Markov Decision Processes
Chapter 17

Mausam

Planning Agent

Static vs. Dynamic

Fully
VS.
Partially Lt
Observable | Deter\r/r;mlstlc
What action Stochastic
Perfect Instantaneous
VS. VS.
Noisy Durative
Percepts Actions
>

Classical Planning

Fully
Observable

Perfect

Static

What action

Percepts R

Actions

Deterministic

Instantaneous

Stochastic Planning: MDPs
Static

Fully
Observable

Perfect

What action

Percepts R

Actions

Stochastic

Instantaneous

MDP vs. Decision Theory
* Decision theory - episodic

« MDP -- sequential

Decision Process (MDP)
o : factored
/@\Set of states Factored MDP

set of action
ansition model
£ost model
Gsetofgoals > .
* s, start state

* v: discount factor

K’R(s,a,s’): reward model/

Objective of an MDP

 Findapolicyn:S— A

* which optimizes
* minimizes ({iscounted) €Xpected cost to reach a goal
* maximizes or expected reward
« maximizes undiscount expected (reward-cost)

« givena____ horizon
 finite
* infinite
* indefinite

« assuming full observability 7

Role of Discount Factor (y)

Keep the total reward/total cost finite
« useful for infinite horizon problems

* |ntuition (economics):
* Money today is worth more than money tomorrow.

- 2
Total reward: ry +yr, + yry + ...
Total cost: ¢y + yc, + y2c,y + ...

Examples of MDPs

* Goal-directed, Indefinite Horizon, Cost Minimization MDP
¢ <8! A! 7:(:, g! SO>
* Most often studied in planning, graph theory communities

@finite Horizon, Discounted Reward Maximization M@‘\
+ <S ATR most popular

« Most often studied in machine learning, economics, operations
research communities

« Oversubscription Planning: Non absorbing goals, Reward Max. MDP
* <85 As 7: g, R! SO>
» Relatively recent model

Acyclic vs. Cyclic MDPs

C(a) =5, C(b) =10, C(c) =1 Expectimin doesn’t work
infinite loop
Expectimin works « V(R/SIT) =1
*V(Q/R/SIT) =1 «Q(Pb)=11
*V(P) =6 —action a « Q(Pa) = 77??

* suppose | decide to take a in P
* Q(P,a) =5+ 0.4*1 + O.6Q(Pi%)
e=>» =135

Brute force Algorithm

= Go over all policies 7
« How many? /A/°. finite

= Evaluate each policy how to evaluate?
* |/"(s) <+ expected cost of reaching goal from s

= Choose the best

« We know that best exists (SSP optimality principle)
* V(s) < V7(s)

11

Policy Evaluation

* Given a policy 7. compute I/~
« V7. cost of reaching goal while following =

12

Deterministic MDDPs

= Policy Graph for =

7(S0) = 0y, 7(5,) = a,

C=5 C=1

0 dg d;
Vs = T
" V(s,) =6

add costs on path to goal

13

Acyclic MDPs

= Policy Graph for =
backward pass in

reverse topological

= Vrs,)) =1 order
. Vi) =4 /
.« Vifs,) = 0.6(5+1) + 0.4(2+4) = 6

14

General MDPs can be cyclic!

cannot do a
C=3 simple single pass

\

. Visy)=
= f(s,)= 7?7 (depends on V7(s,))
= 7(s,)= 7?7 (depends on V7(s,))

15

General SSPs can be cyclic!

C:3. a 5/}44/7/3 SySteVV\ OF
linear equations

Vi@g) =0 /
Vi(s,)= 1+ V(s,) = 1

Vi(s,)= 0.7(4+V(s,)) + 0.3(3+ V(s)))
Virs,) = 0.6(5+ VA(s,)) + 0.4(2+ V/(s,))

16

Policy Evaluation (Approach 1)

= Solving the System of Linear Equations

) [C(s,m(s),s') + V™(s)]

= | 5] variables.
= (|S|3) running time

18

Iterative Policy Evaluation

4.4+O.4V7T(sz) ch
0

5.88
6.5856
6.670272
6.68043.. oo
3.7+0.3V7(s,)
3.7
5.464
5.67568
5.7010816

5.704129...

Policy Evaluation (Approach 2)

20

© w9 2 ke W R e

Iterative Policy Evaluation

/| Assumption: T is proper))
initialize Vi @rbitrarilfor each state iteration n
n+— 0

repeat
n«—mn-+1
s e S do

compute V7 (s) « >, s 7T (s,7m(s),s") [C(s,m(s),5s") + V_1(5")]

end | e-consistency
until maxes residual, (s) < €;<

return V,,

termination
comlitionz2

Policy Evaluation =» Value Iteration
(Bellman Equations for MDP,)

* <S! A! Pr! ca g! SO>

* Define V*(s) {optimal cost} as the minimum
expected cost to reach a goal from this state.

« V* should satisfy the following equation:

Q*(s.a) 24
V*(s) = min, Q*(s,a)

Bellman Equations for MDP,

* <S! A! 7: R1 SO, 'Y>

« Define V*(s) {optimal value} as the maximum
expected discounted reward from this state.

