
1

Quick Sort

Characteristics
sorts almost in "place," i.e., does not require
an additional array
very practical, average sort performance O(n
log n) (with small constant factors), but worst
case O(n2)

2

Quick Sort – the Principle

To understand quick-sort, let’s look at a
high-level description of the algorithm
A divide-and-conquer algorithm

Divide: partition array into 2 subarrays such
that elements in the lower part <= elements in
the higher part
Conquer: recursively sort the 2 subarrays
Combine: trivial since sorting is done in place

3

Partitioning

Linear time partitioning procedure

Partition(A,p,r)
01 x←A[r]
02 i←p-1
03 j←r+1
04 while TRUE
05 repeat j←j-1
06 until A[j] ≤x
07 repeat i←i+1
08 until A[i] ≥x
09 if i<j
10 then exchange A[i]↔A[j]
11 else return j

17 12 6 19 23 8 5 10
i ji j

10 12 6 19 23 8 5 17

ji

10 5 6 19 23 8 12 17

ji

10 5 6 8 23 19 12 17

ij

10 5 6 8 23 19 12 17

≤ X=10 ≤

4

Quick Sort Algorithm

Initial call Quicksort(A, 1, length[A])
Quicksort(A,p,r)
01 if p<r
02 then q ←Partition(A,p,r)
03 Quicksort(A,p,q)
04 Quicksort(A,q+1,r)

5

Analysis of Quicksort

Assume that all input elements are distinct
The running time depends on the
distribution of splits

6

Best Case
If we are lucky, Partition splits the array evenly

() 2 (/ 2) ()T n T n n= + Θ

7

Worst Case
What is the worst case?
One side of the parition has only one element

1

1

2

() (1) (1) ()
(1) ()

()

()

()

n

k

n

k

T n T T n n
T n n

k

k

n

=

=

= + − + Θ
= − +Θ

= Θ

= Θ

= Θ

∑

∑

8

Worst Case (2)

9

Worst Case (3)

When does the worst case appear?
input is sorted
input reverse sorted

Same recurrence for the worst case of
insertion sort
However, sorted input yields the best case
for insertion sort!

10

Analysis of Quicksort
Suppose the split is 1/10 : 9/10

() (/10) (9 /10) () (log)!T n T n T n n n n= + + Θ = Θ

11

12

An Average Case Scenario

Suppose, we alternate
lucky and unlucky
cases to get an
average behavior

() 2 (/ 2) () lucky
() (1) () unlucky

we consequently get
() 2((/ 2 1) (/ 2)) ()

2 (/ 2 1) ()
(log)

L n U n n
U n L n n

L n L n n n
L n n
n n

= + Θ
= − + Θ

= − + Θ + Θ
= − + Θ
= Θn

1 n-1

(n-1)/2 (n-1)/2

()nΘ

(n-1)/2+1 (n-1)/2

n ()nΘ

13

An Average Case Scenario (2)
How can we make sure that we are usually
lucky?

Partition around the ”middle” (n/2th) element?
Partition around a random element (works well in
practice)

Randomized algorithm
running time is independent of the input ordering
no specific input triggers worst-case behavior
the worst-case is only determined by the output of the
random-number generator

14

Randomized Quicksort

Assume all elements are distinct
Partition around a random element
Consequently, all splits (1:n-1, 2:n-2, ..., n-
1:1) are equally likely with probability 1/n

Randomization is a general tool to improve
algorithms with bad worst-case but good
average-case complexity

15

Randomized Quicksort (2)
Randomized-Partition(A,p,r)
01 i ← Random(p,r)
02 exchange A[r] ↔ A[i]
03 return Partition(A,p,r)

Randomized-Quicksort(A,p,r)
01 if p < r then
02 q ← Randomized-Partition(A,p,r)
03 Randomized-Quicksort(A,p,q)
04 Randomized-Quicksort(A,q+1,r)

16

Randomized Quicksort Analysis
Let T(n) be the expected number of
comparisons needed to quicksort n numbers.
Since each split occurs with probability 1/n, T(n)
has value T(i-1)+T(n-i)+n-1 with probability 1/n.
Hence,

17

Randomized Quicksort Analysis(2)

We have seen this recurrence before.
It is the recurrence for the expected
number of comparisons required to insert
a randomly chosen permutation of n
elements.
We proved that T(n) = O(nlog2 n).
Hence expected number of comparisons
required by randomized quicksort is
O(nlog2 n)

18

Randomized Quicksort running times

Worst case running time of quicksort is
O(n2)
Best case running time of quicksort is
O(nlog2 n)
Expected running time of quicksort is
O(nlog2 n)

19

What does expected running time mean?

The running time of quicksort does not depend
on the input. It depends on the random numbers
provided by the generator.
Thus for the same input the program might take
3sec today and 5sec tomorrow.
The average time taken over many different runs
of the program would give us the expected time.
Same as saying that we are taking average over
all possible random number sequences provided
by the generator.

20

Analysis of insertion in BST
When creating a binary search tree on n
elements the running time does depend on the
order of the elements.
Our algorithm for insertion did not employ an
random bits.
Given a specific input order the algorithm takes
the same time each day.
However, the time taken is different for different
input orders.
The average time taken over all possible input
orders is O(nlog2 n).

	Quick Sort
	Quick Sort – the Principle
	Partitioning
	Quick Sort Algorithm
	Analysis of Quicksort
	 Best Case
	Worst Case
	Worst Case (2)
	Worst Case (3)
	Analysis of Quicksort
	Slide Number 11
	An Average Case Scenario
	An Average Case Scenario (2)
	Randomized Quicksort
	Randomized Quicksort (2)
	Randomized Quicksort Analysis
	Randomized Quicksort Analysis(2)
	Randomized Quicksort running times
	What does expected running time mean?
	Analysis of insertion in BST

