
Function Inlining under Code Size Constraints
for Embedded Processors

Rainer Leupers, Peter Marwedel
University of Dortmund

Dept. of Computer Science 12
44221 Dortmund, Germany

email: leupers@ls12.cs.uni-dortmund.de

Abstract– Function inlining is a compiler optimization that
generally increases performance at the expense of larger code size.
However, current inlining techniques do not meet the special de-
mands in the design of embedded systems, since they are based on
simple heuristics, and they generate code of unpredictable size. This
paper presents a novel approach to function inlining in C compilers
for embedded processors, which aims a maximum program speedup
under a global limit on code size. The core of this approach is a
branch-and-bound algorithm which allows to quickly explore the
large search space. In an application study we show how this algo-
rithm can be applied to maximize the execution speed of an applica-
tion under a given code size constraint.

1 Introduction
For embedded systems based on programmable processors, C com-
pilers play an important role in the system design process. While
assembly-level programming of embedded processors has been
common for quite some time, using C compilers for programming
embedded processors gains more and more acceptance. Compilers
permit shorter design cycles, higher productivity and dependabil-
ity, and better opportunities for reuse than assembly programming.
However, code generated by compilers usually implies an overhead
in code size and performance as compared to hand-written assembly
code. While this overhead is acceptable in general-purpose comput-
ing, the demands on compilers are different for embedded systems.
In order to minimize the overhead of compiler-generated code, com-
pilers for embedded processors have to pay higher attention to code
optimization rather than high compilation speed. As a consequence,
a number of code optimization techniques for embedded processors
have been developed. Most of these are low-level optimizations,
which exploit detailed knowledge about the processor architecture
for optimizing machine code. Examples are techniques for code se-
lection, register allocation, and scheduling [1, 2, 3], memory access
optimization [4], and optimization of address computations [5, 6].

Complementary to these techniques, in this paper we present a
largely machine-independent source-level code optimization, which
employs function inlining to achieve higher performance. Func-
tion inlining is a well-known technique used in many compilers for
general-purpose processors. The main idea is to replace calls to a
function by copies of the function body. In this way, the function is
turned into a C-level macro.

Since the overhead associated with function calls (parame-
ter passing, call and return instructions, instruction pipeline stalls,
saving and restoring register contents) is reduced, function inlining
tends to increase performance. However, inlining generally also in-
creases code size. Therefore, in order to avoid a code size explosion,

only a limited set of ”small” functions within an application may be
candidates for inlining.

Inlining of functions during compilation can be guided by the
user via explicit ”inline” keywords in function definitions in the
source code (e.g. in C++ and, as a non-standard feature, in most
ANSI C compilers). Many compilers are also capable of automatic
inlining, where inlined functions are selected by a set of simple,
mostly local, heuristics [7, 8]. For instance, a function might be
inlined, if its calling overhead appears to be larger than the time
needed to execute the function body. In some compilers, e.g. in the
TI ’C6x ANSI C compiler, additionally a maximum size threshold
for inlined functions can be specified as a compiler option. How-
ever, all these ad hoc methods cannot guarantee that the set of se-
lected inline functions actually lead to the maximum speedup in
program execution time. Furthermore, these methods are not capa-
ble of meeting code size constraints, which is particularly important
for embedded systems-on-a-chip with a limited amount of program
memory.

The technique proposed in this paper represents a more sys-
tematic way of performing function inlining in the context of em-
bedded system design. It is based on the assumption that when com-
piling an application C source code without any inlining, the result-
ing machine code does not completely occupy the available program
memory, but that the remaining program memory space can be ex-
ploited to speed up the machine program. Given a C source code
with a total of functions, including functions, , which
are candidates for inlining, our goal is to determine which subset of
the candidate functions must be inlined, such that the resulting
code size does not exceed the given limit and that the performance
increase is maximized. Since the number of possible solutions is

, a brute-force exhaustive search is clearly infeasible, except for
small values of .

The core of our technique, therefore, is a branch-and-bound
(B & B) algorithm which allows to explore the solution space in
comparatively short time. This algorithm selects the subset of in-
lined functions while exactly minimizing the number of dynamic
function calls (i.e., calls executed at program runtime) under a given
code size constraint. Its main idea is that minimizing the number
of dynamic calls approximately also minimizes the execution time.
However, in general, this is not exactly true, since inlining may also
increase the number of resource conflicts. Therefore, a larger code
size limit is not guararanteed to result in higher performance. In
order to take into account the negative effects of inlining on perfor-
mance, we embed the B & B algorithm into an interval search over
different permissible code size limits. The lower interval bound is
the initial code size without any inlining, while the upper bound re-
flects a given maximum code size limit. For each limit within the

0-7803-5832-X /99/$10.00 ©1999 IEEE.0-7803-5832-5/99/ $10.00 © 1999 IEEE

253

interval, using a certain search granularity, the B & B algorithm is
applied, and simulation is used to determine the exact performance.
Finally, the best solution is emitted, which meets the maximum code
size limit at the highest performance. Further details will be given
in section 3.

