Markov Decision Processes Chapter 17

Mausam

Planning Agent

Classical Planning

Static

Stochastic Planning: MDPs

Static

MDP vs. Decision Theory

- Decision theory - episodic
- MDP -- sequential

S: A set of states

A. A set of actions

- T(s,a, s'): transition model
- C(s,a, s'): Cost model

G: set of goals
Factored MDP
absorbing/
non-absorbing

- S_{0} : start state
- γ : discount factor
- $\mathcal{R}\left(s, a, s^{\prime}\right)$: reward model

Objective of an MDP

- Find a policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$
- which optimizes
- minimizes (discounted) expected cost to reach a goal
- maximizes

o expected reward
- maximizes undiscount. expected (reward-cost)
- given a ___ horizon
- finite
- infinite
- indefinite
- assuming full observability

Role of Discount Factor (γ)

- Keep the total reward/total cost finite
- useful for infinite horizon problems
- Intuition (economics):
- Money today is worth more than money tomorrow.
- Total reward: $\mathbf{r}_{1}+\gamma \mathrm{r}_{2}+\gamma^{2} \mathrm{r}_{3}+\ldots$
- Total cost: $\mathrm{c}_{1}+\gamma \mathrm{c}_{2}+\gamma^{2} \mathrm{c}_{3}+\ldots$

Examples of MDPs

- Goal-directed, Indefinite Horizon, Cost Minimization MDP
- $\left\langle\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{C}, \mathcal{G}, \mathrm{s}_{0}>\right.$
- Most often studied in planning, graph theory communities

Infinite Horizon, Discounted Reward Maximization MDP

- $\langle\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma>$
most popular
- Most often studied in machine learning, economics, operations research communities
- Oversubscription Planning: Non absorbing goals, Reward Max. MDP - <S $, \mathcal{A}, \mathcal{T}, \mathcal{G}, \mathcal{R}, \mathrm{s}_{0}>$
- Relatively recent model

Acyclic vs. Cyclic MDPs

$\mathrm{C}(\mathrm{a})=5, \mathrm{C}(\mathrm{b})=10, \mathrm{C}(\mathrm{c})=1$
Expectimin works

- $\mathrm{V}(\mathrm{Q} / \mathrm{R} / \mathrm{S} / \mathrm{T})=1$
- $\mathrm{V}(\mathrm{P})=6$ - action a

Expectimin doesn't work -infinite loop

- $\mathrm{V}(\mathrm{R} / \mathrm{S} / \mathrm{T})=1$
- $\mathrm{Q}(\mathrm{P}, \mathrm{b})=11$
- $\mathrm{Q}(\mathrm{P}, \mathrm{a})=? ? ? ?$
- suppose I decide to take a in P
- $\mathrm{Q}(\mathrm{P}, \mathrm{a})=5+0.4^{*} 1+0.6 \mathrm{Q}(\mathrm{P}(\underset{10}{ })$
$\rightarrow \quad=13.5$

Brute force Algorithm

- Go over all policies π
- How many? $/ A /[S$ finite
- Evaluate each policy how to evaluate?
- $V^{\pi}(s) \leftarrow$ expected cost of reaching goal from s
- Choose the best
- We know that best exists (SSP optimality principle)
- $V^{\pi *}(s) \leq V^{\pi}(s)$

Policy Evaluation

- Given a policy π : compute V^{π}
- V^{π} : cost of reaching goal while following π

Deterministic MDPs

- Policy Graph for π

$$
\pi\left(s_{0}\right)=a_{0} ; \pi\left(s_{1}\right)=a_{1}
$$

- $V^{\pi}\left(s_{1}\right)=1$
- $V^{\pi}\left(s_{0}\right)=6$

Acyclic MDPs

- Policy Graph for π

- $V^{\pi}\left(s_{1}\right)=1$ reverse topological order
- $V^{\pi}\left(s_{2}\right)=4$
- $V^{\pi}\left(s_{0}\right)=0.6(5+1)+0.4(2+4)=6$

General MDPs can be cyclic!

