Tries and String Matching

Slide Courtesy : Keith Schwarz, Stanford Univ.

http://web.stanford.edu/class/cs166/

Text Processing

- String processing shows up everywhere:
- Computational biology: Manipulating DNA sequences.
- NLP: Storing and organizing huge text databases.
- Computer security: Building antivirus databases.
- Many problems have polynomial-time solutions.
- Goal: Design theoretically and practically efficient algorithms that outperform brute-force approaches.

Outline for Today

- Tries
- A fundamental building block in string processing algorithms.
- Aho-Corasick String Matching
- A fast and elegant algorithm for searching large texts for known substrings.

Tries

Ordered Dictionaries

- Suppose we want to store a set of elements supporting the following operations:
- Insertion of new elements.
- Deletion of old elements.
- Membership queries.
- Successor queries.
- Predecessor queries.
- Min/max queries.
- Can use a standard red/black tree or splay tree to get (worst-case or expected) O(log n) implementations of each.

A Catch

- Suppose we want to store a set of strings.
- Comparing two strings of lengths r and s takes time $\mathrm{O}(\min \{r, s\})$.
- Operations on a balanced BST or splay tree now take time $\mathrm{O}(M \log n)$, where M is the length of the longest string in the tree.
- Can we do better?

> A
> AB
> ABOUT AD
> ADAGE
> ADAGIO BAR
> BARD
> BARN
> BE
> BED BET
> BETA
> CAN
> CANE
> CAT
> DIKDIK
> DIKTAT

A	BAR	CAN
$\underline{\underline{A B}}$	BARD	CANE
ABOUT	BARN	CAT
$\underline{\text { AD }}$	BE	
ADAGE	BED	
$\underline{\text { ADAGIO }}$	BET	
	BETA	

DIKDIK DIKTAT

ADAGE ADAGIO

Tries

- The data structure we have just seen is called a trie.
- Comes from the word retrieval.
- Pronounced "try," not "tree."
- Because... that's totally how "retrieval" is pronounced... I guess?

Tries, Formally

- Let Σ be some fixed alphabet.
- A trie is a tree where each node stores
- A bit indicating whether the string spelled out to this point is in the set, and
- An array of $|\Sigma|$ pointers, one for each character.
- Each node x corresponds to some string given by the path traced from the root to that node.

Tries, Formally

Let Σ be some fixed alphabet.
A trie is a tree where each node stores A bit indicating whether the string spelled out to this point is in the set, and

- An array of $|\Sigma|$ pointers, one for each character.
Each node x corresponds to some string given by the path traced from the root to that node.

Trie Efficiency

- What is the cost of looking up a string w in a trie?
- Follow at most $|w|$ pointers to get to the node for w, if it exists.
- Each pointer can be looked up in time O(1).
- Total time: $\mathrm{O}(|w|)$.
- Lookup time is independent of the number of strings in the trie!

Inserting into a Trie

- Proceed before as if doing an normal lookup, adding in new nodes as needed.
- Set the "is word" bit in the final node visited this way.

Removing from a Trie

- Mark the node as no longer containing a word.
- If the node has no children:
- Remove that node.
- Repeat this process at the node one level higher up in the tree.

Space Concerns

- Although time-efficient, tries can be extremely space-inefficient.
- A trie with N nodes will need space
$\Theta(N \cdot|\Sigma|)$ due to the pointers in each node.
- There are many ways of addressing this:
- Change the data structure for holding the pointers
- Eliminate unnecessary trie nodes (we'll see this next time).

String Matching

String Matching

- The string matching problem is the following: Given a text string T and a nonempty string P, find all occurrences of P in T.
- T is typically called the text and P is the pattern.
- We're looking for an exact match; P doesn't contain any wildcards, for example.
- How efficiently can we solve this problem?

