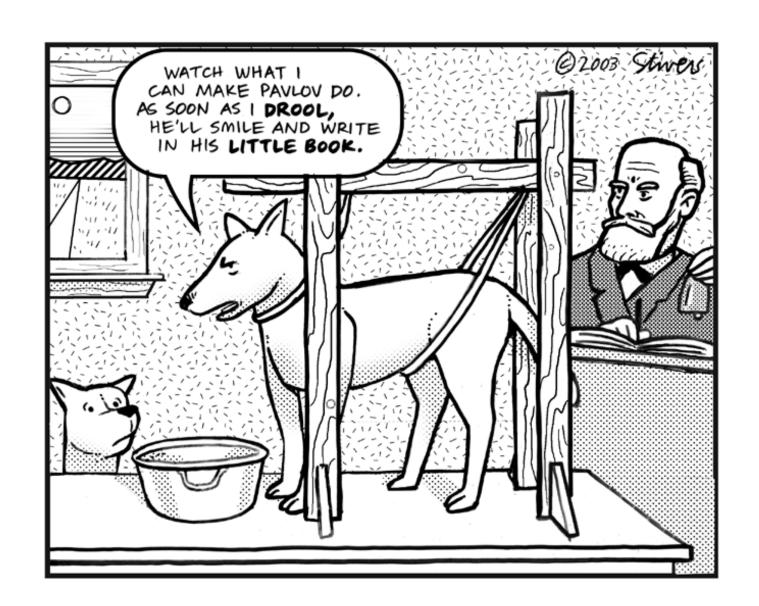
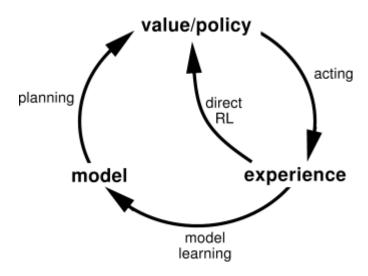
Reinforcement Learning

(Slides by Pieter Abbeel, Alan Fern, Dan Klein, Subbarao Kambhampati, Raj Rao, Lisa Torrey, Dan Weld)

[Many slides were taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Learning/Planning/Acting



Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
 - Still looking for a policy $\pi(s)$
 - New twist: don't know T or R
 - I.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Main Dimensions

Model-based vs. Model-free

- Model-based vs. Model-free
 - Model-based → Have/learn action models (i.e. transition probabilities)
 - Eg. Approximate DP
 - Model-free → Skip them and directly learn what action to do when (without necessarily finding out the exact model of the action)
 - E.g. Q-learning

Passive vs. Active

- Passive vs. Active
 - Passive: Assume the agent is already following a policy (so there is no action choice to be made; you just need to learn the state values and may be action model)
 - Active: Need to learn both the optimal policy and the state values (and may be action model)

Main Dimensions (contd)

Extent of Backup

- Full DP
 - Adjust value based on values of all the neighbors (as predicted by the transition model)
 - Can only be done when transition model is present
- Temporal difference
 - Adjust value based only on the actual transitions observed

Strong or Weak Simulator

- Strong
 - I can jump to any part of the state space and start simulation there.
- Weak
 - Simulator is the real world and I can't teleport to a new state.

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated
- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area

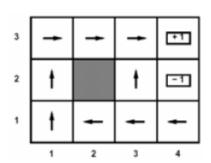
Passive Learning

Simplified task

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You are given a policy π(s)
- Goal: learn the state values (and maybe the model)

In this case:

- No choice about what actions to take
- Just execute the policy and learn from experience
- We'll get to the general case soon



Example: Direct Estimation

Episodes:

(1,1) up -1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

- (1,3) right -1
- (2,3) right -1
- (2,3) right -1

(3,3) right -1

(3,3) right -1

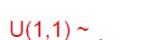
(3,2) up -1

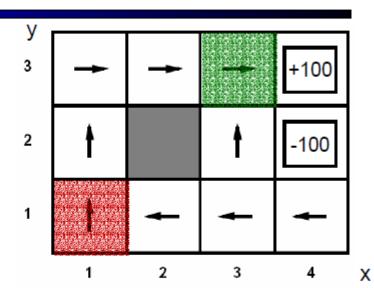
(3,2) up -1

(4,2) exit -100

(3,3) right -1

- (done)
- (4,3) exit +100
- (done)





