to H’, by making it adjacent to
y and z. Then H is a chordal embedding of G and w(H) < 3.

This proves the theorem. O

4.3.2 k-Trees

When a graph G has treewidth k then it has an embedding into a chordal
graph H with clique number at most k + 1. In this section we show that there
is a special chordal graph embedding for G.

82 4 Decomposition Trees

Definition 4.19. Let k € N U {0}. A k-tree is a chordal graph in which every
maximal clique has cardinality k + 1.

Theorem 4.20. Let G be a graph and let k = tw(G). Then there exists an em-
bedding of G into a k-tree.

Proof Let H be a chordal graph embedding of G with w(H) = k + 1. Write
Ny (x) for the neighbors of x in the graph H.
We prove that there exists an embedding H’ of H such that H’ is a k-tree.

By Theorem 2.31 there exists a perfect elimination ordering for H, say

o= [X1,...,%nl.

For i = n down to 1 add neighbors to Ny (x;) as follows. If i > n — k then
make x; adjacent to all vertices of

{Xit1> covs Xn)
This step makes a (k + 1)-clique of {x,_x, ..., %n}.
Fori=n —k—1 down to 1 consider
Ni = Nu(xi) N {%ir1, .-, Xn}
Then |N;| < k since it is a clique in H of cardinality at most k.
By induction, every maximal clique in
H; = H'[{ xit1, -+ Xn J]

has cardinality k + 1. Since N; is a clique it is contained in a maximal clique
Q; in H}. Furthermore, |[N;| < k.

Choose a subset N} C Q; which contains N; and which has cardinality k.
Make x; adjacent to all vertices Nj.

The graph H’ is a chordal graph embedding of G and every maximal clique in
H’ has cardinality k + 1. |

4.3.3 An O(n**2) algorithm for treewidth

Computing the treewidth of a graph is NP-complete. Arnborg, et al., designed
the first polynomial-time algorithm which checks if a graph has treewidth at
most k.* In this section we explain their algorithm.

Recall Theorem 2.27 on Page 32 which says that a graph is chordal if and
only if every minimal separator is a clique.

4 S. Arnborg, D. Corneil and A. Proskurowski, Complexity of finding embeddings in a
k-tree, SIAM Journal on Algebraic and Discrete Methods 8 (1987), pp. 277-284.

4.3 Treewidth 83

Lemma 4.21. Let G = (V, E) be a chordal graph and let S be a minimal sepa-
rator in G. Let C be a component of G — S. Then C contains a vertex x such that
x is simplicial in G.

Proof. Consider the graph G[SU C]. Since the class of chordal graphs is heredi-
tary, this induced subgraph is chordal. If G[SU C] is a clique then we are done.
In that case every vertex x € C is simplicial since N(x) C SU C and so N(x) is
a clique.

Otherwise, there are two nonadjacent vertices a and b in G[S U C]. Let S’ be
a minimal a, b-separator in G[S U C]. We claim that S’ is also a minimal a, b-
separator in G. To see this, let P be an a, b-path in G —S’. Then P must contain
at least one vertex which is not in SU C. But then P contains two vertices from
S, and so P has a shortcut. This proves the claim.

Consider the components of G—S§'. Let C4 and Cy, be the components of G—S’
which contain a and b. Since S is a clique, the set S \ S’ can have vertices in
at most one of C, and Cy. Assume that C, contains no vertices from S. Then
CqaCC.

Furthermore, |Cq4| < |C|, since a € Cq4. By induction C, contains a vertex x
which is simplicial in G. O

Let G be a chordal graph and let S be a minimal separator in G. Let C
be a component of G — S. By Lemma 4.21 there exists a perfect elimination
ordering for G which eliminates all vertices of C first.

The algorithm is based on the following observation.

Let H be a k-tree embedding of a graph G. Let S be a minimal separator
in H. Then |S| = k. Furthermore, S is a separator in G. Let Cq,...,C¢ be the
components of G — S. We show that there exists a k-tree embedding H’ of G
such that

1. Sis a separator in H’, and
2. each component C; of G — S is a component of H' — S, and
3. each H'[SU C;] is a k-tree.

Let G; be the subgraph of G induced by S U C;. The graphs H[S U C;] are
chordal embeddings of G[S U C;]. Since the treewidth of each H[S U C;] is at
most k, there exist k-tree embeddings H; for H[S U C;]. Define the k-tree H’
as the union of the graphs H;.

Theorem 4.22. Let G be a graph and let k € N U{0}. There exists an O(n**2)
algorithm which check if the treewidth of G is at most k.

84 4 Decomposition Trees

Proof When G has at most k + 1 vertices then tw(G) < k. In that case the
algorithm makes a clique of G and it reports YES. Otherwise, if G has more
than k+ 1 vertices, by Theorem 4.20 the graph has tw(G) < k if and only if G
has a k-tree embedding. The algorithm that we describe below finds a k-tree
embedding H if tw(G) < k.

The algorithm first makes a list of all pairs (S, C) where

(i) Sis aseparator in G and |S| = k, and
(ii) Cis a component of G —S.

Notice that G has at most n* separators S of cardinality k. The number of
components in G — S is at most n for each separator S, so the list contains at
most n**1 pairs (S, C).

For a pair (S, C) let G*(S, C) be the graph obtained from G[S U C] by making
a clique of S.

The algorithm checks if there exists a separator S with |S| = k, such that for
each component C of G — S, G*(S, C) has a k-tree embedding. If that is the
case, then the treewidth of G is at most k, and otherwise the treewidth of G
is more than k.

