Recurrent Neural
Networks

Yoav Goldberg

Dealing with Sequences

- For an input sequence x1,...,xn, we can:

- If nis fixed: concatenate and feed into an MLP.
- sum the vectors (CBOW/) and feed into an MLP.

- Break the sequence into windows. Find n-gram
embedding, sum into an MLP.

- Find good ngrams using ConvNet, using pooling
(either sum/avg or max) to combine to a single

vector.

Dealing with Sequences

- For an input sequence x1,...,xn, we can:
Some of these approaches consider local word
order (which ones?).

How can we consider global word order?

- Find good ngrams using ConvNet, using pooling
(either sum/avg or max) to combine to a single
vector.

Recurrent Neural Networks

QOO 1000 OOO 1000 OO00O

v(what) v(is) v(your) v(name) enc(what is your name)

- Very strong models of sequential data.

- Trainable function from n vectors to a single vector.

000

Q00

Q00O

000

Recurrent Neural Networks

0000

000

000

000

Q00O

0000

000

000

000

Q00O

0000

- There are different variants (implementations).

. So far, we focused on the interface level.

Recurrent Neural Networks

RNN(SOpxl:n) = Sn;Yn

X e Rdin, Vi e Rdaut, S3 c Rf(dﬂut)

- Very strong models of sequential data.

- Trainable function from n vectors to a single* vector.

Recurrent Neural Networks
RN N(80,X1:n) = Sn,¥Yn

*this one is internal. we only care about the y

X e Rdin, Vi e Rdaut, S3 c Rf(dﬂut)

- Very strong models of sequential data.

- Trainable function from n vectors to a single* vector.

Recurrent Neural Networks

RNN(80,X1:n) = Sn,¥n
s; = R(Sj—1, Xi)
yi = O(si)

X3 c Rdin, Yi c Rdaut, S3 c Rf(dﬂut)

- Recursively defined.

- There's a vector Yi for every prefix Xi:i

Recurrent Neural Networks

[y X RNN(SO: xl:n) =8n¥Yn

si = R(si—1,Xj)

yi = O(si)
- Recursively defined.
x; € R¥n, y; € Rbout, g; € RF (dout)

- There's a vector Yi for every prefix Xi:i

Recurre_nt Neura_l Networks

L
-

| g4 | Sq | | Sa | 54 0 .

BN — —J R0 — R.O ——sg
|

| I I

o0

RNN(SO, xl:n) = 8n,Yn
si = R(si—1,Xi)
yi = O(si)

for every finite input sequence,
can unroll the recursion.

- Recursively defined.
x; € R¥n, y; € Rbout, g; € RF (dout)

- There's a vector Yi for every prefix Xi:i

Recurrent Neura_l Networks

: 1 St .} Sz _ l Sg R :
S0 : R.O :—-—: R.O :—-: R.O :—-—: R.O :—-: R.O — S
L___[___: S R IO S R L___]___J
X1 X2 Xa X4 Xe
6 |

for every finite input sequence,
can unroll the recursion.

Recurrent Neural Networks

Ya = 0(s4)

sq =R(s3.x4)

e,
—R(R(s2.X3).X4)
=R(R(R(s1.X2).X3),X4)

/ . 2 '
=R(R(R(R(s0.X1).X2),X3),X4)

* The output vector Yi depends on all inputs Xj:j |

Recurre_nt Neura_l Networks

RO 4 RO 24 RO 20 Ro 24 RO
| . b l'_"'l n. :—r-l « :—-l . :_"| « :—v-‘*rj

7
J— trained parameters.

_ define function form
. But we can train them.< efine |
efine loss

Recurrent Neural Networks
for Text Classification

Defining the loss. Joss

I : S50 5 : ;
' 0RO 0 RO —2 0 RO — 0 RO — . RO
L___{____ L___[____ I"-T IL_“T"J ____ I_
X1 X2 X3 X4 X

Acceptor: predict something from end state.
Backprop the error all the way back.
rain the network to capture meaningful information

CBOW as an RNN

ReBow (Si—1, Xi) = 8j—1 + Xj

(what are the parameters?)

CBOW as an RNN

ReBow (Si—1, Xi) = 8j—1 + Xj

(what are the parameters?)

RCBOW(Si—lﬂmi) = 8j—1 + E[m.,;]

CBOW as an RNN

RCBOW(Si—lﬂmi) = 8j—1 + E[m.,;]

CBOW as an RNN

RoBow (Si—la iva:) = ta‘n-h(si—l + E[m;])

Simple RNN (Elman RNN)

Rsrnn(Si—1,%i) = tanh(W*® - W= . x;)

Simple RNN (Elman RNN)

RSRNN(Si—I,Xi) = ta,nh(Ws 81+ W*™. Xi)

» Looks very simple.

