
An Intro to Deep Learning for NLP

Mausam

Disclaimer: this is an outsider’s understanding. Some details may be inaccurate

(several slides by Yoav Goldberg & Graham Neubig)

NLP before DL #1

Model
(NB, SVM, CRF)

Model
(NB, SVM, CRF)

Supervised

Training

Data

Features

Assumptions
- doc: bag/sequence/tree of words
- model: bag of features (linear)
- feature: symbolic (diff wt for each)

Assumptions
- doc: bag/sequence/tree of words
- model: bag of features (linear)
- feature: symbolic (diff wt for each)

Optimize function

(LL, sqd error, margin…)

Learn feature weights

NLP before DL #2

Model
(MF, LSA, IR)

Model
(MF, LSA, IR)

Unsupervised

Co-occurrence

Data

Assumptions
- doc/query/word is a vector of numbers
- dot product can compute similarity

- via distributional hypothesis

Assumptions
- doc/query/word is a vector of numbers
- dot product can compute similarity

- via distributional hypothesis

Optimize function

(LL, sqd error, margin…)

Learn vectors

z1z1 z2z2 …

NLP with DL

Model
(NB, SVM, CRF)

Model
(NB, SVM, CRF)

Supervised

Training

Data

Optimize function

(LL, sqd error, margin…)

Learn feature weights

Features

NLP with DL

Model
(NB, SVM, CRF)

Model
(NB, SVM, CRF)

Neural

Features

Optimize function

(LL, sqd error, margin…)

Learn feature weights

Supervised

Training

Data

NLP with DL

Model
(NB, SVM, CRF)

Model
(NB, SVM, CRF)

Neural

Features

Optimize function

(LL, sqd error, margin…)

Learn feature weights+vectors

z1z1 z2z2 …

Supervised

Training

Data

NLP with DL

Model
NN= (NB, SVM, CRF, +++

+ feature discovery)

Model
NN= (NB, SVM, CRF, +++

+ feature discovery)

Neural

Features

Optimize function

(LL, sqd error, margin…)

Learn feature weights+vectors

z1z1 z2z2 …

Supervised

Training

Data

NLP with DL

Model
NN= (NB, SVM, CRF, +++

+ feature discovery)

Model
NN= (NB, SVM, CRF, +++

+ feature discovery)

Neural

Features

Optimize function

(LL, sqd error, margin…)

Learn feature weights+vectors

z1z1 z2z2 …

Assumptions
- doc/query/word is a vector of numbers
- doc: bag/sequence/tree of words
- feature: neural (weights are shared)
- model: bag/seq of features (non-linear)

Assumptions
- doc/query/word is a vector of numbers
- doc: bag/sequence/tree of words
- feature: neural (weights are shared)
- model: bag/seq of features (non-linear)

Supervised

Training

Data

Meta-thoughts

Features

• Learned

• in a task specific end2end way

• not limited by human creativity

Everything is a “Point”

• Word embedding

• Phrase embedding

• Sentence embedding

• Word embedding in context of sentence

• Etc

Points are good reduce sparsity by wt sharing

a single (complex) model can handle all pts

Universal Representations

• Non-linearities

– Allow complex functions

• Put anything computable in the loss function

– Any additional insight about data/external knowledge

Make symbolic operations continuous

• Symbolic continuous

– Yes/No (number between 0 and 1)

– Good/bad (number between -1 and 1)

– Either remember or forget partially remember

– Select from n things weighted avg over n things

Encoder-Decoder

Symbolic

Input

(word)

z1z1 Neural

Features

Symbolic

Output

(class, sentence..)
ModelModelModelModel

Encoder Decoder

Different assumptions on data create different architectures

Building Blocks

+ ; .

Matrix-mult gate non-linearity

x;y

x+y

Concat vs. Sum

• Concatenating feature vectors: the
"roles" of each vector is retained.

current

word

prev

word

next

word

• Different features can have vectors of different dim.

• Fixed number of features in each example

(need to feed into a fixed dim layer).

Concat vs. Sum

• Summing feature vectors: "bag of
features"

wordword word

• Different feature vectors should have same dim.

• Can encode a bag of arbitrary number of features.

x.y

• degree of closeness

• alignment

• Uses

– question aligns with answer //QA

– sentence aligns with sentence //paraphrase

– word aligns with (~important for) sentence //attention

g(Ax+b)

• 1-layer MLP

• Take x

– project it into a different space //relevant to task

– add some scalar bias (only increases/decreases it)

– convert into a required output

• 2-layer MLP

– Common way to convert input to output

