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Planning Agent

What action 

next?

Percepts Actions

Environment

Static vs. Dynamic

Fully 

vs.

Partially 

Observable

Perfect

vs.

Noisy

Deterministic 
vs. 

Stochastic

Instantaneous 
vs. 

Durative
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Classical Planning

What action 

next?

Percepts Actions

Environment

Static

Fully 

Observable 

Perfect

Instantaneous 

Deterministic 
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Stochastic Planning: MDPs

What action 

next?

Percepts Actions

Environment

Static

Fully 

Observable 

Perfect

Stochastic 

Instantaneous 
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MDP vs. Decision Theory

• Decision theory – episodic

• MDP -- sequential
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Markov Decision Process (MDP)

• S: A set of states

• A: A set of actions

• T(s,a,s’): transition model

• C(s,a,s’): cost model

• G: set of goals

• s0: start state

• : discount factor

• R(s,a,s’): reward model

factored
Factored MDP

absorbing/

non-absorbing
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Objective of an MDP

• Find a policy : S → A

• which optimizes 

• minimizes expected cost to reach a goal

• maximizes expected reward

• maximizes expected (reward-cost)

• given a ____ horizon

• finite

• infinite

• indefinite

• assuming full observability

discounted

or

undiscount.
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Role of Discount Factor ()

• Keep the total reward/total cost finite

• useful for infinite horizon problems

• Intuition (economics): 

• Money today is worth more than money tomorrow.

• Total reward: r1 + r2 + 2r3 + …

• Total cost: c1 + c2 + 2c3 + …
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Examples of MDPs

• Goal-directed, Indefinite Horizon, Cost Minimization MDP

• <S, A, T, C, G, s0>

• Most often studied in planning, graph theory communities

• Infinite Horizon, Discounted Reward Maximization MDP

• <S, A, T, R, >

• Most often studied in machine learning, economics, operations 
research communities

• Oversubscription Planning: Non absorbing goals, Reward Max. MDP

• <S, A, T, G, R, s0>

• Relatively recent model

most popular
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Acyclic vs. Cyclic MDPs

P

RQ S T

G

P

R S T

G

a b
a b

c c c c c c c

0.6 0.4 0.50.5 0.6 0.4 0.50.5

C(a) = 5, C(b) = 10, C(c) =1

Expectimin works

• V(Q/R/S/T) = 1

• V(P) = 6 – action a

Expectimin doesn’t work

•infinite loop

• V(R/S/T) = 1

• Q(P,b) = 11

• Q(P,a) = ????

• suppose I decide to take a in P

• Q(P,a) = 5+ 0.4*1 + 0.6Q(P,a)

• = 13.5
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Brute force Algorithm

 Go over all policies ¼

• How many? |A||S|

 Evaluate each policy

• V¼(s) Ã expected cost of reaching goal from s

 Choose the best

• We know that best exists (SSP optimality principle)

• V¼*(s) · V¼(s)

finite

how to evaluate?
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Policy Evaluation

 Given a policy ¼: compute V¼

• V¼ : cost of reaching goal while following ¼
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Deterministic MDPs

 Policy Graph for ¼

¼(s0) = a0; ¼(s1) = a1

 V¼(s1) = 1

 V¼(s0) = 6

s0 s1 sg
C=5 C=1

a0 a1

add costs on path to goal
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Acyclic MDPs

 Policy Graph for ¼

 V¼(s1) = 1

 V¼(s2) = 4

 V¼(s0) = 0.6(5+1) + 0.4(2+4) = 6

s0

s1

s2

sg

Pr=0.6

C=5

Pr=0.4

C=2

C=1

C=4

a0 a1

a2

backward pass in
reverse topological
order
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General MDPs can be cyclic!

 V¼(s1) = 1

 V¼(s2) = ?? (depends on V¼(s0))

 V¼(s0) = ?? (depends on V¼(s2))

a2
Pr=0.7

C=4

Pr=0.3

C=3

s0

s1

s2

sg

Pr=0.6

C=5

Pr=0.4

C=2

C=1

a0 a1

cannot do a 
simple single pass
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General SSPs can be cyclic!

 V¼(g) = 0 

 V¼(s1) = 1+V¼(sg) = 1

 V¼(s2) = 0.7(4+V¼(sg)) + 0.3(3+V¼(s0))

 V¼(s0) = 0.6(5+V¼(s1)) + 0.4(2+V¼(s2))

a2
Pr=0.7

C=4

Pr=0.3

C=3

s0

s1

s2

sg

Pr=0.6

C=5

Pr=0.4

C=2

C=1

a0 a1

a simple system of
linear equations
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Policy Evaluation (Approach 1)

 Solving the System of Linear Equations

 |S| variables.