First, the algorithm sorts the pairs (S, C) according to nondecreasing cardi-
nalities |C|. It does that by bucket sort in time O(n**1). It processes the pairs
(S, C) in that order as follows.

When there is a k-tree embedding of G*(S, C) then, by Lemma 4.21, there
is a perfect elimination ordering that eliminates the vertices of C first. Let
¢ € C be the last vertex in this elimination ordering. Then c is adjacent to all
vertices of S in the k-tree embedding. The algorithm tries all vertices ¢ € C as
candidates.

Consider a pair (S, C). Let ¢ € C and define
S(c) =Su{ch
Let C1(c),..., C¢(c) be the components of
G[C\ S(c)].

For each i € {1, ..., t} check if there exists a separator S;(c) such that

(@) {y |y has aneighbor in Ci(c) } C Si(c), and
(i) |Si(c)] =k, and
(iii) (Si(c), Ci(c)) is a YEs instance, that is, there exists a k-tree embedding
of G*(Si(c), Ci(c)).

We claim that the pair (S, C) can be processed in O(|C|?) time. Notice that a
k-tree has O(kn) edges, which is O(n) since k is fixed. Thus for each choice

4.3 Treewidth 85

of ¢ € C the components C;(c) can be determined in O(|C|) time (see Exer-
cise 4.18). Since C is connected, the vertex ¢ has a neighbor in each compo-
nent C;i(c). There are |C| choices for ¢ and O(k) candidates for the separators
Si(c) because

ce Si(c) and |S\Si(c)=1.

For each component C;(c) it can be checked if there is a suitable separator
S;i(c) (which reports YES) in constant time. This proves the claim.

Notice that this shows that the overall time complexity of the algorithm is
bounded by O(n**2), since there are O(nk) separators S of cardinality k and
the summation of |C|? over all components C of G — S is bounded by O(n?).

If there exist a vertex ¢ € C and a collection of separators S;(c) such that
the answer is YEs for all G*(S;(c), Ci(c)) then the algorithm answers YES for
G*(S, C). Otherwise, it answers No for G*(S, C).

If there exists a separator S with |S| = k such that for all components C of
G — S the algorithm above reports a YES for the pair (S, C), then the treewidth
of G is at most k. Otherwise the treewidth is more than k. |

4.3.4 Maximum clique in graphs of bounded treewidth

As an example, we show that, for every k € N U {0} there exists a linear-time
algorithm to compute the clique number for graphs of treewidth at most k.

The usual strategy to solve NP-complete problems for graphs of bounded
treewidth is dynamic programming on the clique tree of the chordal embed-
ding. For the clique number problem there is an easier algorithm, that we
describe below.

Let k € NU{0} and let G be a graph with treewidth at most k. Then there
exists a chordal embedding H of G with w(H) < k 4+ 1. We mentioned that
there exists a linear-time algorithm to construct the graph H, although we did
not give you the details of this algorithm.

Theorem 4.23. Let k € N U {0}. There exists an O(n) algorithm to compute
w(G) for graph G € T(k).

Proof Let G = (V, E) be a graph and assume that tw(G) < k. We assume that
we have a chordal embedding H of G with w(H) < k+ 1.

Obviously, if M is a maximal clique in G then M is a clique in H. Let M be the
set of all maximal cliques in H. Then

w(G) =max { W|| Imex WC M and G[W]is a clique }. (4.12)

86 4 Decomposition Trees

By Lemma 2.32 on Page 34, H has at most n maximal cliques, where n is the
number of vertices of H.

Let
o=[X1,...,%n] (4.13)

be a perfect elimination ordering for H. This can be obtained in linear time by
the algorithm of Tarjan and Yannakakis. Notice that H has at most n- k edges,
and so this algorithm runs in O(n - k) = O(n) time, since k is a constant.

Define
Ni={xj]j>1 and x; € N[xi]}. (4.14)
Then Formula (4.12) becomes

w(G)=max{|W||WCN; ief{l,...,n}and G[W]is aclique }. (4.15)

Each N; has at most k+ 1 vertices, so the number of subsets of N; is bounded
by 2%*1. Using a suitable datastructure we can check in constant time if two
vertices are adjacent in G. So, for each subset W C N; we can check in
O(k?) time if G[W] is a clique or not. Thus the overall time complexity of this
algorithm is O(2¥ - k? - n) = O(n), since k is a constant. O

4.3.5 Chromatic number for graphs of bounded treewidth

In this section we illustrate the standard technique, namely dynamic program-
ming on the decomposition tree. As an example, we show how to compute the
chromatic number for graphs of bounded treewidth.

Theorem 4.24. Let k € N U{0}. There exists a linear-time algorithm that com-
putes x(G) for graphs G € T(k).

Proof Let k € NU{0} and let G = (V,E) be a graph in T(k). There exists
a linear-time algorithm which computes a chordal embedding H of G with
w(H) < k+ 1. Since H is perfect x(H) < k+ 1 and so, since G is a subgraph
of H also x(G) < k+ 1.

Consider a clique tree (T, 8) for H. For a vertex p in T let S, € 8 be the
maximal clique of H that is assigned to p.

Root T at some arbitrary vertex r. For a vertex p in T let T, be the subtree of
T which is rooted at p. Thus T, = T.

Foravertex pin T let

Vp={xeV|3iisavertexin T, and x € S; }. (4.16)

Consider all vertex colorings of S,. A coloring of S, with £ colors is a partition

4.4 Rankwidth 87

T={Ql) LR Qe}

of S, into ¢ color classes. Some of these color classes may be empty.

Since [Sp| < k + 1, there are at most ¢+ different partitions of S,, namely,
each vertex in S, has one of ¢ different colors.