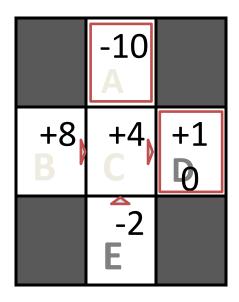
$$\gamma = 1, R = -1$$

 $U(3,3) \sim$

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Ignores Bellman equations
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values



If B and E both go
to C under this
policy, how can
their values be
different?

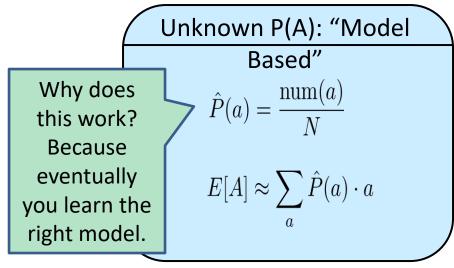
Simple Example: Expected Age

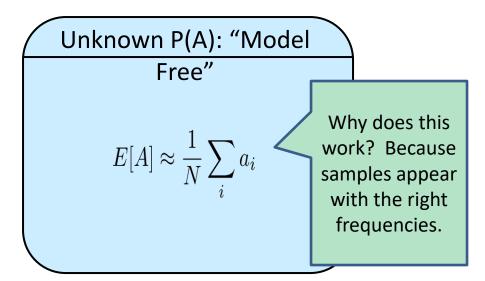
Goal: Compute expected age of COV884 students

Known P(A)

$$E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \dots$$

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$





Model-Based Learning

- Idea:
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct
- Empirical model learning
 - Simplest case:
 - Count outcomes for each s,a
 - Normalize to give estimate of T(s,a,s')
 - Discover R(s,a,s') the first time we experience (s,a,s')
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. "stationary noise")

Example: Model-Based Learning

Episodes:

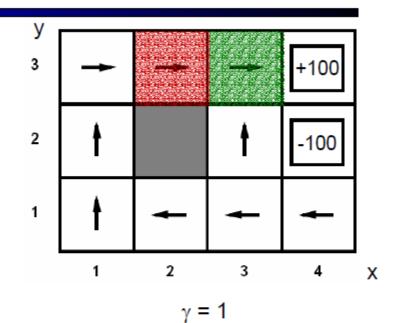
$$(1,2)$$
 up -1

$$(3,2)$$
 up -1

(done)

$$(4,3)$$
 exit +100

(done)



$$T(<3,3>, right, <4,3>) = 1/3$$

$$T(<2,3>, right, <3,3>) = 2/2$$

Model-based Policy Evaluation

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This approach fully exploited the connections between the states
 - Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how do we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

 We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

$$sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$

$$\dots$$

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{s} sample_i$$

Almost! But we can't rewind time to get sample after sample from state

Aside: Online Mean Estimation

- Suppose that we want to incrementally compute the mean of a sequence of numbers $(x_1, x_2, x_3, ...)$
 - E.g. to estimate the expected value of a random variable from a sequence of samples.

$$\hat{X}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i$$

average of n+1 samples

Aside: Online Mean Estimation

- Suppose that we want to incrementally compute the mean of a sequence of numbers $(x_1, x_2, x_3, ...)$
 - E.g. to estimate the expected value of a random variable from a sequence of samples.

$$\hat{X}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i + \frac{1}{n+1} \left(x_{n+1} - \frac{1}{n} \sum_{i=1}^{n} x_i \right)$$

average of n+1 samples

Aside: Online Mean Estimation

- Suppose that we want to incrementally compute the mean of a sequence of numbers $(x_1, x_2, x_3, ...)$
 - E.g. to estimate the expected value of a random variable from a sequence of samples.

