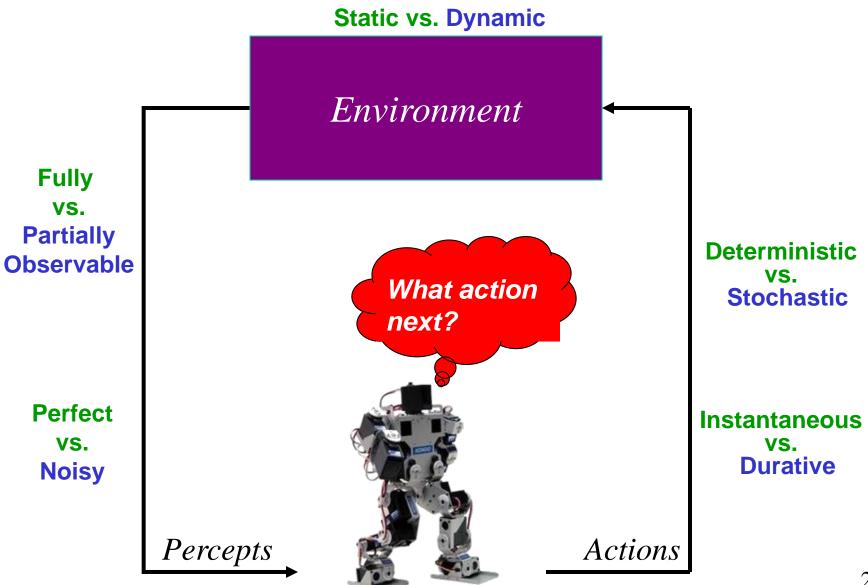
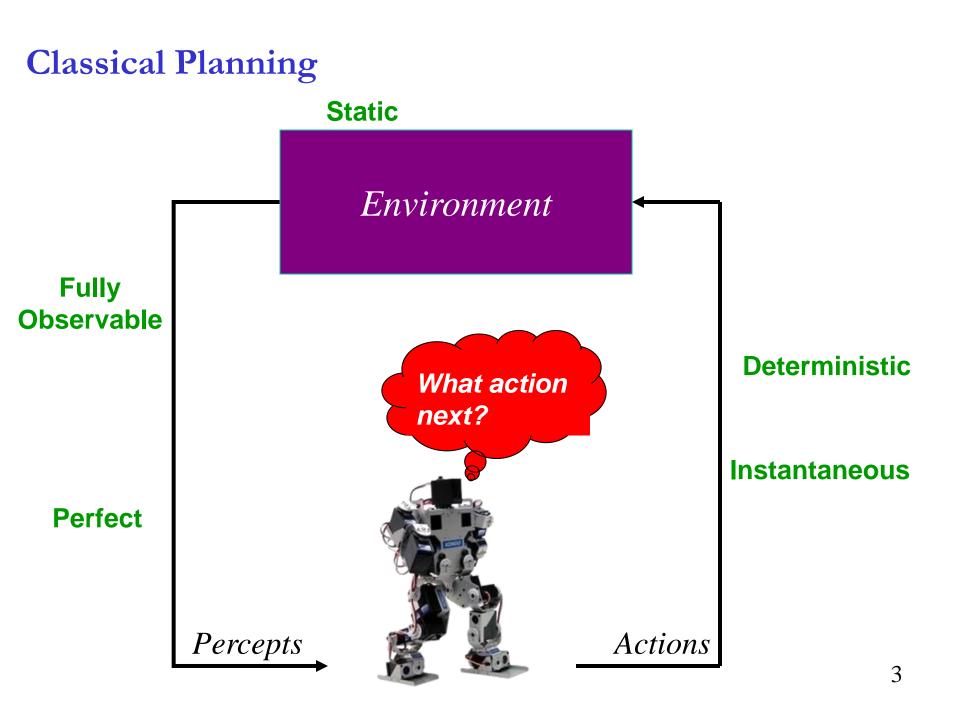
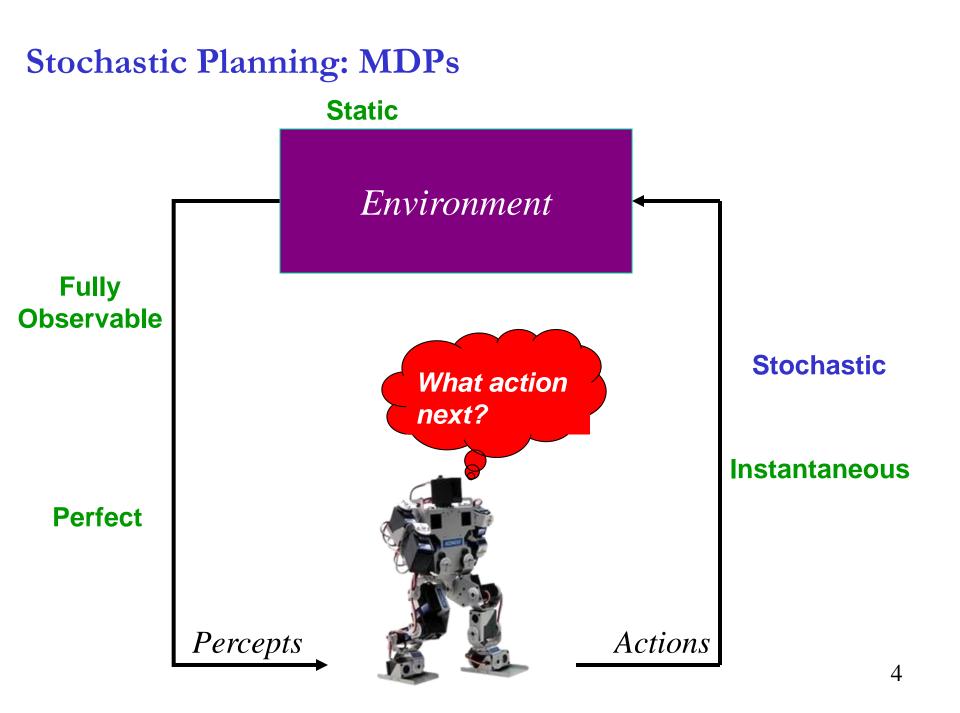
Markov Decision Processes Chapter 17