The Naïve Solution

- Consider the following naïve solution: for every possible starting position for P in T, check whether the $|P|$ characters starting at that point exactly match P.
- Work per check: $\mathrm{O}(|P|)$
- Number of starting locations: $\mathrm{O}(|T|)$
- Total runtime: $\mathrm{O}(|P| \cdot|T|)$.
- Is this a tight bound?

Other Solutions

- Rabin-Karp: Using hash functions, reduces runtime to expected $\mathrm{O}(|P|+|T|)$, with worst-case $\mathrm{O}(|P| \cdot|T|)$ and space $\mathrm{O}(1)$.
- Knuth-Morris-Pratt: Using some clever preprocessing, reduces runtime to worst-case $\mathrm{O}(|P|+|T|)$ and space $\mathrm{O}(|P|)$.
- Check out CLRS, Chapter 32 for details.
- ... or don't, because KMP is a special case of the algorithm we're going to see later today.

Multi-String Searching

- Now, consider the following problem:

Given a string T and a set of k nonempty strings P_{1}, \ldots, P_{k}, find all occurrences of P_{1}, \ldots, P_{k} in T.

- Many applications:
- Constructing indices: Find all occurrences of specified terms in a document.
- Antivirus databases: Find all occurrences of specific virus fingerprints in a program.
- Web retrieval: Find all occurrences of a set of keywords on a page.

Some Terminology

- Let $m=|T|$, the length of the string to be searched.
- Let $n=\left|P_{1}\right|+\left|P_{2}\right|+\ldots+\left|P_{k}\right|$ be the total length of all the strings to be searched.
- Assume that strings are drawn from an alphabet Σ, where $|\Sigma|=O(1)$.

Multi-String Searching

- Idea: Use one of the fast string searching algorithms to search T for each of the patterns.
- Runtime for doing a single string search: $\mathrm{O}\left(m+\left|P_{i}\right|\right)$
- Runtime for doing k searches: $\mathrm{O}\left(k m+\left|P_{1}\right|+\ldots+\left|P_{k}\right|\right)=\mathrm{O}(k m+n)$.
- For large k, this can be very slow.

Why the Slowdown?

- Why is using an efficient string search algorithm for each pattern string slow?
- Answer: Each scan over the text string only searches for a single string at once.
- Better idea: Search for all of the strings together in parallel.

The Algorithm

- Construct a trie containing all the patterns to search for.
- Time: O(n).
- For each character in T, search the trie starting with that character. Every time a word is found, output that word.
- Time: $\mathrm{O}\left(\left|P_{\max }\right|\right)$, where $P_{\max }$ is the longest pattern string.
- Time complexity: $\mathrm{O}\left(m\left|P_{\max }\right|+n\right)$, which is $\mathrm{O}(\mathrm{mn})$ in the worst-case.
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCEBEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCEBEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCEBEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCEBEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCEBEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABC ABCEBEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABC ABCEBEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABC ABCEBEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABC ABCEBEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABC ABCEBEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABC ABCEBEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C E B E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

Why So Slow?

- This algorithm is slow because we repeatedly descend into the trie starting at the root.
- This means that each character of T is processed multiple times.
- Question: Can we avoid restarting our search at the tree root, which will avoid revisiting characters in T ?

A B C E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C E B
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCEB
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

C E B C
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

C E B C
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

C E B C
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

C E B C
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

C E B C
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

C E B C

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

C E B C
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

C E B C

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

C E B C

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

C E B C

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

C E B C

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C A
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C A
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C A
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C A
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

A B C A B C A
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCA
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCA
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCA
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCA
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

Where would we go if we read BCABC?

ABCABCA
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCA
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCA
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCA
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCA
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCA
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

ABCABCA
$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

The Idea

- Suppose we have descended into the trie via string w.
- When we cannot proceed, we want to jump to the node corresponding to the longest proper suffix of w.
- Claim: The nodes to jump to can be precomputed efficiently.

Suffix Links

- A suffix link in a trie is a pointer from a node for string w to the node corresponding to the longest proper suffix of w.
- All nodes other than the root node will have a suffix link.