$$\hat{X}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i + \frac{1}{n+1} \left(x_{n+1} - \frac{1}{n} \sum_{i=1}^{n} x_i \right)$$

$$= \hat{X}_n + \frac{1}{n+1} \left(x_{n+1} - \hat{X}_n \right)$$
average of n+1 samples
$$= \sum_{i=1}^{n} x_i + \frac{1}{n+1} \left(x_{n+1} - \hat{X}_n \right)$$

$$= \sum_{i=1}^{n} x_i + \frac{1}{n+1} \left(x_{n+1} - \hat{X}_n \right)$$

• Given a new sample x_{n+1} , the new mean is the old estimate (for n samples) plus the weighted difference between the new sample and old estimate

Temporal Difference Learning

TD update for transition from s to s':

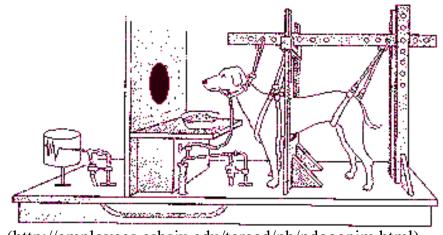
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (R(s) + \gamma V^{\pi}(s') - V^{\pi}(s))$$
 updated estimate (noisy) sample of value at s based on next state s'

- So the update is maintaining a "mean" of the (noisy) value samples
- If the learning rate decreases appropriately with the number of samples (e.g. 1/n) then the value estimates will converge to true values! (non-trivial)

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} T(s, a, s') V^{\pi}(s')$$

Early Results: Pavlov and his Dog

- Classical (Pavlovian) conditioning experiments
- Training: Bell → Food
- After: Bell → Salivate
- Conditioned stimulus (bell) predicts future reward (food)



(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)

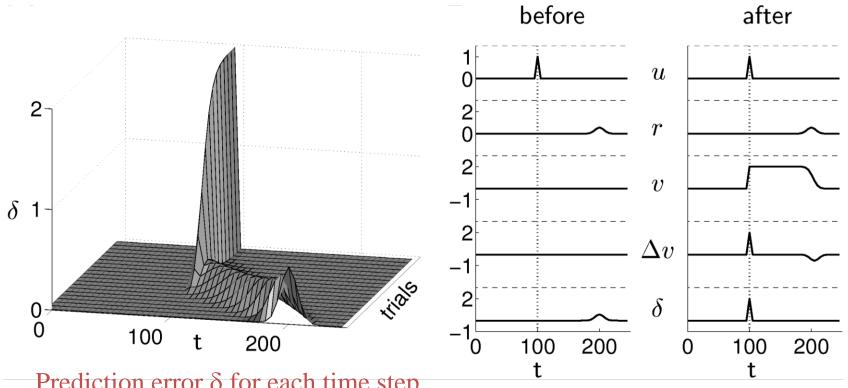
Predicting Delayed Rewards

- Reward is typically delivered at the end (when you know whether you succeeded or not)
- Time: $0 \le t \le T$ with stimulus u(t) and reward r(t) at each time step t (Note: r(t) can be zero at some time points)
- Key Idea: Make the output v(t) predict total expected future reward starting from time t

$$v(t) \approx \left\langle \sum_{\tau=0}^{T-t} r(t+\tau) \right\rangle$$

Predicting Delayed Reward: TD Learning

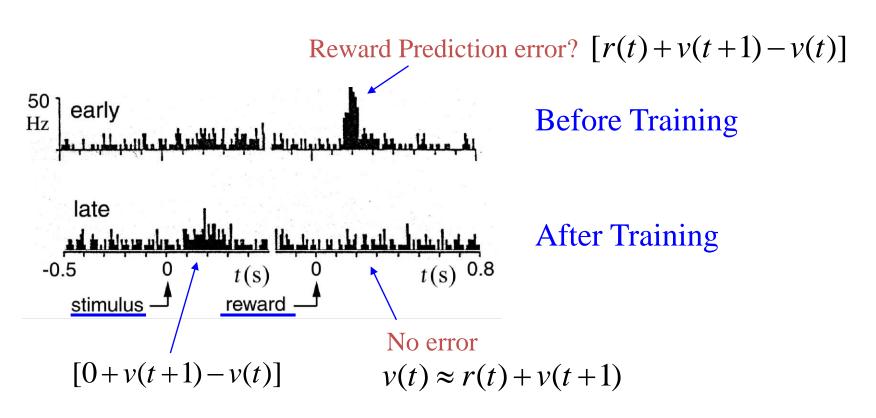
Stimulus at t = 100 and reward at t = 200



