Quick Sort

Characteristics

sorts almost in "place," i.e., does not require an additional array

very practical, average sort performance O(n log n) (with small constant factors), but worst case O(n²)

Quick Sort – the Principle

- To understand quick-sort, let's look at a high-level description of the algorithm
- A divide-and-conquer algorithm
 - Divide: partition array into 2 subarrays such that elements in the lower part <= elements in the higher part
 - Conquer: recursively sort the 2 subarrays
 - □ **Combine**: trivial since sorting is done in place

Partitioning

Linear time partitioning procedure

Quick Sort Algorithm

Initial call Quicksort(A, 1, length[A])

Quicksort(A,p,r)

- 01 **if** p<r
- 02 **then** $q \leftarrow Partition(A,p,r)$
- 03 Quicksort(A,p,q)
- 04 Quicksort(A,q+1,r)

Analysis of Quicksort

Assume that all input elements are distinct
 The running time depends on the distribution of splits

Best Case

□ If we are lucky, Partition splits the array evenly

 $T(n) = 2T(n/2) + \Theta(n)$

 $\Theta(n \lg n)$

Worst Case

What is the worst case? One side of the parition has only one element

$$T(n) = T(1) + T(n-1) + \Theta(n)$$

= $T(n-1) + \Theta(n)$
= $\sum_{k=1}^{n} \Theta(k)$
= $\Theta(\sum_{k=1}^{n} k)$
= $\Theta(n^{2})$

Worst Case (2)

8

Worst Case (3)

When does the worst case appear?
 input is sorted

input reverse sorted

- Same recurrence for the worst case of insertion sort
- However, sorted input yields the best case for insertion sort!

Analysis of Quicksort Suppose the split is 1/10 : 9/10

 $T(n) = T(n/10) + T(9n/10) + \Theta(n) = \Theta(n\log n)!$

 $\Theta(n \lg n)$

An Average Case Scenario

 Suppose, we alternate lucky and unlucky cases to get an average behavior

 $L(n) = 2U(n/2) + \Theta(n) \text{ lucky}$ $U(n) = L(n-1) + \Theta(n) \text{ unlucky}$ we consequently get $L(n) = 2(L(n/2-1) + \Theta(n/2)) + \Theta(n)$ $= 2L(n/2-1) + \Theta(n)$ $= \Theta(n \log n)$

An Average Case Scenario (2)

- How can we make sure that we are usually lucky?
 - □ Partition around the "middle" (n/2th) element?
 - Partition around a random element (works well in practice)
- Randomized algorithm
 - running time is independent of the input ordering
 - no specific input triggers worst-case behavior
 - the worst-case is only determined by the output of the random-number generator

Randomized Quicksort

- Assume all elements are distinct
 Partition around a random element
 Consequently, all splits (1:n-1, 2:n-2, ..., n-1:1) are equally likely with probability 1/n
- Randomization is a general tool to improve algorithms with bad worst-case but good average-case complexity

Randomized Quicksort (2)

Randomized-Partition(A,p,r)

- 01 i \leftarrow Random(p,r)
- 02 exchange $A[r] \leftrightarrow A[i]$
- 03 return Partition(A,p,r)

Randomized-Quicksort(A,p,r)

- 01 **if** p < r **then**
- 02 q \leftarrow Randomized-Partition(A,p,r)
- 03 Randomized-Quicksort(A,p,q)
- 04 Randomized-Quicksort(A,q+1,r)

Randomized Quicksort Analysis

- Let T(n) be the expected number of comparisons needed to quicksort n numbers.
- Since each split occurs with probability 1/n, T(n) has value T(i-1)+T(n-i)+n-1 with probability 1/n.

□ Hence,

$$T(n) = \frac{1}{n} \sum_{j=1}^{n} (T(j-1) + T(n-j) + n - 1)$$
$$= \frac{2}{n} \sum_{j=0}^{n-1} T(j) + n - 1$$

Randomized Quicksort Analysis(2)

- We have seen this recurrence before.
- It is the recurrence for the expected number of comparisons required to insert a randomly chosen permutation of n elements.
- \Box We proved that T(n) = O(nlog₂ n).
- Hence expected number of comparisons required by randomized quicksort is O(nlog₂ n)

Randomized Quicksort running times

- Worst case running time of quicksort is O(n²)
- Best case running time of quicksort is O(nlog₂ n)
- Expected running time of quicksort is O(nlog₂ n)

What does expected running time mean?

- The running time of quicksort does not depend on the input. It depends on the random numbers provided by the generator.
- Thus for the same input the program might take
 3sec today and 5sec tomorrow.
- The average time taken over many different runs of the program would give us the expected time.
- Same as saying that we are taking average over all possible random number sequences provided by the generator.

Analysis of insertion in BST

- When creating a binary search tree on n elements the running time does depend on the order of the elements.
- Our algorithm for insertion did not employ an random bits.
- Given a specific input order the algorithm takes the same time each day.
- However, the time taken is different for different input orders.
- The average time taken over all possible input orders is O(nlog₂ n).