« V* should satisfy the following equation:

26

Fixed Point Computation in VI

non-linear

Example

29

Bellman Backup

Qy(Sga40) =5+ 0
Q,(s4,a4;) =2+ 0.6x 0
+0.4x 2
=2.8

T RS = R | N =N - I

=
]

Value Iteration [Bellman 57]

No restriction on initial value function

Eliaélze Vo@rbitrarilyXor each state iteration n
repeat
n—n-+1_
foreach s € S do
compute V,(s) using Bellman backup at s
compute residual, (s) = [V (s) — Va—1(s)]
end .
until maxgesresidual, (s) < € €-consistency

return greedy policy: 7" (s) = argminge 4 ZS,ES T (s,a,s")[C(s,a,s]) + Va(s')]

termination
condition

31

Example

(all actions cost 1 unless otherwise stated)

v
3 3 2 2

3 3 2 2 2.8
3 3 3.8 3.8 2.8
4 4.8 3.8 3.8 3.92
4.8 4.8 4.52 4.52 3.52

5.52 5.92 4.52 4.52 3.808
20 5.99921 5.99921 4.99969 4.99969 3.99969

32

Comments

* Decision-theoretic Algorithm
* Dynamic Programming
* Fixed Point Computation

* Probabilistic version of Bellman-Ford Algorithm
» for shortest path computation
« MDP, : Stochastic Shortest Path Problem

= Time Complexity
« one iteration: O(|S|?|.A|)

« number of iterations: poly(|S|, |A|, 1/e, 1/(1-y))
= Space Complexity: O(|S|)

35

Monotonicity

For all n>k
V< V' =2V, < V* (V,, monotonic from below)

V> V' = V_> V* (V, monotonic from above)

36

Changing the Search Space

* Value lteration
e Search in value space
« Compute the resulting policy

* Policy lteration
« Search in policy space
« Compute the resulting value

44

Policy iteration [Howard’60]

 assign an arbitrary assignment of r, to each state.

repeat - costly: O(n3)
. licy Evalua@:empute V, .¢: the evaluation of &t t

» Policy Improvement: for all states s
* compute m,.((S): argmin, a,Qn+1(S,a)

© untilm,,, =, Modified
Policy Iteration

approximate
» by value iteration
using fixed policy

Advantage

« searching in a finite (policy) space as opposed to

uncountably infinite (value) space = convergence in fewer
number of iterations.

« all other properties follow! 45

Modified Policy iteration

 assign an arbitrary assignment of r, to each state.

e repeat
 Policy Evaluation: compute V, ., the approx. evaluation of x,,
» Policy Improvement: for all states s
* compute m,.((S): argmax,c aps)Qn+1(S,a)

o Untl| TCn+1 — ﬂin
Advantage

 probably the most competitive synchronous dynamic
programming algorithm.

46

Applications

Stochastic Games

Robotics: navigation, helicopter manuevers...
Finance: options, investments
Communication Networks

Medicine: Radiation planning for cancer
Controlling workflows

Optimize bidding decisions in auctions
Traffic flow optimization

Aircraft queueing for landing; airline meal provisioning
Optimizing software on mobiles

Forest firefighting

47

Extensions

Heuristic Search + Dynamic Programming
« AO* LAO*, RTDP, ..

Factored MDPs
« add planning graph style heuristics
« use goal regression to generalize better

Hierarchical MDPs
 hierarchy of sub-tasks, actions to scale better

Reinforcement Learning
« learning the probability and rewards
 acting while learning - connections to psychology

Partially Observable Markov Decision Processes
* noisy sensors; partially observable environment

« popular in robotics
95

Partially Observable MDPs
Static

Partially
Observable

Noisy

Percepts R

What action

Actions

Stochastic

Instantaneous

112

Stochastic, Fully Observable

—_— e

T et -/ S T T -— -

e =t A = t— A d— = d— / e e Al e — S S e e e e = — =

s
e e

— —

- —t— e e e — — — — — — — —— —a—

—— ——
¥ N

N

S e S i S e e o e e il ‘\-—q— e S e S e e W W -

—_—— — S S NN —— e e e e e — — -\ NGB —— o — — ——

/'/'/'/'/// \ \\‘~\\‘\\‘\'\‘\\‘\\‘\‘\‘\ A e S

atatatata™ah PA P oV oV o o o o o P e P VS P L P S L L i B G D .

— iy i — — —— — — -.— .-— o g g e i — — — o —

PPl ol alP alPulid / et e T D

\\A\\A\\

————p———

P PPl el el

113

Stochastic, Partially Observable

gl Vol Sl Pl g P P g gl g i g o . S S S T T e e Y

A R R R R RN N ER R RN RN R R R RS YT I T IR . AT

S Ta e S ™aN |

—_—— ——

TN

—— - ——

il it el it Sl e e e W 9 4 =
e e 2 1 AR A e e SN AN L —

——— —-— e e o A A A A o —

""'n."\"‘"l""\\‘\ L/#/fr’ffr’ft’fffff Pl
%

fa TV Tt =y o

— o — - — —— —— T —— i i - — -

. T T S T = e i i a— Il I

:_"-. —_—— e ——————— e TR e e m——— -— -—

e M M e M M M R e e e e R N M e R R e R e e W e W W e W e W

POMDPs

= |[n POMDPs we apply the very same idea as in MDPs.

= Since the state is not observable,

the agent has to make its decisions based on the belief state
which is a posterior distribution over states.

» |et b be the belief of the agent about the current state

= POMDPs compute a value function over belief space:

V(b)) = mgx

r(v:a) +v[V1 (8’ [b,2) df

115

POMDPs

Each belief is a probability distribution,

 value fn is a function of an entire probability distribution.
Problematic, since probability distributions are continuous.

Also, we have to deal with huge complexity of belief spaces.

For finite worlds with finite state, action, and observation
spaces and finite horizons,

* we can represent the value functions by piecewise linear
functions.

116