Prediction error δ for each time step (over many trials)

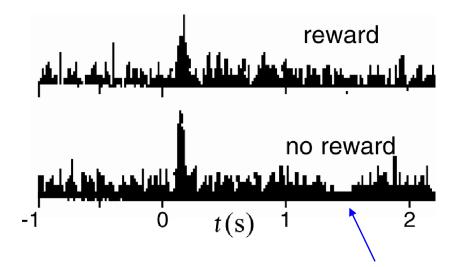
Prediction Error in the Primate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)



More Evidence for Prediction Error Signals

Dopaminergic cells in VTA



Negative error

$$r(t) = 0, v(t+1) = 0$$

$$[r(t) + v(t+1) - v(t)] = -v(t)$$

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π * Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π * Q-learning

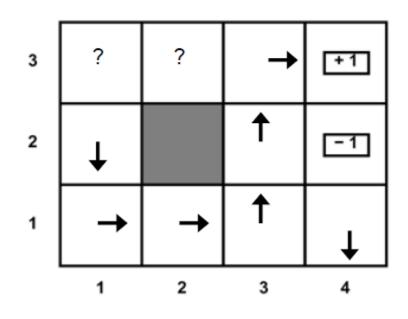
Evaluate a fixed policy π TD-Learning

Model-Based Learning

- In general, want to learn the optimal policy, not evaluate a fixed policy
- Idea: adaptive dynamic programming
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat
 - Crucial: we have to make sure we actually learn about all of the model

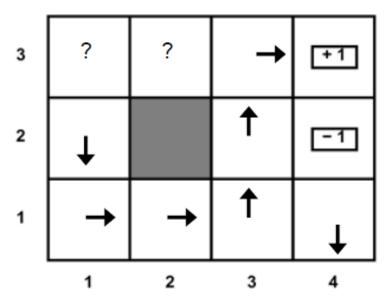
Example: Greedy ADP

- Imagine we find the lower path to the good exit first
- Some states will never be visited following this policy from (1,1)
- We'll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy

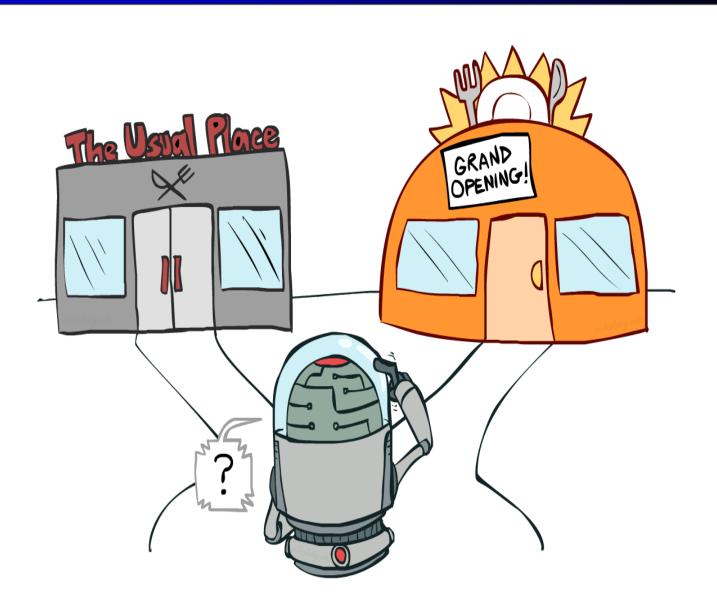


What Went Wrong?

- Problem with following optimal policy for current model:
 - Never learn about better regions of the space if current policy neglects them
- Fundamental tradeoff: exploration vs. exploitation
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility
 - Exploitation: once the true optimal policy is learned, exploration reduces utility
 - Systems must explore in the beginning and exploit in the limit



Exploration vs. Exploitation



TD Learning → TD (V*) Learning

Can we do TD-like updates on V*?

- V*(s) =
$$\max_{a} \sum_{s'} T(s,a,s')[R(s,a,s')+γV(s')]$$

Hmmm... what to do?