Mausam

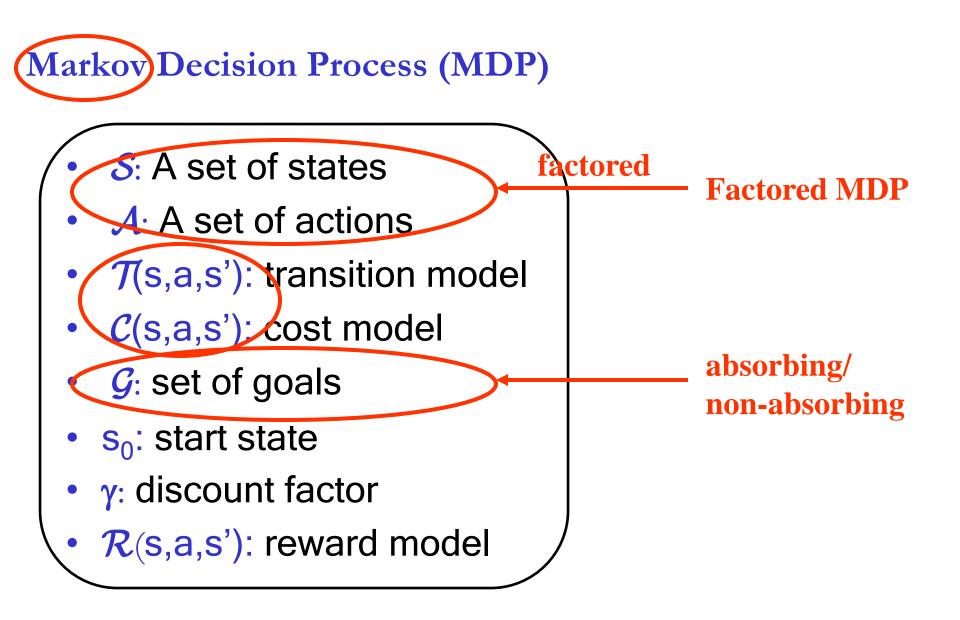






MDP vs. Decision Theory

- Decision theory episodic
- MDP -- sequential



Objective of an MDP

- Find a policy $\pi: \mathcal{S} \to \mathcal{A}$
- which optimizes
 - minimizes (discounted) expected cost to reach a goal
 - maximizes or expected reward
 - maximizes undiscount. expected (reward-cost)
- given a _____ horizon
 - finite
 - infinite
 - indefinite
- assuming full observability

Role of Discount Factor (γ)

- Keep the total reward/total cost finite
 - useful for infinite horizon problems
- Intuition (economics):
 - Money today is worth more than money tomorrow.
- Total reward: $r_1 + \gamma r_2 + \gamma^2 r_3 + \dots$
- Total cost: $c_1 + \gamma c_2 + \gamma^2 c_3 + \dots$

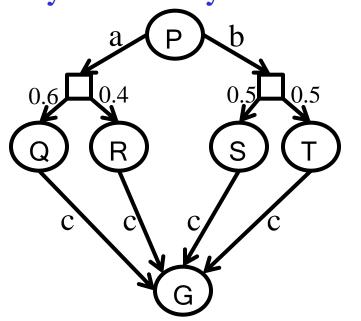
Examples of MDPs

- Goal-directed, Indefinite Horizon, Cost Minimization MDP ۲
 - $<\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{C}, \mathcal{G}, s_0>$
 - Most often studied in planning, graph theory communities