 O(|S|3) running time

18



Iterative Policy Evaluation

a2
Pr=0.7

C=4

Pr=0.3

C=3

s0

s1

s2

sg

Pr=0.6

C=5

Pr=0.4

C=2

C=1

a0 a1
0

1

3.7+0.3V¼(s0)
3.7

5.464

5.67568

5.7010816

5.704129…

4.4+0.4V¼(s2)
0

5.88

6.5856

6.670272

6.68043..
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Policy Evaluation (Approach 2)

iterative refinement
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Iterative Policy Evaluation

iteration n

²-consistency

termination
condition
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Policy Evaluation  Value Iteration 

(Bellman Equations for MDP1)

• <S, A, Pr, C, G, s0>

• Define V*(s) {optimal cost} as the minimum 

expected cost to reach a goal from this state.

• V* should satisfy the following equation:

24
Q*(s,a)

V*(s) = mina Q*(s,a)

V*(s)

V*(s) V*(s’)



Bellman Equations for MDP2

• <S, A, T, R, s0, >

• Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

• V* should satisfy the following equation:
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Fixed Point Computation in VI
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Example

s0

s2

s1

sg
Pr=0.6

a00 s4

s3
Pr=0.4

a01

a21 a1

a20 a40
C=5

a41

a3 C=2
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V0= 0

V0= 2

Q1(s4,a40) = 5 + 0

Q1(s4,a41) = 2+ 0.6£ 0 

+ 0.4£ 2

= 2.8

min

V1= 2.8

agreedy = a41

a41

a40

s4

sg

s3

C=5

C=2

sg
Pr=0.6

s4

s3
Pr=0.4

a40
C=5

a41

a3 C=2

Bellman Backup



Value Iteration [Bellman 57]

iteration n

²-consistency

termination
condition

No restriction on initial value function
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Example

s0

s2

s1

sg
Pr=0.6

a00 s4

s3
Pr=0.4

a01

a21 a1

a20 a40
C=5

a41

a3 C=2

n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4)

0 3 3 2 2 1

1 3 3 2 2 2.8

2 3 3 3.8 3.8 2.8

3 4 4.8 3.8 3.8 3.52

4 4.8 4.8 4.52 4.52 3.52

5 5.52 5.52 4.52 4.52 3.808

20 5.99921 5.99921 4.99969 4.99969 3.99969
32
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Comments

• Decision-theoretic Algorithm

• Dynamic Programming 

• Fixed Point Computation

• Probabilistic version of Bellman-Ford Algorithm
• for shortest path computation

• MDP1 : Stochastic Shortest Path Problem

 Time Complexity

• one iteration: O(|S|2|A|) 

• number of iterations: poly(|S|, |A|, 1/², 1/(1-)) 

 Space Complexity: O(|S|)
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Monotonicity

For all n>k

Vk ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below)

Vk ≥p V* ⇒ Vn ≥p V* (Vn monotonic from above)
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Changing the Search Space

• Value Iteration

• Search in value space

• Compute the resulting policy

• Policy Iteration

• Search in policy space

• Compute the resulting value
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Policy iteration [Howard’60]

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1: the evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmina2 Ap(s)Qn+1(s,a) 

• until n+1 = n

Advantage

• searching in a finite (policy) space as opposed to 

uncountably infinite (value) space ⇒ convergence in fewer 

number of iterations.

• all other properties follow!

costly: O(n3)

approximate

by value iteration 

using fixed policy

Modified 

Policy Iteration
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Modified Policy iteration

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1 the approx. evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a) 

• until n+1 = n

Advantage

• probably the most competitive synchronous dynamic 

programming algorithm.
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Applications

 Stochastic Games

 Robotics: navigation, helicopter manuevers…

 Finance: options, investments

 Communication Networks

 Medicine: Radiation planning for cancer

 Controlling workflows

 Optimize bidding decisions in auctions

 Traffic flow optimization

 Aircraft queueing for landing; airline meal provisioning

 Optimizing software on mobiles

 Forest firefighting

 …
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Extensions

 Heuristic Search + Dynamic Programming

• AO*, LAO*, RTDP, …

 Factored MDPs

• add planning graph style heuristics

• use goal regression to generalize better

 Hierarchical MDPs

• hierarchy of sub-tasks, actions to scale better

 Reinforcement Learning

• learning the probability and rewards

• acting while learning – connections to psychology

 Partially Observable Markov Decision Processes

• noisy sensors; partially observable environment

• popular in robotics
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Partially Observable MDPs

What action 

next?

Percepts Actions

Environment

Static

Partially 

Observable 

Noisy

Stochastic 

Instantaneous 
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Stochastic, Fully Observable
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Stochastic, Partially Observable
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POMDPs

 In POMDPs we apply the very same idea as in MDPs.

 Since the state is not observable, 

the agent has to make its decisions based on the belief state 

which is a posterior distribution over states.

 Let b be the belief of the agent about the current state

 POMDPs compute a value function over belief space:

γa b, a
a

115



POMDPs

 Each belief is a probability distribution, 

• value fn is a function of an entire probability distribution.

 Problematic, since probability distributions are continuous.

 Also, we have to deal with huge complexity of belief spaces.

 For finite worlds with finite state, action, and observation 

spaces and finite horizons, 

• we can represent the value functions by piecewise linear 

functions. 
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