A partition P of S;, is valid when no two vertices in the same color class of P
are adjacent in G.

Let 1 € ¢ < k+ 1. Let P be a valid partition of S, with £ color classes.
Let by, (P, ¢) be a boolean variable which is TRUE if and only if there exists a
coloring of G[V,,] with £ colors such that the vertices of S,, are colored as in
P. For each vertex p the algorithm determines all values by, (P,) as follows.

First assume that p is a leaf. Then V,, = S,. The algorithm determines all
values by, (P, ¢) by trying all partitions of S,,. If P has ¢ color classes (possibly
some empty), and if each color class is an independent set in G[S,], then
by (P, £) is TRUE. Otherwise it is FALSE.

Let p be an internal vertex of T and let ¢y, ..., ¢t be the children of p in T. For
eachie{1,...,t}let S; € 8 be the maximal clique of H which is assigned to
the vertex c; in T.

The important observation is that no two vertices
x€Si\Sp and yeS$;\Sp

are adjacent when 1 # j. (This follows from Definition 2.33 on Page 35 of the
clique tree.)

Let ? = {Qu,...,Q¢} be a valid partition of S,. Then b, (P,) is TRUE if and
only if for each child c; of p there exists a valid partition ?" = {Q},..., Q}}
such that

(i) b, (?,¢) is TRUE, and
(i) if Q’j € P then
Q; n Sp c Qj*
The graph G has a coloring with ¢ colors if and only if there exists a valid

partition P with £ color classes at the root r, such that b, (P, {) is TRUE.
This proves the theorem. O

4.4 Rankwidth

Recall the definition of a decomposition tree (T, f) of a distance-hereditary
graph G = (V, E) as described in Section 2.3.1. Thus T is a rooted binary tree
and f is a bijective map from the vertices of G to the leaves of T.

88 4 Decomposition Trees

For each edge {p,c} in T where c is the child of p, let W, be the set of
vertices of G that are mapped to leaves in the subtree of c¢. The twinset Q. is
the subset of W, that have neighbors in V \ We.

By definition of the decomposition tree, all vertices of Q. have the same
neighbors in V \ We.

Consider the adjacency matrix A of G. This is an nxn matrix with diagonal
elements Aj; = 0 for all i. For i # j, Ay; = 1 if the vertices x; and x; are
adjacent in G and A;; = 0 if x; and x; are not adjacent in G.

Let e = {p, c} be an edge in T. The cutmatrix C. is the submatrix of A of
which the rows are the vertices of W, and the columns are V \ W,.

Since all vertices of Q. have the same neighbors in V \ W,, the cutmatrix

C. has a shape
_(1o0
Ce = (0 0) (4.17)

where] is a matrix with all ones. The first set of rows of C,. correspond with
the vertices of Q. and the first set of columns correspond with the neighbors
of vertices in Q. in V \ We.

When Q. = &, this matrix becomes the zero matrix. If Q. = W, then the
shape of the matrix becomes
(70).

When the vertices of Q. are adjacent to all vertices of V \ W, then the matrix

becomes I
(0):

So in general, the cutmatrix is a submatrix of the matrix in (4.17).

The binary field GF[2] has two elements, 0 and 1, and the addition and
multiplication are defined by

0+0=0 and 0+1=1+0=1 and 1+1=0
and

0-0=0 and 0:1=1-0=0 and 1-1=1.

Column vectors can be added by using the addition rules of GF[2] entry-
wise. The multiplication of a vector with a scalar « € {0, 1} is done entrywise,
with the rules for multiplication of GF[2].

4.4 Rankwidth 89

The rank of a matrix over GF[2] is the number of linearly independent
columns. A set of column vectors a,,..., a; is linearly dependent if there exist
scalars «y,..., o, with o; € {0,1} for each i € {1,...,1t}, such that

op-ay+ - +og-ar=0

where 0 is the all-zero vector.
The rank of a matrix is computed using the well-known Gauss elimination
method.

Definition 4.25. A graph G has rankwidth k if there exists a decomposition tree
(T, f) such that every cutmatrix has rank over GF[2] at most k.

Here, a decomposition tree (T, f) is defined as above, so T is a rooted binary
tree and f is a bijection from the vertices of G to the leaves of T.

We denote the class of graphs with rankwidth k by R(k).

Since we are only interested in matrices that have small rank, the follow-
ing observation is useful. It shows that, we can avoid the Gaussian elimination
and instead just look at the number of different rows or columns.

Lemma 4.26. Let A be a matrix and let k be its rank over GF[2]. Then A has at
most 2¥ different columns.

Proof Since the rank over GF[2] of A is k there is a basis {a;, ..., ax}. Then
every column ¢ of A can be written as a linear combination,

C=0 -a; + -+ oy - A

The scalars «; € {0,1}, for all i € {1,...,k}. There are at most 2* different
linear combinations and so there are at most 2% different columns in A. O

Lemma 4.27. Let G be a graph with rankwidth k. Then the rankwidth of its
complement G is at most k + 1.

Proof Let (T, f) be a decomposition tree for G such that the rank over GF[2]
of every edge in T is at most k.

For G we use the same decomposition tree. We write J for the all-one matrix.
Each cutmatrix C. changes to] + C;, which switches the zeroes and ones in
C. into ones and zeroes.

Since the rank over GF[2] of C. is k, there is a basis {a, .. ., ay} for the column
space of C.. Then every column of] + C. can be written as

jte=j+oq-a;+---+ o -a

where j is the all-one vector. This shows that the dimension of the columns
space of] + C. is at most k + 1. Here we use the linear algebra property
that {j,as, ..., ax} contains a basis for the columns of] + C., with a minimal
number of elements. O

90 4 Decomposition Trees

Let’s look at an example.