Infinite Horizon, Discounted Reward Maximization MDP

- $\langle S, A, T, \mathcal{R}, \gamma \rangle$
- most popular Most often studied in machine learning, economics, operations research communities
- Oversubscription Planning: Non absorbing goals, Reward Max. MDP
 - $<\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{G}, \mathcal{R}, s_0 >$
 - Relatively recent model

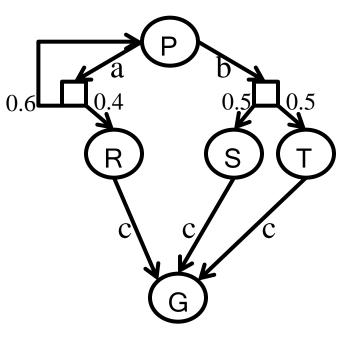
Acyclic vs. Cyclic MDPs



C(a) = 5, C(b) = 10, C(c) = 1

Expectimin works

- V(Q/R/S/T) = 1
- V(P) = 6 action a



- Expectimin doesn't work •infinite loop
- V(R/S/T) = 1
- Q(P,b) = 11
- Q(P,a) = ????
- suppose I decide to take a in P
- Q(P,a) = 5 + 0.4 * 1 + 0.6Q(P,a)
- **→** = 13.5

Brute force Algorithm

- Go over all policies π
 - How many? /A/^{/S/} finite
- Evaluate each policy how to evaluate?
 V^π(s) ← expected cost of reaching goal from s
- Choose the best
 - We know that best exists (SSP optimality principle)
 - $V^{\pi*}(S) \leq V^{\pi}(S)$

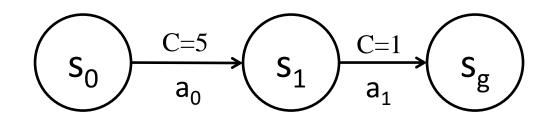
Policy Evaluation

- Given a policy π : compute V^{π}
 - V^{π} : cost of reaching goal while following π

Deterministic MDPs

• Policy Graph for π

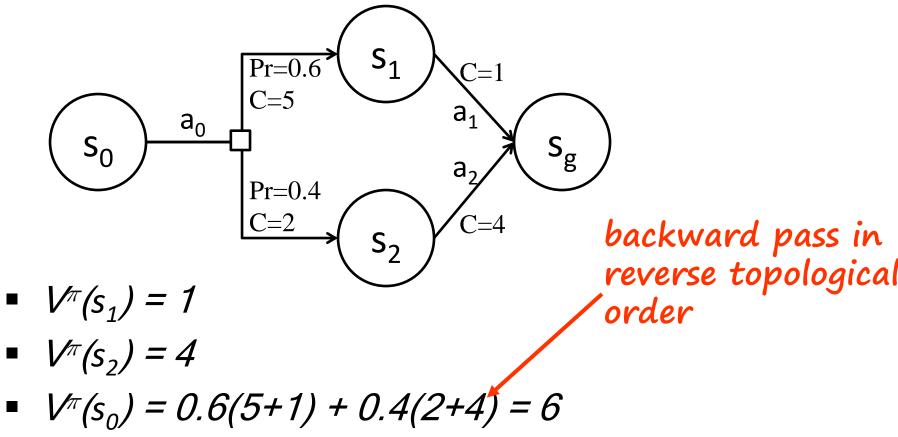
$$\pi(s_0) = a_0; \pi(s_1) = a_1$$



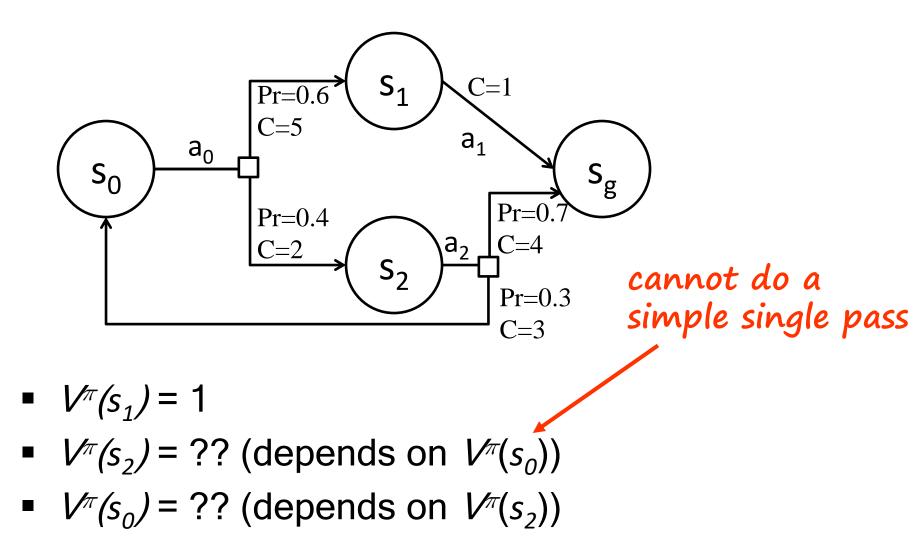
 $V^{\pi}(s_1) = 1$ $V^{\pi}(s_0) = 6$ add costs on *path* to goal