VI → Q-Value Iteration

- Forall s, a
 - Initialize $Q_0(s, a) = 0$

no time steps left means an expected reward of zero

- K = 0
- Repeat

For every (s,a) pair:

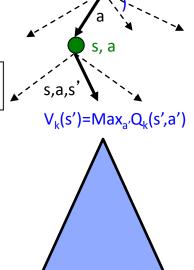
$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

K += 1

Until convergence

I.e., Q values don't change much

do Bellman backups



Q-Learning

- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s,a)
 - Consider your new sample estimate:

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$
$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

• Nudge the old estimate towards the new sample:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[sample - Q(s, a) \right]$$

Q Learning

- Forall s, a
 - Initialize Q(s, a) = 0
- Repeat Forever

Where are you? s.

Choose some action a

Execute it in real world: (s, a, r, s')

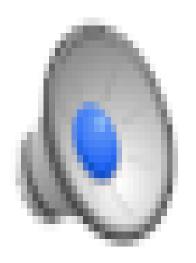
Do update:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - Exploration method would guarantee infinite visits to every state-action pair over an infinite training period
 - Learning rate decays with visits to state-action pairs
 - but not too fast decay. $(\sum_{i}\alpha(s,a,i) = \infty, \sum_{i}\alpha^{2}(s,a,i) < \infty)$
 - Basically, in the limit, it doesn't matter how you select actions (!)

Video of Demo Q-Learning Auto Cliff Grid



Q-Learning Properties

- Will converge to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
- Under certain conditions:
 - The environment model doesn't change
 - States and actions are finite
 - Rewards are bounded
 - Learning rate decays with visits to state-action pairs
 - but not too fast decay. $(\sum_{i}\alpha(s,a,i) = \infty, \sum_{i}\alpha^{2}(s,a,i) < \infty)$
 - Exploration method would guarantee infinite visits to every state-action pair over an infinite training period

Q Learning

- Forall s, a
 - Initialize Q(s, a) = 0
- Repeat Forever

Where are you? s.

Choose some action a

Execute it in real world: (s, a, r, s')

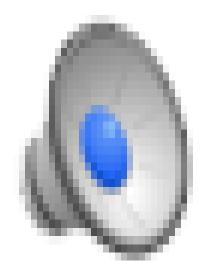
Do update:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Video of Demo Q-learning – Epsilon-Greedy – Crawler



Explore/Exploit Policies

- GLIE Policy 2: Boltzmann Exploration
 - Select action a with probability,

$$\Pr(a \mid s) = \frac{\exp(Q(s, a)/T)}{\sum_{a' \in A} \exp(Q(s, a')/T)}$$

- T is the temperature. Large T means that each action has about the same probability. Small T leads to more greedy behavior.
- Typically start with large T and decrease with time

Exploration Functions

When to explore?

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration function

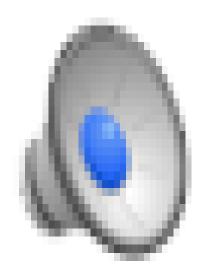
- Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Modified Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$$

Note: this propagates the "bonus" back to states that lead to unknown states as
 well! [Demo: exploration - Q-learning - crawler - exploration function (L11D4)]

Video of Demo Q-learning – Exploration Function – Crawler



Model based vs. Model Free RL

Model based

- estimate $O(|\mathcal{S}|^2|\mathcal{A}|)$ parameters
- requires relatively larger data for learning
- can make use of background knowledge easily

Model free

- estimate $O(|\mathcal{S}||\mathcal{A}|)$ parameters
- requires relatively less data for learning

Applications of RL

- Games
 - Backgammon, Solitaire, Real-time strategy games
- Elevator Scheduling
- Stock investment decisions
- Chemotherapy treatment decisions
- Robotics
 - Navigation, Robocup
 - http://www.youtube.com/watch?v=CIF2SBVY-J0
 - http://www.youtube.com/watch?v=5FGVgMsiv1s
 - http://www.youtube.com/watch?v=W gxLKSsSIE
 - https://www.youtube.com/watch?v="Mmc3i7jZ2c"
- Helicopter maneuvering