Lemma 4.28. A graph is a cograph if and only if it has a decomposition tree
such that every cutmatrix or its transpose has a shape

(70)

or a submatrix of that. Here] is the all-ones matrix. Consequently, cographs
have rankwidth one.

Proof By Theorem 2.10, a graph G = (V, E} is a cograph if and only if it has a
cotree (see Section 2.2.1). Any binary tree with at least two vertices has two
leaves that have the same parent. Let x and y be two vertices of G that are
mapped to sibling leaves. We claim that x and y are twins.

To see that, notice that x is adjacent to z # x if and only if their common
ancestor is labeled with an ®-operator. Let z € V \ {x,y}. then the common
ancestor of x and z is the same as the common ancestor of y and z. This proves
the claim.

Actually, a graph is a cograph if and only if every induced subgraph with at
least two vertices has a twin. Namely, if H is a cograph, then the operation
which creates a twin of some vertex x in H does not create an induced P4.
Thus the class of cographs is closed under creating twins.

We prove the lemma by induction on the number of vertices. Consider a cotree
(T, f) for the cograph G. Let x and y be twins, mapped to sibling leaves of T.
Remove the vertex x and let G’ = G — x.

A decomposition tree (T, f') for G’ is obtained from the decomposition tree
(T, F) for G by removing the leaf that is mapped to x, and by contracting the
edge in T that connects y to its parent. The ® or & label of the parent of x
and y in T disappears.

By induction, the cutmatrix of every edge in T’ has the shape as claimed in
the lemma. Now consider the edges of T. For every edge e in T which is not
incident with x or y, the cutmatrix C, is obtained from the cutmatrix C,, in T’
by making a copy of the row or column that represents the vertex y since x
and y have the same neighbors.

Consider an edge e of T which is incident with a leaf. Let a be the vertex that
is mapped to that leaf. Then the cutmatrix of e is

(1...10...0)’

where the single row represents a. The first set of columns, those with a 1,
are the neighbors of a and the final set of columns, those with a 0, are the
nonneighbors of a. Thus in any decomposition tree, the cutmatrix of an edge
which is incident with a leaf, has the desired shape.

This proves the lemma. O

4.4 Rankwidth 91

In the same manner as in the proof of Lemma 4.28 one can show that
every cutmatrix in the decomposition tree of a distance-hereditary graph, has

a shape
Jo
00/°

We ask you to prove that in Exercise 4.20.

Many NP-complete problems can be solved in polynomial time for graphs
of R(k). The reason is this. Consider a decomposition tree (T, f) for a graph
in R(k). Let e = {p,c} be an edge in T, where p is the parent of c. Let W,
be the set of vertices that are mapped to leaves in the subtree rooted at c. By
Lemma 4.26 the vertices of W, have at most 2¥ different neighborhoods in
V \ W.. In the next section we discuss a class of problems that can be solved
in polynomial time for graph in R(k).

Algorithms for graphs in R(k) use the dynamic programming strategy on
the decomposition tree. Luckily, this decomposition tree can be obtained in
O(n?) time.> We omit the description of this algorithm.

We have seen in Theorem 4.14 that the class T(k) of graphs with treewidth
at most k is closed under taking minors. As a consequence, this class of graphs
is characterized by a finite obstruction set.

Unfortunately, this is not true for the class R(k) of graphs with rankwidth
at most k. For example, consider a clique with 5 vertices. This graph has
rankwidth one (it is a cograph). Now remove edges such that a 5-cycle re-
mains. The 5-cycle is not distance-hereditary; its rankwidth is two. Thus the
5-cycle is a minor of the 5-clique but the rankwidth of the 5-cycle is bigger
than the rankwidth of the 5-clique. Actually, this example shows that the class
R(k) is not even closed under taking subgraphs.

For the class R(k) we define a different ordering.

Definition 4.29. Let G = (V, E) be a graph. Let x € V. The local complementa-
tion at x is the operation which replaces all edges in N(x) by nonedges and all
nonedges in N(x) by edges.

Definition 4.30. A graph H is a vertex-minor of a graph G if H can be obtained
by a sequence of operations, each of which is either

(a) a deletion of a vertex, or
(b) a local complementation.

In Exercise 4.21 we aks you to prove that R(k) is closed under taking
vertex-minors.
Oum and Symour proved the following theorem.

5 P. Hlinény and S. Oum, Finding branch-decompositions and rank-decompositions,
SIAM Journal on Computing 38 (2008), pp. 1012-1032.

92 4 Decomposition Trees
Theorem 4.31. Let k € NU {0} and let
Gi1, Ga, ... (4.18)

be an infinite sequence of graphs in R(k). There exist indices 1 < j such that G;
is a vertex-minor of G;.

As a consequence of this theorem the graphs in R(k) are characterized by a
finite collection of forbidden vertex-minors. To prove this, Oum and Seymour
showed that, for k > 1, each graph in the obstruction set has at most

6k+1 -1
5

vertices.

This finite obstruction set for R(k) leads to a polynomial recognition algo-
rithm. However, this is non-constructive since the obstruction set is unknown.
Furthermore, the timebound for this algorithm is much worse than the con-
structive O(n®) algorithm by Hlin&ny and Oum, mentioned above. When H
is a fixed graph, then checking if a graph G contains H as a vertex-minor is
quite complicated.

4.5 Monadic second-order logic

The most natural way to express and classify graph-theoretic problems is by
means of logic.