- Theoretically very powerful.
- In practice not so much (hard to train).

- Why”? Vanishing gradients.

Simple RNN (Elman RNN)

RSRNN(Si—I,Xi) = ta,nh(Ws 81+ W*™. Xi)

Another view on behavior:

- RNN as a "computer™:
iInput xi arrives, memory s is updated.

- In the EIman RNN, entire memory Is written at
each time-step.

. entire memory = output!

LSTM RNN

better controlled memory access

continuous gates

Differentiable "Gates”

- The main idea behind the LSTM is that you want to
somehow control the "memory access".

- In a SimpleRNN:

RsrnN(Si—1,Xi) = tanh(W?® - ;1 + W™ - x3)

e N\

read previous state memory write new input

- All the memory gets overwritten

Vector "Gates"

- We'd like to:

* Selectively read from some memory "cells".
* Selectively write to e~™a mamgory "cells".

Vector "Gates"

- We'd like to:

* Selectively read from some memory "cells".
* Selectively write to some memory "cells”.

()] 10
: . 1 11
- A gate function: , 9 (element-wise multiplication)
ol “ |13
0 14
1 [15
o X

N

gate controls access vector of values

Vector "Gates"

- We'd like to:

* Selectively read from some memory "cells".
* Selectively write to some memory "cells”.

- A gate function: 85i—108g g € {0,1}°

RN

vector of values gate controls access

Vector "Gates"

- Using the gate function to control access:

81 +— 8i—10g +x08" gE¢€ {Oal}d

e N\

which cells to read which cells to write

Vector "Gates"

- Using the gate function to control access:

81 +— 8i—10g +x08" gE¢€ {Oal}d

e N\

which cells to read which cells to write

. (can also tie them: gt =1 —g")

> SN e T B SR T B &
| |
|

- —
|

— = N MM =T L0

& OO O v

~ — L

_ —— — - -

L —_— _— L. A
|

Differentiable "Gates”

- Problem with the gates:

* they are fixed.
* they don't depend on the input or the output.

Differentiable "Gates”

- Problem with the gates:

* they are fixed.
* they don't depend on the input or the output.

- Solution: make them smooth, input dependent, and
trainable. — (W x5+ U -8_;)

= N\

"almost 0"
function of input and state

or
"almost 1"

LSTM

(Long short-term Memory)

- The LSTM is a specific combination of gates.

RLSTM(Sj—ln Xj) =[Cj5 hj]
Cj =Cj—1 Of+goi

i =c(W* .x;+ W™ . h;_;)
f =o(W* . x; + WP . hy_,)

g =tanh(W™*E . x; + W€ . h;_;)

LSTM

(Long short-term Memory)

- The LSTM is a specific combination of gates.

RrsTm(Sj—1,%;) =[c;; hy]
C; =Cj—1 Of+g0Oi
h; =tanh(c;)
i =g(W*. X5+ wh. h;_1)
f =o(W*' . x; + WP . h;_,;)

g =tanh(W™*E . x; + W€ . h;_;)

LSTM

(Long short-term Memory)

- The LSTM is a specific combination of gates.

RrsTm(8j-1,%;) =[cj; hy]
C; =Cj—1 Of+g0Oi
h; =tanh(c;)
i =g(W*. X5+ wh. h;_1)
f =o(W*' . x; + WP . h;_,;)
0 =0(W*°.x;+ W' . h;_;)
g =tanh(W™€ . x; + W"E . h;_,)

LSTM

(Long short-term Memory)

- The LSTM is a specific combination of gates.

RrsTm(Sj—1,%;) =[c;; hy]
C; =Cj—1 Of+g0Oi
h; =tanh(c;) ® o
i =g(W*. X5+ wh. h;_1)
f =o(W*' . x; + WP . h;_,;)
0 =0(W*°.x;+ W' . h;_;)
g =tanh(W™€ . x; + W"E . h;_,)

Yi

GRU

(Gated Recurrent Unit)

- The GRU is a different combination of gates.

Z :n(xj\V“ T Sj_1\ 754

r :(T(Xj\\fxr + Sj_'l\&rm‘)

s; = tanh(x; W™ 4+ (r © sj_1)W?=%)

GRUvs LSTM

- The GRU and the LSTM are very similar ideas.

. Invented independently of the LSTM, almost two

decades later.

