COL758: Advanced Algorithms Spring 2019

Lecture 11: February 14
Lecturer: Naveen Garg Scribe: Ankita Raj

Note: BTEX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

11.1 Previous lecture

In the last lecture, we studied the multiplicative weights update algorithm for simultaneous minimization.
Given some convex functions hy(x), ha(x),. .. hny(z) over a convex domain @, we want to find a point in @
where h;(z) < 1 Vi. The algorithm is as follows:

Algorithm 1 Multiplicative weights update for simultaneous minimization

init: y; =1 Wi
repeat
In round r,

Find z" € @ such that > ylh;(2") <>yl (by calling Oracle)

1
max h; (z7)

5: Set w" =
6: Update y;: y; + yie? M)
7. until 3 w" > m
T
Swha”

r

8: return ¥ = S
-

We saw that:
e At the output point Z, h;(T) < 1+ 2€ Vi.

e If p = maxh;(x") is the width of the algorithm, the algorithm completes in N < £ l;m rounds.
i,r

11.2 Using Electrical Flows to find Max Flow

Given a graph G = (V, E) with n vertices and m edges, we need to find the maximum flow from source
vertex s to sink vertex ¢ which satisfies the capacity constraints and conservation constraints. In order to
find the max-flow using electrical flows, we make two simplifying assumptions:

1. The amount of flow to be routed through the graph, F, is already given. If F' is a feasible flow, our
algorithm should return a valid flow vector (flow through each edge on the graph).

2. Each edge has unit capacity, c. =1 Ve € E.

11.2.1 Algorithm

Define @) as the set of all flows of value F' from s to ¢t. These flow vectors obey the conservation constraint
but may violate capacity constraints. ) is a convex set since the convex combination of any two flow vectors
in @ would also lie in Q. For any = € @Q, let f;(z) denote the flow on edge i of the graph. Our objective is
to find a flow z € @ which satisfies the capacity constraints, i.e. f;(x) <1Vi € E.

11-1



Lecture 11: February 14 11-2

We can use the multiplicative weights update algorithm (Algorithm-1) to find such a flow if it exists.
We can think of each edge of the graph as a resistor with some initial resistance. In round r, we set the
resistance of edge i as:

€
R =" 4 & r 11.1
i yz+m§i Y; (11.1)

and use s-t electrical flows as an oracle to find a flow x” according to these resistances. Note that the
resulting electrical flow x" is ignorant of the capacity constraints on edges, but does obey the conservation
constraints (KCL), hence 2" € Q. In the subsequent rounds, resistances are increased in proportion to the
amount of current flowing through the edges.

11.2.2 Electrical flow as an Oracle

Given a current source F' and edge resistances R;, the oracle computes a valid electrical flow of value F' from
s to t. Let " be the vector returned by the Oracle in round r, corresponding to which the flow values are
fi(x"). In order for electrical flows to work as a valid oracle in Algorithm-1, the following must hold:

nyfi(f) < Zy’” (11.2)

We now analyse the electrical flow oracle to see if this holds.
Cauchy-Schwartz inequality states that for any two vectors u and v,
(u,v) < lull2flv]l2 (11.3)
where (-, -) is the inner product. It can also be written as

[{w, 0)[* < Jlull3]lvll3 (11.4)
Setting u; = \/y; and v; = fi(x)\/y;, we get from (11.4),
[Zyzfz(x)]z < Zyz X Zysz(x)
< Zyz X ZRz‘ff(I) [ Ri >yl (11.5)
We will use the following lemmas:

Lemma 1. An electrical flow from s to t is the minimum-energy flow among all s-t flows of value F'.

Lemma 2. Let x be the electrical flow returned by the oracle at any round r for which y; are the multipliers
and R; are the corresponding edge resistances. Then the following holds:

Zywﬂ@§@+62ﬁi

Proof. For a flow vector x, the term . R;f?(z) represents the energy of the flow. Let z* € @ be a flow

(2
vector which respects edge capacities. From Lemma 1, we know that electrical flow is the minimum energy
flow. Therefore,

D Riff(@) <3 Riff ()
=(1+ G)Zyi (from (11.1))

Hence proved. |



Lecture 11: February 14 11-3

Using Lemma 2 and (11.5), we get:

Zyifi <Zyz (I+e) Zyz
Zyzfz S 1+e I/QZ%

11.2.3 Width of the algorithm
The width for the s-t flow feasibility algorithm is defined as:
p = max f;(z")

for flow vector z" returned by the electrical-flow oracle in round r. We can bound the energy of flow on each
edge at any round by:

> (= 2w (from (11.1))
Zyz )< R; f (2)
< ZRifiQ(x)

<(l+¢) Z Yi (From Lemma 2)

'.if()<1+e

/m(1+¢€) [m
Since the above holds for every round, therefore, width of the algorithm is p < /™.

11.2.4 Running time

We know from Sec 11.1 that for width p, the number of rounds in which the algorithm returns a solution

for which f;(Z) <1+ 2¢, is at most:

NSPme
€

Substituting the value of p:

\ﬁlnm

€25

Each round invokes a call to the oracle, which computes electrical flows. Since computation of electrical
flows in a graph with m edges can be computed in O(m) time using Laplacian, therefore

my/mlnm

Running time < 25

11.3 Getting rid of the assumptions

Now we remove the two assumptions that we had made in the beginning, and modify the algorithm accord-
ingly.



Lecture 11: February 14 11-4

11.3.1 Assumption 1

Our first assumption was that instead of the max-flow problem, we were solving a feasibility problem where
the task was to determine if there is a feasible s-t flow of value F'. The max-flow problem can be solved by
doing a binary search over the possible flow values. Since flows are integral and max-flow is equal to min-cut,
for unit edge capacities, we can run the feasibility check oracle O(logm) times to find the max-flow.

11.3.2 Assumption 2

The second assumption was that all edges have unit capacities. We now show that by making the following
modifications to the previous algorithm, we can can obtain the same approximation guarantees and same
width for non-unit edge capacities:

1. Solve for congestion instead of flow on each edge. Define,

hi(z) = fi(@)

(&

as the congestion of edge i, where f; and ¢; are the flow and capacity of edge ¢ respectively. Our
modified objective is then to find a valid flow vector x for which h;(z) <1, i.e. fi(z) <g¢;.

2. For computation of electrical flows in each round, define edge resistance as:
= (r+ 55 yr) 2 11.6
i_yi+azyi§ (11.6)
K3

11.3.2.1 Analysis

A valid oracle should return a flow vector z for which:
> yihi(x) < wi
i i
Cauchy-Schwartz inequality gives us:

[Zyihi(x)]Q < Zyi X Zyih?(l’)

_ Zyi y Zy" ffc(%:l:)
< x Y R (@) [ Rz ) (1L.7)
Lemma 2 still holds, since:
SR < 3 R (from Lemma 1)
Z < zl:Ricf [ fi(x") < ¢

=1+9> v (from (11.6))
Using Lemma 2 and (11.7) gives us:
[Zyihi(x)]Q <> ux (1Y
zZ whila) < 1 +9123 |



Lecture 11: February 14

11.3.2.2 Width

We can bound the energy of flow on each edge at any round by:

fi(z)

2
%

R, f2(z) > (%Zyi) .
r@;i}wﬁ¥OSRJﬂm
Z < Rifi(@)
< (;+€>Zyi
e fix) Z

S e
m 2
h;

(from (11.1))

(From Lemma 2)

Thus, even for non-unit edge capacities, the algorithm has width p < /.

11-5