In monadic second order logic a finite sentence is a formula that uses
quantifiers V and 3. The quantification is over vertices, edges, and subsets of
vertices and edges. Relational symbols are —, €, =, and, or, C, U, N, and =-.
Some of these are superfluous.

Although the minimization or maximization of the cardinality of a subset
is not part of the logic, one usually includes them.

As an example we show how the feedback vertex set can be formulated
in monadic second-order logic. Obviously, we can formulate that V \ F is a
forest by a sentence which expresses that every subset W of V'\ F has a vertex
of degree at most one but the following method to formulate that a graph is
a forest is more informative.

First we show that the property that a graph is connected can be formu-
lated in this logic. A graph is disconnected if the vertex set V has a partition
{V1, V2} such that there is no edge between a vertex in V; and a vertex in V..
Note that this property can be formulated in monadic second-order logic.

4.5 Monadic second-order logic 93

Next we show that we can formulate the property that a graph has no
induced cycle of length more than three in this logic. A graph has an induced
cycle of length at least four if there exist three vertices w, wy, and w, such
that w is adjacent to w; and w;, and w; and w, are not adjacent, and such
that the following holds. Let

V' = (V\ N[w]) U{wq, w).

Obviously, there exists an induced cycle containing {w, wy, w,} if and only if
ws and w, are contained in a component of G[V’].

Checking for a triangle is easy and so, one can formulate the property that
a graph is a forest in monadic second-order logic. Finally, the fact that a subset
F is a feedback vertex set can be formulated by stating that V \ F induces a
forest.

Another easy example is this. Fix some graph H. Then one can formulate in
monadic second-order logic if a graph G contains H as an induced subgraph.

One more example. It is only a little bit more complicated to show that for
every graph H there is a monadic second-order formula that expresses that a
graph G contains H as a minor. We leave it as an exercise.®

Let k € NU{0} and let Q(k) be the finite obstruction set for T(k). Then
one can formulate the question if the treewidth of a graph G is at most k
by a finite monadic second-order formula. Namely, write down the monadic
second order formula which checks if some H € Q(k) is a minor of G.

Courcelle popularized monadic second-order logic by proving that any
graph-theoretic problem that can be formulated in monadic second-order
logic can be solved in linear time for graphs of bounded treewidth.”

Theorem 4.32. Let k € NU{0}. Any problem that can be formulated in monadic
second-order logic can be solved in linear time for graphs in T (k).

A restricted form of this logic is where one does not allow quantification
over subsets of edges. The CoMS-logic is such a restricted monadic second-
order logic where one can furthermore use a test whether the cardinality of
a subset is even or odd. Using this logic one can formulate for example if a
fixed graph H is a vertex-minor of a graph G.

% Hint: Use the alternative formulation of a minor, which appears after Defini-
tion 4.3.

7 B. Courcelle and S. Oum, Vertex-minors, monadic second-order logic, and a conjec-
ture by Seese, Journal of Combinatorial Theory, Series B 97 (2007), pp. 91-126.

94 4 Decomposition Trees

Remark 4.33. Notice the difference. One can formulate that a graph is Hamil-
tonian by expressing this as the existence of a suitable subset of the edges.
However, this formulation is not valid in C;MS-logic.

The class of graphs that have rankwidth at most k is much larger than the
class of graphs with treewidth at most k. (There exists a function

f:N—>N

such that if a graph has treewidth at most k then its rankwidth is at most
f(k). The converse is of course not true; any clique has rankwidth one, but its
treewidth is the number of vertices minus one.) The set of problems that can
be solved in polynomial time for graphs of bounded rankwidth is consequently
a bit smaller.

Theorem 4.34. Let k € NU{0}. Any problem that can be formulated in C;MS-
logic can be solved in O(n?) time for graphs in R(k). When a decomposition tree
for the graph is a part of the input, then these algorithms run in linear time.

4.6 Problems

4.1. Consider an infinite sequence of trees
Ty, Ta, --. (4.19)

Let < denote the induced subgraph relation. It it true that for any sequence
of trees, as in (4.19) there always exist integers i < j such that T; < Tj?
Hint: Consider a sequence of paths Py, Py,... In each path P;, say with ends
a; and b;, add two leaves, af and b}. Make a} adjacent to N(a;) and make
b} adjacent to N(b;) (in other words; create a twin of each end).

4.2. Prove the alternative definition of a minor, which appears after Defini-
tion 4.3.

4.3. Prove that, for two trees T; and T, if T; < T2 then there exist a sequence
of edge contractions in T, that produces T;.

4.4. Check that the class of all planar graphs is closed under taking minors.

4.5, Let T be the class of all forests.

(a) Prove that G € T if and only if G has no triangle as a minor.
(b) Prove that you can test in O(n®) time if a graph G is a forest.
(¢) Can you do better? (This is a joke.)

4.6. A graph is outerplanar if it has a plane embedding such that all vertices
are on the outerface. Let O be the class of outerplanar graphs.

4.6 Problems 95

(i) Prove that O is closed under taking minors.
(ii) Prove that a graph is outerplanar if and only if it has no K4 nor K, 5 as a
minor. Thus the obstruction set for O is

O ={Kg, Kz3 }.

4.7. Consider graphs of treewidth two.

(1) Prove that a graph has treewidth at most two if and only if it has no K4 as
a minor.

(2) Use Problem 4.6 to show that every outerplanar graph has treewidth at
most two.

(3) Give an example of a graph which has treewidth two but which is not
outerplanar.

4.8. Consider the class of graphs that you can draw on the surface of a torus
(that is a donut) without crossing lines. The graphs in this class are called
toroidal. Show that this class of graphs is minor closed.

The obstruction set is finite, but it seems that it contains at least 16000 ele-
ments. Can you think of one element?

