INTRODUCTION

A Markov Logic Network (MLN) is a set of pairs $(y \in D)$ where F is a formula in first order Logic and w is a real number (weight of formula). When a world violates a formula, it becomes less probable, but not impossible. Together with a set of constants, it defines a Markov network. The joint probability of smoking of every person is the same. Evidence breaks symmetry, and imposes constraints on the values variables can take. GCFOVE doesn't have approximate version.

EVIDENCE PROCESSING & NORMAL FORM

LIFTING RULE 1: DECOMPOSER RULE

- Decomposer Rule

LIFTING RULE 2: BINOMIAL RULE

- Binomial Rule With Constraints

Canonical Representation

- Only one subset constraint per variable in a constraint tuple.

SetEq

- Only one subset constraint per variable in a constraint tuple.

Normal Form

- Unconstrained representation in which

SetInEq

- Normal Form: No subset constraints

SetInEq

- Normal Form: No subset constraints

Canonical Representation

- Only one subset constraint per variable in a constraint tuple.

SetEq

- Only one subset constraint per variable in a constraint tuple.

Normal Form

- Unconstrained representation in which

SetInEq

- Normal Form: No subset constraints

Canonical Representation

- Only one subset constraint per variable in a constraint tuple.

SetEq

- Only one subset constraint per variable in a constraint tuple.

Normal Form

- Unconstrained representation in which

SetInEq

- Normal Form: No subset constraints

Canonical Representation

- Only one subset constraint per variable in a constraint tuple.

SetEq

- Only one subset constraint per variable in a constraint tuple.

Normal Form

- Unconstrained representation in which

SetInEq

- Normal Form: No subset constraints

Canonical Representation

- Only one subset constraint per variable in a constraint tuple.

SetEq

- Only one subset constraint per variable in a constraint tuple.

Normal Form

- Unconstrained representation in which

SetInEq

- Normal Form: No subset constraints

Canonical Representation

- Only one subset constraint per variable in a constraint tuple.

SetEq

- Only one subset constraint per variable in a constraint tuple.

Normal Form

- Unconstrained representation in which

SetInEq

- Normal Form: No subset constraints

Canonical Representation

- Only one subset constraint per variable in a constraint tuple.

SetEq

- Only one subset constraint per variable in a constraint tuple.

Normal Form

- Unconstrained representation in which