The structure of the paper is as follows. In the next section,
we describe the B & B algorithm used for minimizing the number
of dynamic function calls. Section 3 shows how this algorithm, in
combination with the interval search over code size limits, is used
to minimize the execution time for an application. This is demon-
strated for a DSP application. Our experimental results indicate that
performing function inlining in a systematic way can lead to a sig-
nificant performance increase at a moderate growth in code size.

2 Minimization of function calls
For a given application C source code with functions, our tech-
nique requires the following input data.

The subset , , of functions which are
candidates for inlining. Recursive functions and functions
within a call cycle have to be excluded from inlining in order to
avoid infinite loops. Also top-level functions, i.e., the ”main”
function or functions not called anywhere in the source code
cannot be candidates for inlining.

The basic code size for each function . These values
are determined by compiling the source code once without any
inlining.

The number of dynamic calls to each function for
a typical set of input data. This information is obtained by
profiling.

For each pair of functions the number of
static calls from function to function , i.e., the number of
occurrences of calls to in the source code of .

A code size limit , which is assumed to be larger than the
sum of the basic size values over all functions .

We represent the set of inlined functions as a bit vector
, hereafter called the inline vector. For any function

, a value of () denotes that function is (not)
selected for inlining. Under the code size constraint , we would
like to minimize the number of total dynamic functions calls in
order to (approximately) minimize the execution time. Since inlined
functions are never called, this value is, for a given inline vector ,
defined by

Trivially, the theoretical minimum value of is obtained, if all can-
didate functions are inlined, i.e., . However, such
a solution is unlikely to meet the code size limit in practical cases.
Therefore, among all possible inline vectors, we have to identify
that one which minimizes such that the total code size does not
exceed .

In order to compute the total code size for a given inline vector,
it is important to consider the mutual dependence of function code
size values. Consider a function with static calls
to function . If is inlined, then the resulting size of , initially
given by its basic size , grows by times the size of . In
turn, the size of , which might call another function that again
may or may not be inlined, obviously depends on . Therefore,
the decision to inline a certain function may have a global effect on
the overall code size. This will be exemplified in the application
study in section 3.

algorithm MIN IV
input: inline vector ;
output: inline vector ;
begin

if contains no ” ” bits then
if and then

:= ;
end if
return ;

end if
:= first index in for which ;

if then
return MIN IV((;

else if then
return MIN IV((;

else
:= MIN IV ;

:= ;
:= MIN IV ;

:= ;
if then

return ;
else

return ;
end if

end if
end algorithm

Figure 1: Branch-and-bound algorithm

For a given , the total code size can be computed as
follows:

The recursion in the definition of terminates at the leaf
functions which do not contain any function calls. Note that the code
size computed in this way is not exact but represents an estimation,
since the detailed effects of function inlining on code size are only
known after code generation.

Given the definitions of and , we use a branch-
and-bound search to efficiently compute the optimum inline vector
meeting the constraint at a minimum value. We
start with an initial vector , where denotes
that the inlining of function is not yet decided. Then, for

, all bits in are determined one after another. The B
& B algorithm, whose pseudo code is shown in fig. 1, is based on
the following problem analysis.

Let be the current inline vec-
tor, where the values of have already been fixed. Next,
we would like to determine , i.e., the leftmost ” ” bit in . Let
variable denote the minimum number of dynamic function
calls found so far, such that the corresponding solution meets the

254

code size constraint . Initially, is set to

which is equal to the number of dynamic function calls without any
inlining. Now, four different cases may occur:

1. If there is no further ” ” bit in , then we compute the total
code size and the number of function calls for
the solution represented by . If and

, then a new valid minimum has been found, and we set
.

2. Otherwise, if , we check whether function can be
inlined without violating the code size limit by temporarily
setting . A lower bound on total code size for is
given if, for , all remaining ” ” values in
are set to zero, i.e., no further function is inlined. The corre-
sponding inline vector is . If

, then inlining cannot result in a valid solution,
independent of . Thus, the corresponding part
of the search space can be cut off without loss of optimality by
setting . Note that the test also ensures
that any invocation of algorithm MIN IV can only return a
valid solution.