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

The (Basic) Algorithm

- Let state be the start state.
- For $i=0$ to $m-1$
- While state is not start and there is no trie edge labeled $T[i]$:
- Follow the suffix link.
- If there is a trie edge labeled $T[i]$, follow that edge.

This algorithm won't actually mark all of the strings that appear in the text. We'll handle that later.

Runtime Analysis

- Claim: Once the trie is constructed and suffix links added, the runtime of searching through string P is $\mathrm{O}(\mathrm{m})$.
- Proof: Total number of steps forward is $\mathrm{O}(\mathrm{m})$, and we cannot follow suffix links backwards more times than we go forwards. Therefore, time complexity is $\mathrm{O}(\mathrm{m})$.

Will our heroes ever build suffix links efficiently?

And will they be able to match pattern strings quickly?

Stay tuned!

Your Questions

The Story So Far

- Start with a trie.
- Add suffix links to allow for failure recovery and fast searching.
- Unresolved questions:
- How do you build suffix links efficiently?
- How do you do searches efficiently?

Constructing Suffix Links

- Key insight: Suppose we know the suffix link for a node labeled w. After following a trie edge labeled a, there are two possibilities.
- Case 1: xa exists.

Constructing Suffix Links

- Key insight: Suppose we know the suffix link for a node labeled w. After following a trie edge labeled a, there are two possibilities.
- Case 2: $x a$ does not exist.

Constructing Suffix Links

- To construct the suffix link for a node wa:
- Follow w's suffix link to node x.
- If node xa exists, wa has a suffix link to xa.
- Otherwise, follow x 's suffix link and repeat.
- If you need to follow backwards from the root, then wa's suffix link points to the root.
- Idea: Construct suffix links for trie nodes ascending order of length using BFS.

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

Analyzing the Runtime

Claim: This algorithm constructs suffix links in the trie in time $\mathrm{O}(n)$.
Proof: There are at most $O(n)$ nodes in the trie, so the breadth-first search will take time at most $O(n)$. Therefore, we have to bound the work done stepping backwards.
Focus on any individual word P_{i}. When processing nodes that make up the letters of P_{i}, the number of backward steps taken cannot exceed the number of forward steps taken, which is $\mathrm{O}\left(\left|P_{i}\right|\right)$.
Summing across all words, the total number of backward steps is therefore $\mathrm{O}(n)$.

The Story So Far

- We can construct our trie, augmented with suffix links, in time $O(n)$.
- Once we have the trie, we can scan over a string in time $\mathrm{O}(\mathrm{m})$.
- Catch from before: We still don't have a way to identify all the substrings we find.
- Let's go fix that!

$P_{1}=\mathrm{ABCABCD} \quad P_{2}=\mathrm{BCE} \quad P_{3}=\mathrm{CEB} \quad P_{4}=\mathrm{CECEB} \quad P_{5}=\mathrm{ABC}$

$P_{1}=\mathrm{ABCABCD} P_{2}=\mathrm{BCE} P_{3}=\mathrm{CEB} P_{4}=\mathrm{CECEB} P_{5}=\mathrm{ABC} P_{6}=A$

The Problem

- Some pattern strings might be substrings of other pattern strings.
- Without taking this into account, our trie traversal will not find all matching substrings.
- Can we fix this?

A Useful Observation

- Fact: If x is a substring of w, then x is a suffix of a prefix of w.
- Proof: Let $w=\alpha x \omega$. Then x is a suffix of the prefix αx.
- Each node in the trie corresponds to a prefix of some pattern string.
- Suffix links give us information about the suffixes of those strings.

Another Useful Observation

- Fact: Suppose that P_{s} and P_{t} are where $\left|P_{s}\right|>\left|P_{t}\right|$ and P_{t} is a suffix of P_{s}. Then any time P_{s} occurs, P_{t} occurs as well.
- This motivates the following idea:
- Each node w in the trie may store an output link pointing to the longest pattern string that is a proper suffix of w.
- Whenever we visit a node, we traverse backwards through the output links to find all matches.