Acyclic MDPs

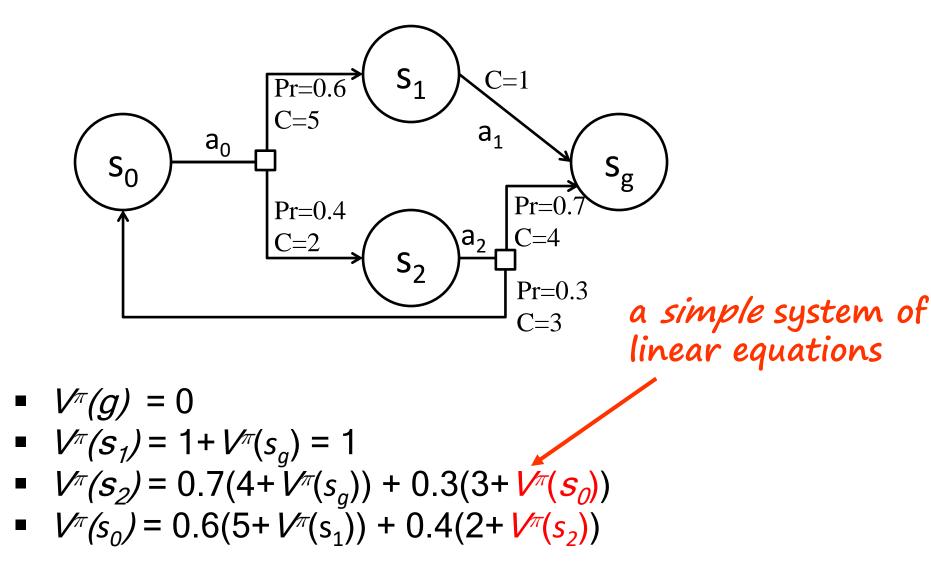
• Policy Graph for π



General MDPs can be cyclic!



General SSPs can be cyclic!



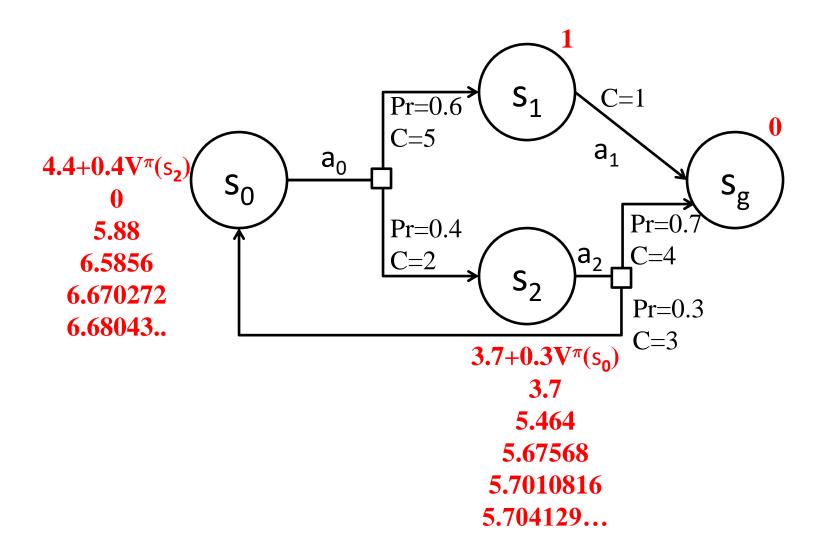
Policy Evaluation (Approach 1)

Solving the System of Linear Equations

$$V^{\pi}(s) = 0 \quad \text{if } s \in \mathcal{G} \\ = \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + V^{\pi}(s') \right]$$