3. If could not be excluded, then we check whether a
new minimum value would be possible if were not in-
lined. This can be determined by temporarily setting
and, for , setting all remaining ” ” val-
ues in to one. The corresponding inline vector is

. Then, the value provides
a lower bound on the number of dynamic calls. If

, then not inlining cannot improve the best solution
found so far, and the case can be cut off from the search
space. In this case, is set to one and the search continues for
the next undecided bit in .

4. In the worst case, pruning the search space by computing lower
bounds is not possible, so that both alternatives and

have to be evaluated in detail. First, we try
and recursively compute the corresponding minimum number
of dynamic function calls . Let be the resulting inline
vector. Next, is set to 1, and the corresponding minimum
number of function calls is recursively computed together
with the resulting inline vector . If then
is the best solution and is also guaranteed to be valid w.r.t. the
code size limit , due to the test performed in step 2. Other-
wise, we need to set . Depending on the setting of ,
either or are returned as the optimal inline vector.

The worst case complexity of this branch-and-bound algorithm
is exponential in . However, in many cases pruning the search
space in steps 2 and 3 is possible. This permits to optimize function
inlining also for relatively large values of . This will be demon-
strated in the next section.

3 Minimization of execution time
In order to evaluate the proposed technique, we have performed an
application study for a complex DSP application from the area of
mobile telephony: a GSM speech and channel encoder. This ap-
plication is specified by 7,140 lines of C code, comprising 126 dif-
ferent functions. Out of these, 26 functions are dedicated ”basic”
functions for certain arithmetic operations. These basic functions

are relatively small and are frequently called from other functions.
Therefore, the basic functions were the natural candidates for func-
tion inlining. As a target processor, we have used the TI ’C6x, a
VLIW DSP with 8 functional units, together with TI’s correspond-
ing ANSI C compiler and instruction set simulator.

Figure 2: Methodology overview

An overview of our methodology is shown in fig. 2. The first
step was to use a simple source code analysis tool in order to de-
termine the number of static calls from to for each
pair of functions. Next, we compiled the source code without func-
tion inlining in order to determine the basic code size for all
functions . Finally, we performed profiling on a given set of input
speech data in order to obtain the number of dynamic calls) for
all functions . Without inlining, we obtained a total code size of
67,820 bytes. The initial number of execution cycles as determined
by simulation was 27,400,547.

After that we analyzed, whether inlining of some of the 26
basic functions under a code size limit would result in higher per-
formance. We have arbitrarily allowed for a maximum code size
increase of 50 % as compared to the initial size, and we used the
B & B algorithm to explore the vast search space of possible
solutions. As mentioned earlier, the B & B algorithm minimizes the
number of dynamic function calls, but this does not necessarily also
minimize the number of execution cycles. This means that, in prin-
ciple, all code size limits within the interval 100 % (the initial code
size) to 150 % have to be considered to find the actual optimum w.r.t.
performance. Since this obviously cannot be accomplished within
reasonable time, we have performed an evaluation for the interval
between 100 % and 150 % in steps of 5 %. For each code size limit,
we ran the B & B algorithm in order to determine the optimum set
of inlined functions. Then, the C source code was modified accord-
ingly by tagging the selected functions with an ”inline” keyword,
thereby enforcing inlining of those functions by the compiler, and
the source code was re-compiled and simulated.

Our results are summarized in table 1. The first column gives
the code size limit in percent relative to the initial solution without
inlining. The second and third columns show the absolute and rel-
ative number of dynamic function calls, respectively, which mono-
tonically decrease with the increasing code size limit. Columns 4
and 5 show the code size as estimated by function and the
real code size, while column 6 gives the estimation error. As can
be seen, the estimation is highly accurate, with a maximum error of
3 %. More important, in no case did the real code size exceed the
estimated size.

Columns 7 and 8 account for the absolute and relative num-

255

size limit (%) calls (absolute) calls (%) est. size real size error (%) cycles (absolute) cycles (%) CPU
100 10,292,056 100 – 67,820 – 27,400,547 100 –
105 7,618,479 74 71,200 70,284 1 24,095,022 88 62
110 5,893,530 57 74,536 72,876 2 19,560,628 71 117
115 4,984,329 48 77,976 77,796 1 20,190,858 74 186
120 4,403,360 43 81,372 80,772 1 20,518,980 75 348
125 3,892,613 38 84,768 82,636 3 18,235,114 67 351
130 3,427,558 33 88,148 87,908 1 18,527,926 68 521
135 2,414,683 23 91,544 89,796 2 18,416,065 67 696
140 2,385,409 23 93,812 91,940 2 18,750,981 68 933
145 1,872,297 18 98,320 97,956 1 18,796,095 69 1138
150 1,797,790 17 101,716 100,484 1 19,136,175 70 1202