Hint: It is not difficult to show that you can draw Ks on a torus. Also, K¢ and
Ky are toroidal. In general, if you can draw a graph G in the plane with at
most one crossing then G is toroidal. Toroidal graphs have chromatic number
at most 7; thus Kg is not toroidal.

4.9. Show that K3 3 is a minor of the Petersen graph.

4.10. Let k € NU{0}. Let (k) be the class of graphs G that have at most k
vertex-disjoint cycles.

(i) Show that € is closed under taking minors.

(ii) What is the obstruction set Q(k)?
Hint: Consider the graph Q which is the union of k + 1 triangles. Prove
that Q(k) ={Q}.

(iii) Let G(k) be the class of graphs that have a feedback vertex set with at
most k vertices. Show that G(k} C €(k). Can you think of a graph that is
in €(k) but not in G(k)?
Hint: Consider the 5-wheel, that is, a 5-cycle plus one vertex adjacent
to all vertices in the cycle. How many vertex-disjoint cycles are there in
the 5-wheel? What is the minimal cardinality of a feedback vertex set?

4.11. Let k € NU{0}. Let X(k) be the class of graphs that have a vertex cover
with at most k vertices.

(a) Show that X (k) is closed under taking minors.

(b) Consider the graph H which is the union of k + 1 edges. Then H ¢ X (k).

(c) Can you think of another graph than Q which is in the obstruction set of
K(k)?

96 4 Decomposition Trees

4,12, Let k € NU{0}. Let D(k) be the class of graphs G = (V, E) for which
there is a subset D of vertices with |D| < k such that every vertex of G — D
has degree at most two in G — D.

(1) Show that D(k) is minor closed.
(2) Show that there exists an O(n?) algorithm to check if G € D(k).

4.13. Let T be a tree and let
{TxIxeV} (4.20)
be a collection of subtrees of T. Define a graph G = (V, E) by
{x,y}€ E ifandonlyif [T,NTyl > 2. (4.21)

I. What can you say about G?
Hint: Show that any graph is the edge-intersection graph of a collection
of subtrees of a star (a tree of diameter two).

II. Let T be a star and fix the degree of T by some k € N. Let G(k) be the
class of graphs that are edge-intersection graphs of T. What can you say
about G(k)?

I11. Is the class G(k) minor closed?®

4.14. Let G be a graph. Prove that
w(G)<tw(G)+1 and x(G) < tw(G)+1.

4.15. Let G be a k-tree and consider a vertex coloring of G with k + 1 colors
such that no two adjacent vertices have the same color. Let 1 < p < k+1
and let C, any subset of p colors. Let G, be the subgraph of G induced by the
vertices that have colors in Cy. Prove that G, is a (p — 1)-tree.

Hint: Use a perfect elimination ordering for G and prove the claim by induc-
tion.

4.16. Let G be a chordal graph. Prove that if G is not a clique then it has two
simplicial vertices that are not adjacent.
Hint: Use Lemma 4.21.

4.17. Let G be a k-tree. Prove that every minimal separator in G has cardinal-
ity k and it is the intersection of two maximal cliques of cardinality k + 1.

4.18. Let G be a graph and let k = tw(G). Prove that every induced subgraph
of G has a vertex with at most k neighbors.

8 J. Gramm, J. Guo, F. Hiiffner and R. Niedermeier, Data reduction, exact, and heuris-
tic algorithms for clique cover, proceedings 8" ALENEX06, SIAM (2006), pp. 86-94.

4.6 Problems 97

4.19. Prove that the number of edges in a k-tree is

k+1 k+1
(9 >+(n—k—1)k=nk—(5)

4.20. Let (T, f) be a decomposition tree for a distance-hereditary graph. Prove
that the cutmatrix of every edge in T has a shape

(00)

Hint: A distance-hereditary graph has an isolated vertex, or a pendant vertex,
or a twin. Use this fact to prove that for every edge e in T the vertices of W,
have only two different neighborhoods in V \ E., namely, all vertices of the
twinset Q. have the same neighbors in V \ W, and all vertices of W, \ Q.
have the same neighbors (zero) in V \ W,.

4.21. Let k > 1. Prove that the class R(k) of graphs of rankwidth at most k is
closed under taking vertex-minors.

4.22.Let G = (V, E) be a graph. Let S C V be a subset of vertices. A switch
of G with respect to S is the following operation. Change all edges with one
endvertex in S and the other in V'\ S into nonedges, and change all nonedges
with one endvertex in S and the other in V' \ S into edges.

Let G be the class of graphs that can be switched to a cograph. In other
words, G € G if there exists a set of vertices in G such that the switch of G
with respect to S changes G into a cograph.

Prove that graphs in G have rankwidth at most two.

4.23. Consider the following class § of graphs G for which there is a color-
ing of the vertices with colors black and white, such that for every induced
subgraph H of G, one of the following holds.

(i) H has one vertex (either black or white).
(ii) There exists a partition {V7, V,} of the vertices of H such that either
(a) every vertex x of Vi is adjacent to all vertices of V, that have the
same color as x, or
(b) every vertex x of V; is adjacent to all vertices of V, that have the
opposite color of x.

(1) Prove that the graphs in G have rankwidth at most two.

(2) Prove that there exists a polynomial-time algorithm to check if a graph G
isin G.

4,24, Let k € NU{0}. Prove that the chromatic number problem can be solved

in linear time on graphs with treewidth at most k by showing that the problem

can be formulated in monadic second-order logic.

Hint: Use the result of Exercise 4.14, that is,

tw(G) < k implies that x(G) < k+1.