- |S| variables.
- $O(|S|^3)$ running time

Iterative Policy Evaluation

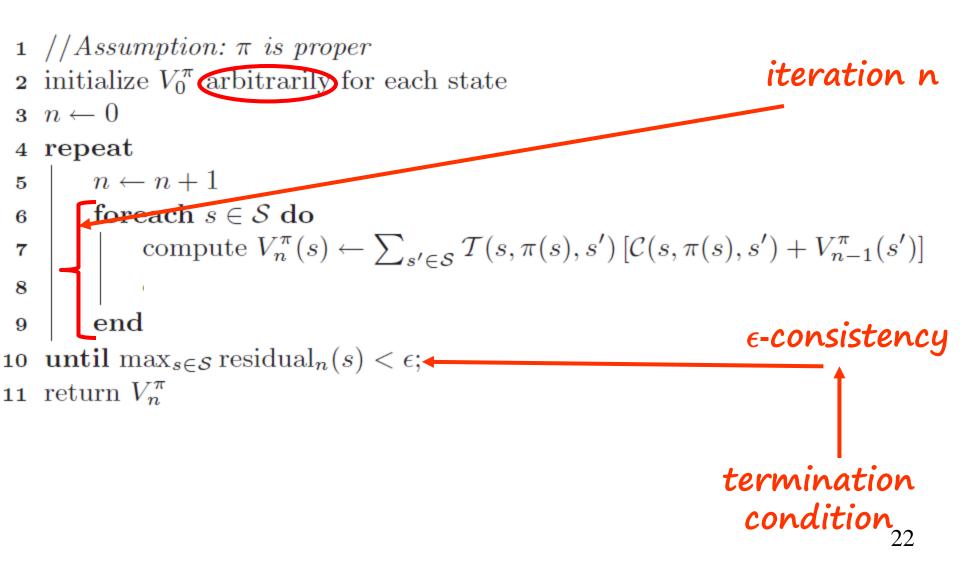


Policy Evaluation (Approach 2)

$$V^{\pi}(s) = \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + V^{\pi}(s') \right]$$

iterative refinement
$$\overbrace{V_{n}^{\pi}(s) \leftarrow \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + \overbrace{V_{n-1}^{\pi}(s')}^{\pi} \right]}$$

Iterative Policy Evaluation



Policy Evaluation \rightarrow Value Iteration (Bellman Equations for MDP₁)

- <S, A, Pr, C, G, s_0 >
- Define V*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- V* should satisfy the following equation:

$$V^{*}(s) = 0 \text{ if } s \in \mathcal{G}$$

$$V^{*}(s) =$$

$$Q^{*}(s,a)$$

$$V^{*}(s) = \min_{a} Q^{*}(s,a)$$

$$Q^{*}(s,a) = 24$$

Bellman Equations for MDP₂

- <S, A, T, R, s_{0} , γ >
- Define V*(s) {optimal value} as the maximum expected discounted reward from this state.
- V* should satisfy the following equation:

$$V^*(s) = \max_{a \in Ap(s)} \sum_{s' \in S} \mathcal{P}r(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma V^*(s') \right]$$

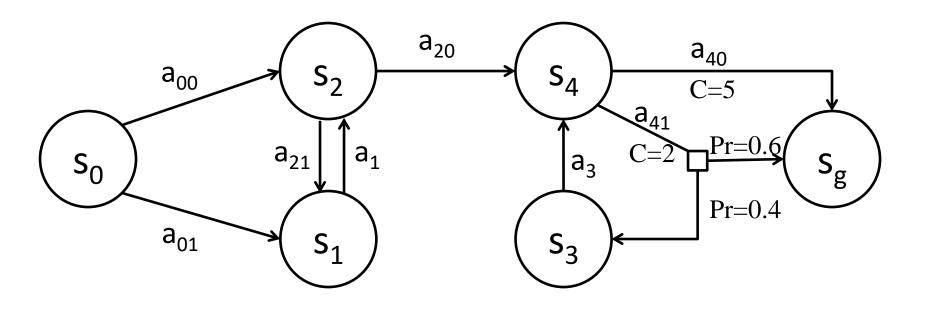
Fixed Point Computation in VI

$$V^{*}(s) = \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V^{*}(s')\right]$$

