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Disclaimer: this is an outsider’s understanding. Some details may be inaccurate

(several slides by Yoav Goldberg & Graham Neubig)
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Optimize function
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z1z1 z2z2 …
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Meta-thoughts



Features

• Learned 

• in a task specific end2end way

• not limited by human creativity



Everything is a “Point”

• Word embedding

• Phrase embedding

• Sentence embedding

• Word embedding in context of sentence

• Etc

Points are good  reduce sparsity by wt sharing

a single (complex) model can handle all pts



Universal Representations

• Non-linearities

– Allow complex functions

• Put anything computable in the loss function

– Any additional insight about data/external knowledge 



Make symbolic operations continuous

• Symbolic  continuous

– Yes/No  (number between 0 and 1)

– Good/bad  (number between -1 and 1)

– Either remember or forget  partially remember 

– Select from n things  weighted avg over n things 



Encoder-Decoder

Symbolic

Input

(word)

z1z1 Neural

Features

Symbolic

Output

(class, sentence..)
ModelModelModelModel

Encoder Decoder

Different assumptions on data create different architectures



Building Blocks

+           ;            .

Matrix-mult   gate   non-linearity
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Concat vs. Sum

• Concatenating feature vectors: the 
"roles" of each vector is retained.

current

word

prev

word

next

word

• Different features can have vectors of different dim.

• Fixed number of features in each example

(need to feed into a fixed dim layer).



Concat vs. Sum

• Summing feature vectors: "bag of 
features"

wordword word

• Different feature vectors should have same dim.

• Can encode a bag of arbitrary number of features.



x.y

• degree of closeness

• alignment 

• Uses

– question aligns with answer //QA

– sentence aligns with sentence //paraphrase

– word aligns with (~important for) sentence //attention



g(Ax+b)

• 1-layer MLP

• Take x

– project it into a different space //relevant to task

– add some scalar bias (only increases/decreases it)

– convert into a required output

• 2-layer MLP

– Common way to convert input to output