GRU

(Gated Recurrent Unit)

- The GRU formulation:

si = Horul(sj—1.X;) =

Proposal state: sj = tanh(x;W™® 4 (r © sj_1)W?5)

GRU

(Gated Recurrent Unit)

- The GRU formulation:

S5 — RGRI_T(_b‘j-l-Xj) —

gate controlling effect r =o(x; WX 4 s;_y W)
of prev on proposal: | o~
s; = tanh(x; W™** —1—@5 si—1)W)

GRU

(Gated Recurrent Unit)

blend of old state and
proposal state
SjZRGRI_T(Sj-l-XJ) =(1—12)C Sj—1 T ZC EJ

I' =T ('va‘rxr _I_ E‘J_l“r-_-.l)

sj = tanh(x;W™® 4 (r © sj_1)W?=5)

GRU

(Gated Recurrent Unit)

=

Sj = RGRU(t‘j—l-Xj) =(1—2z)® Sj—1 T+ Z© :-.{j

gate for controlling z =0 (x;W™* +8;_1 W?™)

the blend

r :rT(anVVXF -+ Sj—1 W=t)

S 4. YATXS
s; = tanh(x; W

—

(r s i—1)W?=5)

GRU

(Gated Recurrent Unit)

. The GRU formulation.

Z :t’T[Xj\"sz + Sj_1\ 754

r :n(ij’x" T Sj—1 W=t

sj = tanh(x;W™® 4 (r © sj_1)W?=%)

Other Variants

- Many other variants exist.

- Mostly perform similarly to each other.

. Different tasks may work better with different
variants.

- The important idea is the differentiable gates.

LSTM

(Long short-term Memory)

. The LSTM is formulation:

RrsTm(Sj—1,%;) =[c;; hy]
C; =Cj—1 Of+g0Oi
h; =tanh(c;) ® o
i =g(W*. X5+ wh. h;_1)
f =o(W*' . x; + WP . h;_,;)
0 =0(W*°.x;+ W' . h;_;)
g =tanh(W™€ . x; + W"E . h;_,)

LSTM

(Long short-term Memory)

. The LSTM is formulation:

RrsTm(8j-1,%;) =[cj; hj]
C; =Cj—1 Of+g0Oi
hj =tanh(cj) &0
i =c(W* .x;+ W™ . h;_;)
f =o(W* . x; + WP . hy_,)
o _E(:Mxo X | “mo _ hj—r)—
g =tanh(W™*E . x; + W€ . h;_;)

LSTM

(Long short-term Memory)

. The LSTM is formulation:

RrsTm(Sj—1,%;) =[c;; hy]
C; =Cj—1 Of+g0Oi
h; =tanh(c;)
i =g(W*. X5+ wh. h;_1)
f =o(W*' . x; + WP . h;_,;)

g =tanh{W™*E . x; + WIE 1)

Recurrent Additive Networks

. The LSTM is formulation:

RrsTm(Sj—1,%;) =[c;; hy]
C; =Cj—1 Of+g0Oi
h; =tanh(c;)
i =g(W*. X5+ wh. h;_1)
f =o(W*' . x; + WP . h;_,;)

g= W8 - x;

TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

LSTM: A Search Space Odyssey

Klaus Greff, Rupesh K. Srivastava, Jan Koutnik, Bas R. Steunebrink, Jiirgen Schmidhuber

. Systematic search over LSTM choices
- Find that (1) forget gate is most important

- (2) non-linearity in output important since cell state
can be unbounded

- GRU effective since it doesn’t let cell state be
unbounded

LSTM

(Long short-term Memory)

. The LSTM is formulation:

hf — H({“I’Fj:h:ﬂt + I"i"rhh h-t—l + f”i!:]
Y = I.-I-"rhy J‘r.'-f -1 {I}“

Bldlrectlcnal LSTMS

Viumped

¥the

concat

Ybrown

concat

o L
¥
£ T
5 |
. Rf,0f -
Lo]
xhruw_u

concat

Y5
' 2
S I
2, R/, 0f E_

xfcnr._

One BRNN runs left to right.
Another runs right to left.

Encode both future and history of a word.

concat
g
i 1 b = Ty b
' ' RYOP 1] RE,0F
L] S
f
¥4)’&
' B ¥ f
s ! =
) R1,0f —|—= RS,0f | 5
]
xjum;d xa_

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

Infinite window around the word

One RNN runs left to right.
Another runs right to left.
Encode both future and history of a word.

Deep LSTMs

(a) Conventional stacked RNN

Deep Bi-LSTMs

o

a [+]
2

B, "
=

-M.l.l"n “"-m

Read More

- The gated architecture also helps the vanishing
gradients problems.

- For a good explanation, see Kyunghyun Cho's
notes:

http://arxiv.org/abs/1511.07916 sections 4.2, 4.3

. Chris Olah's blog post

http://arxiv.org/abs/1511.07916