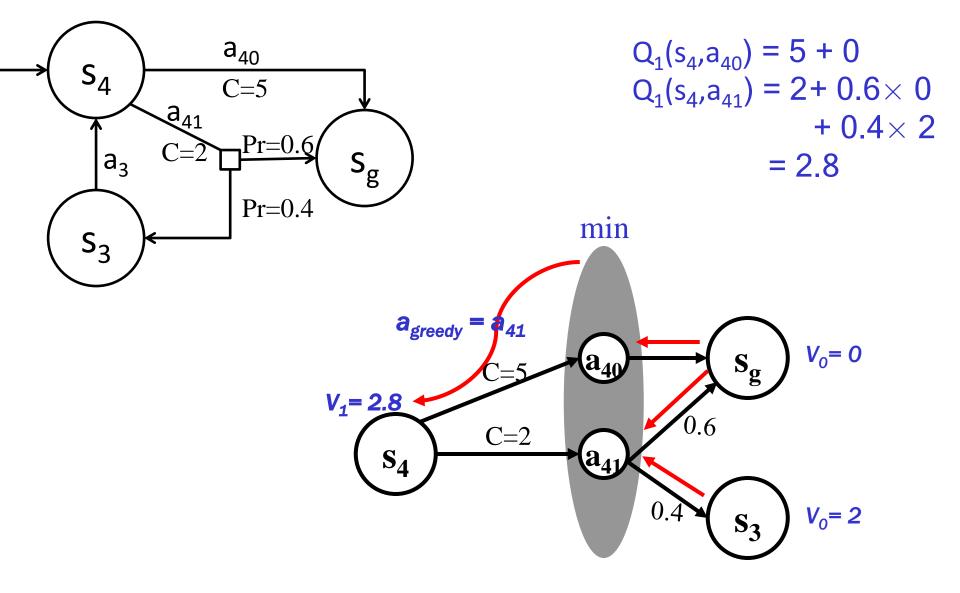
iterative refinement
$$V_{n}(s) \leftarrow \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V_{n-1}(s')\right]$$

non-linear

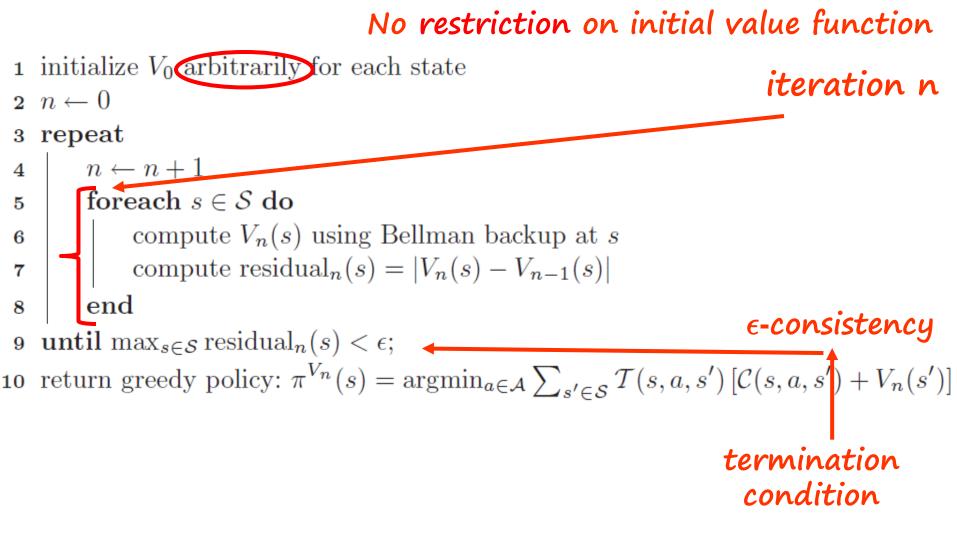
Example



Bellman Backup

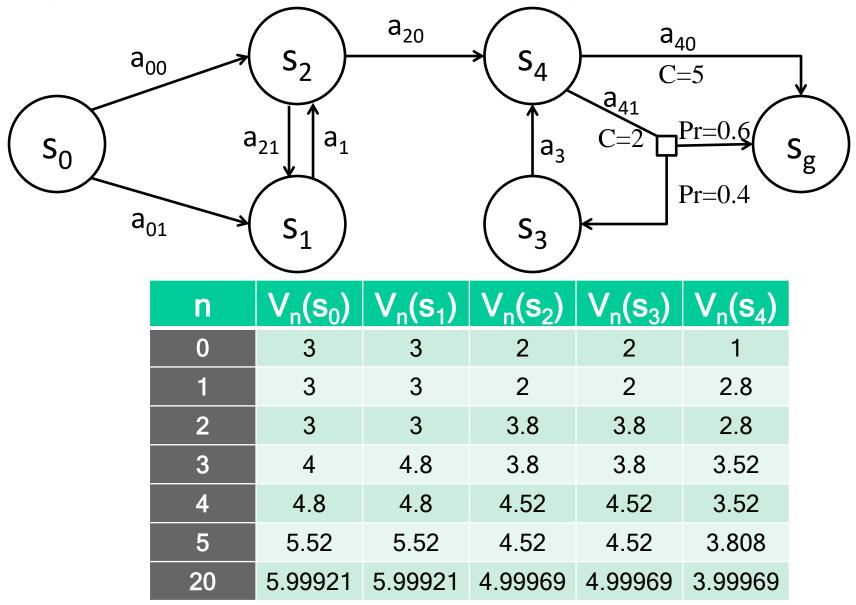


Value Iteration [Bellman 57]