- $V^{\pi}\left(s_{1}\right)=1$
- $V^{\pi}\left(s_{2}\right)=$?? (depends on $V^{\pi}\left(s_{0}\right)$)
- $V^{\pi}\left(s_{0}\right)=$?? (depends on $V^{\pi}\left(s_{2}\right)$)

General SSPs can be cyclic!

linear equations

- $V^{\pi}(g)=0$
- $V^{\pi}\left(s_{1}\right)=1+V^{\pi}\left(s_{g}\right)=1$
- $V^{\pi}\left(s_{2}\right)=0.7\left(4+V^{\pi}\left(s_{g}\right)\right)+0.3\left(3+V^{\pi}\left(s_{0}\right)\right)$
- $V^{\pi}\left(s_{0}\right)=0.6\left(5+V^{\pi}\left(s_{1}\right)\right)+0.4\left(2+V^{\pi}\left(s_{2}\right)\right)$

Policy Evaluation (Approach 1)

- Solving the System of Linear Equations

$$
\begin{aligned}
V^{\pi}(s) & =0 \quad \text { if } s \in \mathcal{G} \\
& =\sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s, \pi(s), s^{\prime}\right)\left[\mathcal{C}\left(s, \pi(s), s^{\prime}\right)+V^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- $|S|$ variables.
- $O\left(|S|^{3}\right)$ running time

Iterative Policy Evaluation

Policy Evaluation (Approach 2)

$$
V^{\pi}(s)=\sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s, \pi(s), s^{\prime}\right)\left[\mathcal{C}\left(s, \pi(s), s^{\prime}\right)+V^{\pi}\left(s^{\prime}\right)\right]
$$

iterative refinement

$$
V_{n}^{\pi}(s) \leftarrow \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s, \pi(s), s^{\prime}\right)\left[\mathcal{C}\left(s, \pi(s), s^{\prime}\right)+V_{n-1}^{\pi}\left(s^{\prime}\right)\right]
$$

Iterative Policy Evaluation

1 //Assumption: π is proper
2 initialize V_{0}^{π} arbitrarily for each state
iteration n
$3 \quad n \leftarrow 0$
4 repeat
$5 \quad n \leftarrow n+1$
$6 \quad$ foreach $s \in \mathcal{S}$ do
$\begin{gathered}7 \\ 8 \\ 9\end{gathered} \left\lvert\,\left\{\begin{array}{l}\text { compute } V_{n}^{\pi}(s) \leftarrow \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s, \pi(s), s^{\prime}\right)\left[\mathcal{C}\left(s, \pi(s), s^{\prime}\right)+V_{n-1}^{\pi}\left(s^{\prime}\right)\right] \\ 10 \text { until } \max _{s \in \mathcal{S}} \operatorname{residual}_{n}(s)<\epsilon ; \longleftarrow \quad \epsilon \text {-consistency }\end{array}\right.\right.$
11 return V_{n}^{π}
termination

Policy Evaluation \rightarrow Value Iteration

(Bellman Equations for MDP $_{1}$)

- $\left\langle\mathcal{S}, \mathcal{A}, \mathcal{P r}, \mathcal{C}, \mathcal{G}, \mathrm{s}_{0}>\right.$
- Define $\mathrm{V}^{*}(\mathrm{~s})$ \{optimal cost\} as the minimum expected cost to reach a goal from this state.
- V^{*} should satisfy the following equation:

$$
\begin{aligned}
& V^{*}(s)=0 \text { if } s \in \mathcal{G} \\
& V^{*}(s)=
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{Q}^{*}(\mathbf{s}, \mathbf{a}) \\
\mathbf{V} *(\mathbf{s})=\min _{3} \mathbf{Q}^{*}(\mathbf{s}, \mathbf{a})
\end{gathered}
$$

Bellman Equations for MDP_{2}

- $\left\langle\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \mathrm{s}_{0}, \gamma\right\rangle$
- Define $\mathrm{V}^{*}(\mathrm{~s})$ \{optimal value\} as the maximum expected discounted reward from this state.
- V^{*} should satisfy the following equation:

$$
V^{*}(s)=\max _{a \in A p(s)} \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P} r\left(s^{\prime} \mid s, a\right)\left[\mathcal{R}\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

Fixed Point Computation in VI

$$
V^{*}(s)=\min _{a \in \mathcal{A}} \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s, a, s^{\prime}\right)\left[\mathcal{C}\left(s, a, s^{\prime}\right)+V^{*}\left(s^{\prime}\right)\right]
$$

iterative refinement
$V_{n}(s)-\min _{a \in \mathcal{A}} \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s, a, s^{\prime}\right)\left[\mathcal{C}\left(s, a, s^{\prime}\right)+V_{n-1}\left(s^{\prime}\right)\right.$
non-linear

Example

Bellman Backup

Value Iteration [Bellman 57]

No restriction on initial value function

1 initialize V_{0} arbitrarily for each state
$2 n \leftarrow 0$
iteration n
3 repeat

4	$n \leftarrow n+1$
5	foreach $s \in \mathcal{S}$ do

compute residual $_{n}(s)=\left|V_{n}(s)-V_{n-1}(s)\right|$
end
e-consistency
9 until $\max _{s \in \mathcal{S}}$ residual $_{n}(s)<\epsilon$;

termination condition

Example

(all actions cost 1 unless otherwise stated)