98 4 Decomposition Trees

4.25. Prove that the domatic partition problem can be solved in linear time
on graphs of bounded treewidth.

Hint: First prove that the domatic number of a graph G € T(k) is bounded
by k + 1.

References

1. R. Niedermeier, Invitation to fixed-parameter algorithms, Oxford Lecture Series in
Mathematics 31, 2006.

2. F. Fomin and D. Kratsch, Exact exponential algorithms, Springer-Verlag, 2010.

3. M. Golumbic, Algorithmic graph theory and perfect graphs, Elsevier, Annals of Dis-
crete Mathematics 57, 2004.

4. R. Diestel, Graph theory, Springer-Verlag, Graduate Text in Mathematics 173,
2010.

5. T. Kloks, Treewidth — computations and approximations, Springer-Verlag, Lecture
Notes in Computer Science 842, 1994.

Digitized by GOOS[Q

Index

(k, £)-coloring, 63
2K,, 31
3-coloring, 8
3-edge-coloring, 8
C,MS-logic, 92
G —NI[x], 3
G-S5,3

G—x,3
G=(V,E), 1
GF[2], 88

G[S], 7

Ks, 95

Ks 3, 95

L(G), 21

N(x), 3

N[x], 3
O*-notation, 1
Ps, 24

P;-free graph, 44
P4, 23
X-partition, 9

G, 4

w(G), 4, 25

@-operator, 25
®-operator, 25
<m-ordering, 72

T(G), 44

9G), 23

¢(G), 53

a, b-path, 83

k-tree, 81

k-tree embedding, 82, 84
t-cycle, 61

tw(G), 75

X, Yy-separator, 31

1-1 correspondence, 35
3-hitting set, 66
3-hitting set problem, 66
4-cycle, 30

5-wheel, 95

Ackermann, W., 66
acyclic orientation, 42
addition rule, 88
adjacency matrix, 1
adjacent, 16
algorithm, 4
all-ones matrix, 88
all-zero vector, 89
antihole, 22

arc, 39

Ariyoshi, H., 2
Arnborg, S., 82
asteroidal triple, 41
AT-free, 41

102 Index

backtrack, 54

basic classes of perfect graphs, 22
Berge, C., 22

big deal, 50

bijection, 25

bijective map, 87

binary field, 88

binary rank, 89

binary tree, 3

bipartite graph, 7

bitvector, 64

Bjorklund, A., 10

boolean variable, 87

bottom line, 43

bounded search tree technique, 54
branch, 4

branch-decomposition, 91

bucket sort, 84

Catalan number, 61
Catalan, E. C., 61

Chen, J., 60

child, 28

chord in a circle, 47
chordal embedding, 60, 85
chordal graph, 31, 60
chordless cycle, 39
chordless path, 27, 32
chromatic number, 6
Chudnovsky, M., 23

circle diagram, 47

circle graph, 47

class of forests, 94

class of graphs, 19

class of planar graphs, 19
clique, 4, 60

clique cover, 21

clique cover number, 21, 23
clique cover of edges, 96
clique number, 25

clique separator, 32

clique tree, 35

closed neighborhood, 3
cograph, 23

color class, 63

column basis, 89
comparability graph, 39, 42
complement, 4, 21
complete graph, 42

component, 4

connected, 24

connected component, 4
connected graph, 24
consecutive clique arrangement, 40
constant time, 2
constraint satisfaction, 8
contraction of edge, 72
Corneil, D., 25, 82
Cornuéjols, G., 23

cotree, 25

Courcelle, B., 93
crossing linesegments, 41
cutmatrix, 88

cycle, 4

datastructure, 86
decomposition tree, 25, 69
decomposition tree for DH-graph, 28
degree, 5

deletion of edge, 72

deletion of vertex, 72
DH-graph, 28

directed edge, 39

directed graph, 42

directed triangle, 42
disconnected, 25, 92

distance, 27
distance-hereditary graph, 26
domatic number, 98

domatic partition, 9
dominating set, 8, 12
dominating set problem, 8, 12
domino, 27

donut, 95

Downey, R., 52

dynamic programming, 10, 85

edge contraction, 71
edge-intersection graph, 96
Edmonds, J., 57
elementary school, 66
empty graph, 4

Eppstein, D., 8

Even, S., 41

exhaustive search, 19
exponential algorithm, 1, 5
exponential space, 6
extension, 13

Feder, T., 63

feedback vertex set, 29
feedback vertex set problem, 29
Fellows, M., 52

Fibonacci number, 16
Fibonacci, L., 16

finite basis theorem, 72

finite class, 19

fixed-parameter algorithm, 49
fixed-parameter tractable, 51
flower, 57

Fomin, F., 6

forbidden induced subgraph, 63
forest, 29

four color theorem, 6

full binary tree, 54

Gauss elimination method, 89
Gauss, J. C. F., 89

gem, 27

Gilmore, P., 39
Grotschel, M., 23
Gramm, J., 96

graph, 1, 4

graph class, 19

graph coloring, 46

graph minor, 69

graph minor theorem, 72
graph minor theory, 69
Guo, J., 96

Hiiffner, F., 96

Habib, M., 43

Halin, R., 40
Hamilton, W. R., 17
Hamiltonian cycle, 17
Hamiltonian path, 17
Hammer, P., 28
Hamming distance, 65
Hamming, R., 65
Held, M., 10