Example

(all actions cost 1 unless otherwise stated)



32

Comments

- Decision-theoretic Algorithm
- Dynamic Programming
- Fixed Point Computation
- Probabilistic version of Bellman-Ford Algorithm
 - for shortest path computation
 - MDP₁ : Stochastic Shortest Path Problem
- Time Complexity
 - one iteration: $O(|S|^2|A|)$
 - number of iterations: poly(|S|, |A|, $1/\epsilon$, $1/(1-\gamma)$)
- Space Complexity: O(|S|)

Monotonicity

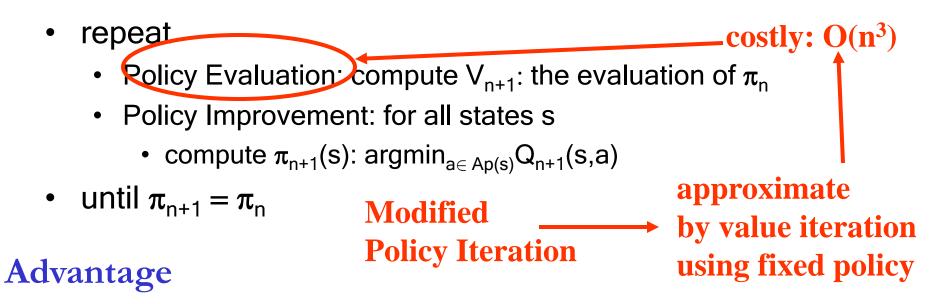
For all n>k

 $V_k \leq_p V^* \Rightarrow V_n \leq_p V^* (V_n \text{ monotonic from below})$ $V_k \geq_p V^* \Rightarrow V_n \geq_p V^* (V_n \text{ monotonic from above})$ **Changing the Search Space**

- Value Iteration
 - Search in value space
 - Compute the resulting policy
- Policy Iteration
 - Search in policy space
 - Compute the resulting value

Policy iteration [Howard'60]

• assign an arbitrary assignment of π_0 to each state.



- searching in a finite (policy) space as opposed to uncountably infinite (value) space ⇒ convergence in fewer number of iterations.
- all other properties follow!

Modified Policy iteration

- assign an arbitrary assignment of π_0 to each state.
- repeat
 - Policy Evaluation: compute V_{n+1} the *approx.* evaluation of π_n
 - Policy Improvement: for all states s
 - compute $\pi_{n+1}(s)$: $\operatorname{argmax}_{a \in Ap(s)}Q_{n+1}(s,a)$
- until $\pi_{n+1} = \pi_n$

Advantage

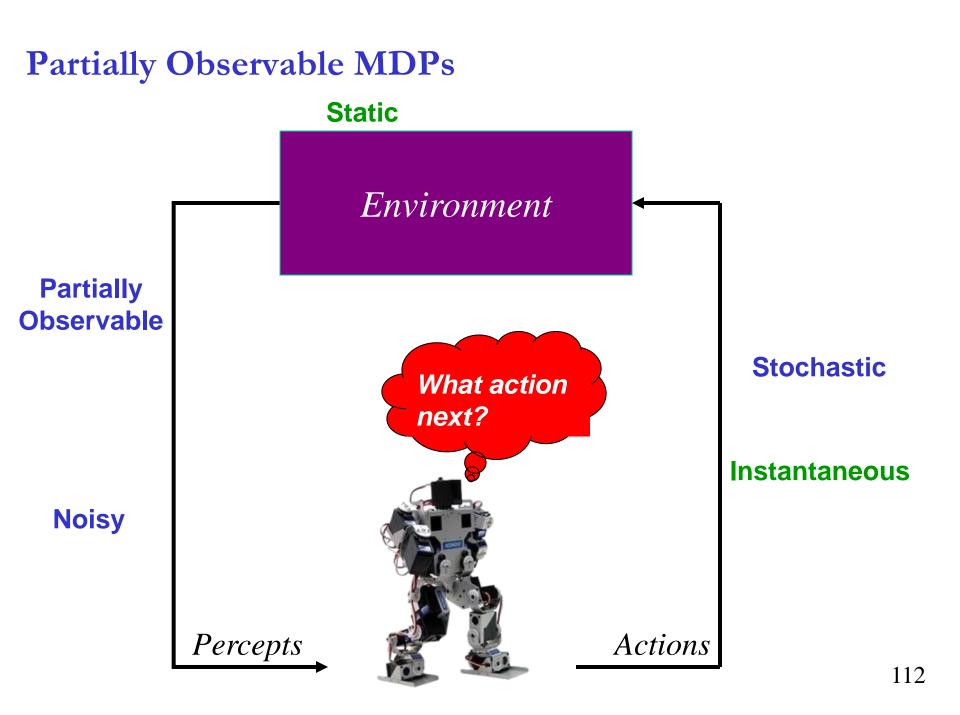
 probably the most competitive synchronous dynamic programming algorithm.