Comments

- Decision-theoretic Algorithm
- Dynamic Programming
- Fixed Point Computation
- Probabilistic version of Bellman-Ford Algorithm
- for shortest path computation
- MDP P_{1} : Stochastic Shortest Path Problem
- Time Complexity
- one iteration: $\mathrm{O}\left(|\mathcal{S}|^{2}|\mathcal{A}|\right)$
- number of iterations: poly $(|\mathcal{S}|,|\mathcal{A}|, 1 / \epsilon, 1 /(1-\gamma))$
- Space Complexity: $\mathrm{O}(|\mathcal{S}|)$

Monotonicity

For all $n>k$

$\mathrm{V}_{\mathrm{k}} \leq \mathrm{p} \mathrm{V}^{*} \Rightarrow \mathrm{~V}_{\mathrm{n}} \leq \mathrm{p} \mathrm{V}^{*}\left(\mathrm{~V}_{\mathrm{n}}\right.$ monotonic from below)
$\mathrm{V}_{\mathrm{k}} \geq_{\mathrm{p}} \mathrm{V}^{*} \Rightarrow \mathrm{~V}_{\mathrm{n}} \geq_{\mathrm{p}} \mathrm{V}^{*}\left(\mathrm{~V}_{\mathrm{n}}\right.$ monotonic from above)

Changing the Search Space

- Value Iteration
- Search in value space
- Compute the resulting policy
- Policy Iteration
- Search in policy space
- Compute the resulting value

Policy iteration [Howard'60]

- assign an arbitrary assignment of π_{0} to each state.
- repeat
- Rolicy Evaluation compute $\mathrm{V}_{\mathrm{n}+1}$: the evaluation of π_{n}
- Policy Improvement: for all states s
- compute $\pi_{n+1}(\mathrm{~s})$: $\operatorname{argmin}_{\mathrm{a} \in \mathrm{Ap}(\mathrm{s})} \mathrm{Q}_{\mathrm{n}+1}(\mathrm{~s}, \mathrm{a})$
- until $\pi_{n+1}=\pi_{n}$

Advantage

Modified

Policy Iteration
approximate
by value iteration using fixed policy

- searching in a finite (policy) space as opposed to uncountably infinite (value) space \Rightarrow convergence in fewer number of iterations.
- all other properties follow!

Modified Policy iteration

- assign an arbitrary assignment of π_{0} to each state.
- repeat
- Policy Evaluation: compute $\mathrm{V}_{\mathrm{n}+1}$ the approx. evaluation of π_{n}
- Policy Improvement: for all states s
- compute $\pi_{n+1}(\mathrm{~s}): \operatorname{argmax}_{\mathrm{a} \in \mathrm{Ap}(\mathrm{s})} \mathrm{Q}_{\mathrm{n}+1}(\mathrm{~s}, \mathrm{a})$
- until $\pi_{n+1}=\pi_{n}$

Advantage

- probably the most competitive synchronous dynamic programming algorithm.

Applications

- Stochastic Games
- Robotics: navigation, helicopter manuevers...
- Finance: options, investments
- Communication Networks
- Medicine: Radiation planning for cancer
- Controlling workflows
- Optimize bidding decisions in auctions
- Traffic flow optimization
- Aircraft queueing for landing; airline meal provisioning
- Optimizing software on mobiles
- Forest firefighting
...

Extensions

- Heuristic Search + Dynamic Programming
- AO*, LAO*, RTDP, ...
- Factored MDPs
- add planning graph style heuristics
- use goal regression to generalize better
- Hierarchical MDPs
- hierarchy of sub-tasks, actions to scale better
- Reinforcement Learning
- learning the probability and rewards
- acting while learning - connections to psychology
- Partially Observable Markov Decision Processes
- noisy sensors; partially observable environment
- popular in robotics

Partially Observable MDPs

Static

Stochastic, Fully Observable

Stochastic, Partially Observable

POMDPs

- In POMDPs we apply the very same idea as in MDPs.
- Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.
- Let b be the belief of the agent about the current state
- POMDPs compute a value function over belief space:

$$
V_{T}(b)=\max _{a}\left[r(b, a)+\gamma \int V_{T-1}\left(b^{\prime}\right) p\left(b^{\prime} \mid b, a\right) d b^{\prime}\right]
$$

POMDPs

- Each belief is a probability distribution,
- value fn is a function of an entire probability distribution.
- Problematic, since probability distributions are continuous.
- Also, we have to deal with huge complexity of belief spaces.
- For finite worlds with finite state, action, and observation spaces and finite horizons,
- we can represent the value functions by piecewise linear functions.

