An Intro to Deep Learning for NLP

Mausam

Disclaimer: this is an outsider's understanding. Some details may be inaccurate

(several slides by Yoav Goldberg & Graham Neubig)

NLP before DL #1

NLP before DL #2

Meta-thoughts

Features

- Learned
- in a task specific end2end way
- not limited by human creativity

Everything is a "Point"

- Word embedding
- Phrase embedding
- Sentence embedding
- Word embedding in context of sentence
- Etc

Points are good \rightarrow reduce sparsity by wt sharing a single (complex) model can handle all pts

Universal Representations

• Non-linearities

Allow complex functions

Put anything computable in the loss function
Any additional insight about data/external knowledge

Make symbolic operations continuous

- Symbolic \rightarrow continuous
 - Yes/No \rightarrow (number between 0 and 1)
 - Good/bad \rightarrow (number between -1 and 1)

- Either remember or forget \rightarrow partially remember
- Select from n things \rightarrow weighted avg over n things

Encoder-Decoder

Different assumptions on data create different architectures

Building Blocks

+ ; .

Matrix-mult gate non-linearity

Concat vs. Sum

- Concatenating feature vectors: the
 - "roles" of each vector is retained.

prev	current	next
word	word	word

- Different features can have vectors of different dim.
- Fixed number of features in each example (need to feed into a fixed dim layer).

Concat vs. Sum

- Summing feature vectors: "bag of
 - features"

- Different feature vectors should have same dim.
- Can encode a bag of arbitrary number of features.

x.y

- degree of closeness
- alignment

- Uses
 - question aligns with answer //QA
 - sentence aligns with sentence //paraphrase
 - word aligns with (~important for) sentence //attention

g(Ax+b)

- 1-layer MLP
- Take x
 - project it into a different space //relevant to task
 - add some scalar bias (only increases/decreases it)
 - convert into a required output
- 2-layer MLP

– Common way to convert input to output