Applications

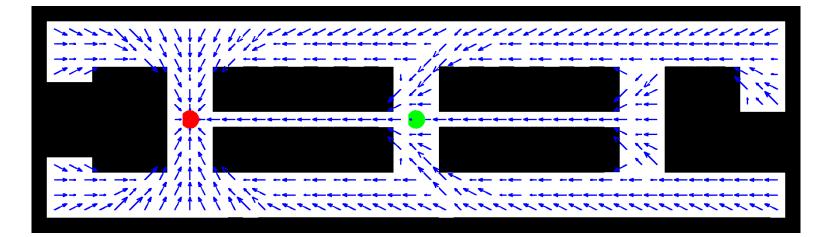
- Stochastic Games
- Robotics: navigation, helicopter manuevers...
- Finance: options, investments
- Communication Networks
- Medicine: Radiation planning for cancer
- Controlling workflows
- Optimize bidding decisions in auctions
- Traffic flow optimization
- Aircraft queueing for landing; airline meal provisioning
- Optimizing software on mobiles
- Forest firefighting

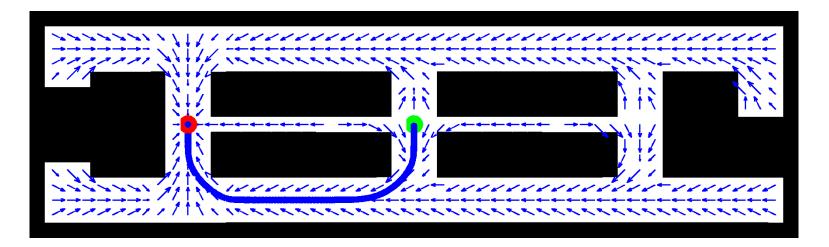
Extensions

- Heuristic Search + Dynamic Programming
 - AO*, LAO*, RTDP, ...
- Factored MDPs
 - add planning graph style heuristics
 - use goal regression to generalize better
- Hierarchical MDPs
 - hierarchy of sub-tasks, actions to scale better
- Reinforcement Learning
 - learning the probability and rewards
 - acting while learning connections to psychology
- Partially Observable Markov Decision Processes
 - noisy sensors; partially observable environment
 - popular in robotics

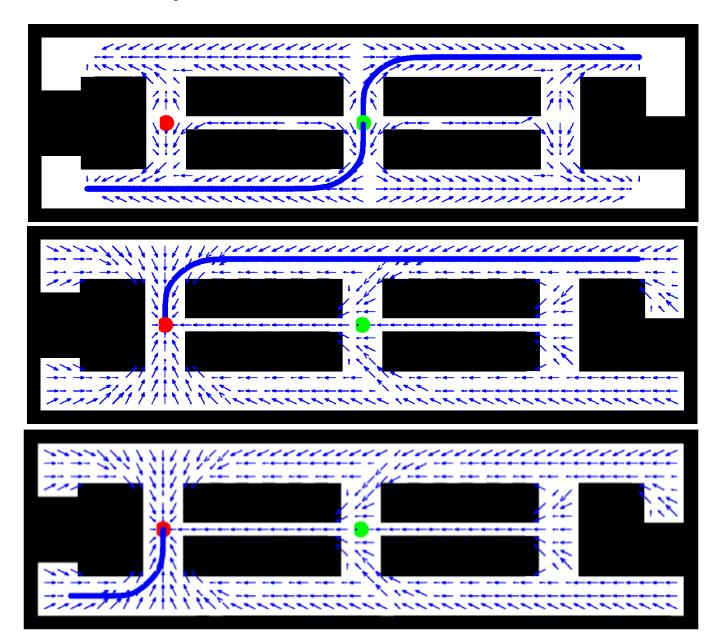


Stochastic, Fully Observable





Stochastic, Partially Observable



POMDPs

In POMDPs we apply the very same idea as in MDPs.

Since the state is not observable,

the agent has to make its decisions based on the belief state which is a posterior distribution over states.

- Let *b* be the belief of the agent about the current state
- POMDPs compute a value function over belief space:

$$V_T(b) = \max_a \left[r(b,a) + \gamma \int V_{T-1}(b') p(b' | b, a) db' \right]$$

POMDPs

- Each belief is a probability distribution,
 - value fn is a function of an entire probability distribution.
- Problematic, since probability distributions are continuous.
- Also, we have to deal with huge complexity of belief spaces.

- For finite worlds with finite state, action, and observation spaces and finite horizons,
 - we can represent the value functions by piecewise linear functions.