Hell, P., 63

Helly property, 40
hereditary class, 19
Hlinény, P., 91
Hoffman, A., 39

hole, 22, 24, 27
homogeneous coloring, 63
house, 27

Index

Howorka, E., 26
Hunt, J. W,, 44
Husfeldt, T., 10

Ide, M., 2

inclusion-exclusion, 10
independence number, 23
independent set, 1
independent set problem, 52
induced cycle, 31

induced path, 32

induced subgraph, 3

induced subgraph relation, 70
infinite class, 19

infinite sequence, 70

infinite sequence of cycles, 71
infinite sequence of graphs, 70
infinite sequence of paths, 71
infinite sequence of trees, 94
infinite subsequence, 70
internal node, 26

internal vertex, 25, 32
intersection graph, 36
interval, 38

interval containment graph, 43
interval graph, 38

inverse Ackermann function, 66
isolated vertex, 4, 27
isomorphic, 70

join, 26, 29
join-operation, 28
joke, 94

Ké6nig-Egervary theorem, 57
Kénig, D., 21

Kanj, L., 60

Karp, R., 10

kernel, 55, 56
kernelization, 55
Koivisto, M., 10
Kratsch, D., 6

Kruskal, J., 72
Kuratowski theorem, 73
Kuratowski, K., 73

label, 25
Lawler, E. L., 7
leaf, 25

103

104 Index

left child, 4

left endpoint, 43

left subtree, 26

Lempel, A., 41

length of cycle, 4

length of path, 4

linear-time algorithm, 5
linearly independent columns, 88
linegraph, 21

linegraph of bipartite graph, 21
linesegment, 41

linked list, 1

listing algorithm, 2

Liu, X, 23

local complement, 91

logic, 92

Lovasz number, 23

Lovasz, L., 21, 23

Maffray, F., 28

matching, 21, 56

matrix partition, 63

maximal clique, 35

maximal independent set, 2
maximum clique, 37

maximum independent set, 1, 37
maximum matching, 21, 56
maximum matching problem, 57
membership, 19

Ming, A., 61

minimal embedding, 62
minimal separator, 31, 82
minimum extension, 13
minimum fill-in, 60

minimum fill-in problem, 60
minor, 69, 72

minor ordering, 72

minor test, 73

minor-closed class of graphs, 74
modular decomposition, 43
monadic second-order logic, 92
Moon, J. W, 2

Moser, L., 2

multiplication rule, 88

natural number, 15, 70
neighbor, 1
neighborhood, 3
Niedermeier, R., 96

non-chordal, 60
nondecreasing, 70
nonneighbor, 24
NP-complete, 9
NP-completeness, 1

obstruction set, 73

obstruction set of vertex-minors, 92

odd antihole, 22

odd cycle, 22

odd hole, 22

ordering by induced subgraph relation,
70

orientation, 39

Oum, S., 91

outerface, 94

outerplanar graph, 94

parameterized clique problem, 49

parameterized complexity, 52

parameterized decomposition tree, 69

parameterized feedback vertex set
problem, 74

parameterized graph minor problem, 73

parameterized problem, 49

parameterized reduction, 54

parent, 28

partial order, 70

partition of a set, 9

path, 4

Paul, C., 43

pendant vertex, 27

perfect elimination ordering, 33, 80

perfect graph, 20

perfect graph theorem, 21

Perl, Y., 25

permutation diagram, 41

permutation graph, 41

Petersen graph, 95

piece of cake, 78

planar graph, 6

Pnuelj, A., 41

polynomial delay, 2

polynomial factor, 14

polynomial space, 6

problem kernel, 55

proportional, 7

Proskurowski, A., 82

pruned search tree, 5

quantification, 92
quantifier, 92
quasi-order, 70

rank of a matrix, 89

rank-decomposition, 91

rankwidth, 87, 89

real line, 38

recognition of planar graph, 20

recognition problem, 19

recurrence relation, 5

reduced graph, 5

relation, 70

relational symbol, 92

restricted monadic second-order logic,
92

right child, 4

right endpoint, 43

right subtree, 26

Robertson, N., 22

Robson, J. M., 6

rooted binary tree, 3

sandwich, 23

Schrijver, A., 23

search tree, 5
search-tree for vertex cover, 59
Seese, D., 93

Seidel switch, 97
Seidel, J., 97

separator, 31

set cover, 11

set cover problem, 11
set partitioning, 10
Seymour, P., 22
Shannon capacity, 23
Shannon, C., 23

shape of matrix, 88
Shirakawa, I., 2
sibling, 90

sibling leaves, 90
simplicial, 32, 80
simplicial vertex, 32
square of a graph, 47
square of linegraph, 47
squeeze, 71

star, 96

Stirling formula, 14
Stirling, J., 14

strong perfect graph theorem, 22
Stuwart, L., 25

Index

subgraph relation, 71
subset sum problem, 15
subtree, 26

switch, 97

Szymanski, T. G., 44

Tarjan, R., 34

Tedder, M., 43

Thomas, R., 22
three-coloring, 7
time-complexity, 1
timebound, 4

topline, 43

toroidal graph, 95

torus, 95

transitive orientation, 39, 42
transitive relation, 70
traveling salesman problem, 10
traveling salesman tour, 10
tree decomposition, 69
treewidth, 75

triangle, 2

triple, 62

Tsukiyama S., 2

twin, 27, 90

twinset, 28, 88

union, 26, 29
union of cliques, 44
union-operation, 28

valid bitvector, 64
Vazsonyi’s conjecture, 72
vertex, 3

vertex coloring, 6

vertex cover, 22, 44, 52, 95
vertex cover problem, 52
vertex ordering, 64
vertex-disjoint cycles, 95
vertex-minot, 91

Vuskovié, K., 23

Wagner, K., 63
wheel, 95
worst-case timebound, 5

Xia, G., 60
Yannakakis, M., 34

Zero matrix, 88

105

