
© 2004 Goodrich, Tamassia Tries 1

Tries

© 2004 Goodrich, Tamassia Tries 2

Preprocessing Strings
!   Preprocessing the pattern speeds up pattern matching

queries
!  After preprocessing the pattern, KMP’s algorithm performs

pattern matching in time proportional to the text size

!   If the text is large, immutable and searched for often
(e.g., works by Shakespeare), we may want to
preprocess the text instead of the pattern

!   A trie is a compact data structure for representing a
set of strings, such as all the words in a text
!  A tries supports pattern matching queries in time

proportional to the pattern size

© 2004 Goodrich, Tamassia Tries 3

Standard Tries
!   The standard trie for a set of strings S is an ordered tree such that:

!  Each node but the root is labeled with a character
!  The children of a node are alphabetically ordered
!  The paths from the external nodes to the root yield the strings of S

!   Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

© 2004 Goodrich, Tamassia Tries 4

Analysis of Standard Tries
!   A standard trie uses O(n) space and supports

searches, insertions and deletions in time O(dm),
where:
n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet

© 2004 Goodrich, Tamassia Tries 5

Word Matching with a Trie
!   We insert the

words of the
text into a
trie

!   Each leaf
stores the
occurrences
of the
associated
word in the
text

© 2004 Goodrich, Tamassia Tries 6

Compressed Tries
!   A compressed trie has

internal nodes of degree
at least two

!   It is obtained from
standard trie by
compressing chains of
“redundant” nodes

© 2004 Goodrich, Tamassia Tries 7

Compact Representation
!   Compact representation of a compressed trie for an array of strings:

!  Stores at the nodes ranges of indices instead of substrings
!  Uses O(s) space, where s is the number of strings in the array
!  Serves as an auxiliary index structure

© 2004 Goodrich, Tamassia Tries 8

Suffix Trie
!   The suffix trie of a string X is the compressed trie of all the

suffixes of X

© 2004 Goodrich, Tamassia Tries 9

Analysis of Suffix Tries
!   Compact representation of the suffix trie for a string

X of size n from an alphabet of size d
!  Uses O(n) space
!  Supports arbitrary pattern matching queries in X in O(dm)

time, where m is the size of the pattern
!  Can be constructed in O(n) time