Table 1: Experimental results for GSM encoder application on a TI ’C6x

size limit (%) inline vector (functions 1-26)
100 00000000000000000000000000
105 00100000001100001110111111
110 10111001011100001111111111
115 10110000000001001000111001
120 10110100101000100110111101
125 10110000001010000100111101
130 00110000000010100100111000
135 10110010001110101110111101
140 10111011111110101111111111
145 10110110101010100110111101
150 10110110000010110110111101

Table 2: Inline vectors computed by B & B algorithm

ber of instruction cycles as determined by simulation. Although the
number of function calls decrease with an increased code size limit,
this does not exactly also hold for the number of execution cycles.
For a limit of 150 %, the execution time is reduced to 70 % of the
original value, but the absolute minimum (67 %, marked line in ta-
ble 1) is achieved for a limit of only 125 %. Beyond this value,
the negative effects of function inlining due to a larger amount of
resource conflicts become predominant. As a consequence, a ”sat-
uration” takes place, where an increase in code size does not lead
to higher performance. Still, the execution time beyond a code size
of 125 % does not deviate much from the optimum, so that the B
& B algorithm could also be used as a stand-alone optimization to
obtain a close-to-optimum solution without the need for repeated
simulation.

Finally, column 9 gives the CPU seconds needed for executing
the B & B algorithm on a SUN Ultra-1 workstation. The runtime
grows with the code size limit, since a less tight limit removes op-
portunities for pruning the search space at an early point of time.
For the maximum limit of 150 %, the required CPU time was about
20 minutes. This appears to be high, but the actual bottleneck in our
application study was the time required by the TI ’C6x simulator,
which ranged between one and two hours in each case.

Besides these results, it is also interesting to take a look at the
inline vectors computed by the B & B algorithm as shown in table
2. The detailed bit values are less important, but it can be observed
that the inline vectors tend to change at many bit positions from
step to step. This means that among the set of candidate functions
there are hardly functions for which inlining pays off independent
of the code size, but that the optimum set of inlined functions are
globally influenced by the concrete code size limit. This observation

motivates the use of the proposed B & B algorithm instead of a
possible faster, but less effective, local optimization approach.

4 Conclusions
C compilers should be used for software development for embed-
ded processors in order to replace assembly language programming.
However, compilers will only gain acceptance if they take into ac-
count the special demands in the design of embedded systems, such
as very high code quality and limited code size. This requires spe-
cial code optimization techniques for embedded processors. In this
paper we have described a new technique for optimized function in-
lining which, in contrast to techniques used in compilers for general-
purpose processors, is capable of maximizing performance while
meeting a global code size constraint. In our application study, the
net effect was a performance increase of 33 % at an increase in
code size of 25 %. Naturally, the detailed results depend on the
application and the target processor. However, our results indicate
that high-level code optimizations like function inlining should def-
initely be considered equally important to complementary optimiza-
tion techniques working at the assembly code level.

References
[1] C. Liem, T. May, P. Paulin: Instruction-Set Matching and Selection for

DSP and ASIP Code Generation, European Design and Test Confer-
ence (ED & TC), 1994, pp. 31-37

[2] G. Araujo, S. Malik: Optimal Code Generation for Embedded Mem-
ory Non-Homogeneous Register Architectures, 8th Int. Symp. on Sys-
tem Synthesis (ISSS), 1995, pp. 36-41

[3] S. Liao, S. Devadas, K. Keutzer, S. Tjiang: Instruction Selection Using
Binate Covering for Code Size Optimization, Int. Conf. on Computer-
Aided Design (ICCAD), 1995, pp. 393-399

[4] A. Sudarsanam, S. Malik: Memory Bank and Register Allocation in
Software Synthesis for ASIPs, Int. Conf. on Computer-Aided Design
(ICCAD), 1995, pp. 388-392

[5] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang: Storage As-
signment to Decrease Code Size, ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), 1995

[6] R. Leupers, P. Marwedel: Algorithms for Address Assignment in DSP
Code Generation, Int. Conf. on Computer-Aided Design (ICCAD),
1996

[7] S.S. Muchnik: Advanced Compiler Design & Implementation, Mor-
gan Kaufmann Publishers, 1997

[8] R. Morgan: Building an Optimizing Compiler, Butterworth-
Heinemann, 1998

256