$P_{1}=\mathrm{ABCABCD} P_{2}=\mathrm{BCE} P_{3}=\mathrm{CEB} P_{4}=\mathrm{CECEB} P_{5}=\mathrm{ABC} P_{6}=A$

The Algorithm

- Let state be the start state.
- For $i=0$ to $m-1$
- While state is not start and there is no trie edge labeled $T[i]$:
- Follow the suffix link.
- If there is a trie edge labeled $T[i]$, follow that edge.
- If state is a word, output that word.
- If state has an output link, repeatedly follow that link and output the words discovered.

The Runtime

- Fact: If $n=O(m)$, the number of occurrences of the substrings can be $\Theta\left(m^{2}\right)$.
- Consider patterns $a^{1}, a^{2}, \ldots, a^{\vee m}$ and search inside the string a^{m}.
- Total length of pattern strings: $\mathrm{O}(m)$
- Total number of matches:

$$
\begin{aligned}
& m+(m-1)+(m-2)+\ldots+(m-\sqrt{ } m) \\
= & m+(m-1)+\ldots+1-(1+2+3+\ldots+\sqrt{ } m) \\
= & \Theta\left(m^{2}\right)-\Theta(m) \\
= & \boldsymbol{\Theta}\left(\boldsymbol{m}^{2}\right)
\end{aligned}
$$

The Runtime

- The quadratic worst-case is not due to any inefficiencies; it's a fundamental limitation due to the number of matches that have to be generated.
- Let z be the total number of matches reported.
- Runtime of a search operation $\Theta(m+z)$.
- This is an output-sensitive algorithm; the runtime depends on how much data is generated.

Constructing Output Links

- Focus on a node w.
- Claim: Any pattern P_{i} that is a proper suffix of w is also a suffix of the string represented by w 's suffix link.
- Rationale: w 's suffix link points to the longest proper suffix of w in the trie.
- That suffix must be at least as long as P_{i}.

Constructing Output Links

- Initialize the root node's output link to be null.
- Run a breadth-first search over the trie.
- For each node w encountered, follow its suffix link to get to node x.
- If x is a pattern, set w 's output link to be x.
- If x is not a pattern, set w 's output link to be x's output link.
- Time required: O(n).

The Complete Construction

- The algorithm we've explored is called the Aho-Corasick string matching algorithm.
- Given the patterns P_{1}, \ldots, P_{k}, do the following:
- Construct a trie holding the patterns in time $O(n)$.
- Add suffix links to the trie in time $O(n)$.
- Add output links to the trie in time $O(n)$.
- Total time required: $\mathrm{O}(n)$.
- To search a text T, run the previous algorithm to find all matches in time $\Theta(m+z)$.
- Total time required: $\mathbf{O}(\boldsymbol{m}+\boldsymbol{n}+\boldsymbol{z})$.

A Data-Structural View

- We've presented Aho-Corasick string matching as an algorithm, but you can really think of it as a data structure.
- Given a set of patterns, you only need to do the $O(n)$ preprocessing once.
- From there, you can match in time $\mathrm{O}(m+z)$ on any input string you'd like.
- In fact, this is frequently done in practice!

Summary

- Tries are a simple and flexible data structure for storing strings.
- Suffix links point from trie nodes to the nodes corresponding to their longest proper suffixes. (suffices?) They can be filled in in time linear in the length of the strings.
- A string x is a substring of a string w precisely when x is a suffix of a prefix of w.
- Aho-Corasick string matching requires $\mathrm{O}(n)$ preprocessing and can do matching in time $\mathrm{O}(m+z)$.

Next Time

- Suffix Trees
- A powerful, flexible data structure for solving just about every string problem ever.
- Suffix Arrays
- A simpler and more compact representation of suffix trees.

