Regular Expressions and
Finite State Automata

Mausam

Searching

- Everybody does it
* Emacs, vi, perl, grep, etc..

- Regular expressions are a compact textual
representation of a set of strings
representing a language.

1/23/2019 Speech and Language Processing - Jurafsky and Martin 2

RE Example Patterns Matched
/woodchucks/ “interesting links to woodchucks and lemurs™
/al/ “Mary Ann stopped by Mona’s”
/Claire_says,/ ° “Dagmar, my gift please,” Claire says,”
/DOROTHY/ “SURRENDER DOROTHY™

fL/

“You've left the burglar behind again!™ said Nori

RE

/ [wW]oodchuck/
/[abc]/
/[1234567890]/

Match

Woodchuck or woodchuck
q. b or v

any digit

Example Patterns
“Woodchuck™

“In vomini, 1n soldati™
“plenty of 7 to 5~

RE

Match

Example Patterns Matched

[TA=-%]/
/[a-2]1/
/[0-9]/

an upper case letter
a lower case letter
a single digit

“we should call it ‘Drenched Blossoms™ ™
“my beans were impatient to be hoed!”
“Chapter 1: Down the Rabbit Hole™

Fegu ar Expressions

RE Match (single characters) Example Patterns Matched

["A-Z] not an upper case letter “Oyin pripetchik”

["Ss] neither S’ nor °s’ “1 have no exquisite reason for’t”
I N] not a period “our resident Djinn”

[e”] either ‘e’ or *7° “look up ©~ now”

a’b the pattern "a”b’ “look up a” b now”

Regular Expressions: ? * + .

colou?r Optional color colour
previous
char

oo*h! Oormoreof oh! ooh! oooh! ooooh!
previous
char

o+h! l1ormoreof oh! ooh! oooh! ooooh!
previous
char

Stephen C Kleene

Kleene *, Kleene -

baa+ baa baaa baaaa baaaaa

beg.n begin begun begun beg3n

“[A-Z]
~["A-Za-z]
\. S

Palo Alto
1 “Hello”
The end.

The end? The end!

Fegu ar Expressions

RE Expansion Match Examples
\d [0-9] any digit Party_of 5
AD [T0-9] any non-digit Blue_moon
\w [a-2A-Z0-9] any alphanumeric/underscore =~ Daiyu

\W ["\w] a non-alphanumeric JRRA

\s [_\r\t\n\f] whitespace (space, tab)

VE ["\s] Non-whitespace in_,Concord

RE Match Example Patterns Matched

No# an asterisk “*” "KFARPHL*A®N”

N a period " “Dr. Livingston, I presume™

\? a question mark “Why don’t they come and lend a hand?”
\n a newline

\t a tab

*

 Find all the instances of the word “the” in
a text.
¢ /the/
¢ /[tT]lhe/
¢ /\b[tT]he\b/
¢ ["a-zA-Z] [tT]he["a—-zA-7]
* (M| ["a-zA-Z]) [tTlhe (S| ["a-zA-2Z])

1/23/2019 Speech and Language Processing - Jurafsky and Martin 15

Errors

- The process we just went through was
based on two fixing kinds of errors

+ Matching strings that we should not have
matched (there, then, other)

= False positives (Type I)

+ Not matching things that we should have
matched (The)

= False negatives (Type II)

1/23/2019 Speech and Language Processing - Jurafsky and Martin 16

!I‘I‘OI‘S

- We'll be telling the same story for many
tasks, all semester. Reducing the error rate
for an application often involves two
antagonistic efforts:

+ Increasing accuracy, or precision, (minimizing
false positives)

+ Increasing coverage, or recall, (minimizing
false negatives).

1/23/2019 Speech and Language Processing - Jurafsky and Martin 14

Fllnllte gtate Automata

- Regular expressions can be viewed as a
textual way of specifying the structure of
finite-state automata.

- FSAs capture significant aspects of what
linguists say we need for morphology and
parts of syntax.

1/23/2019 Speech and Language Processing - Jurafsky and Martin 18

!!!s as !rapHs

- Let’s start with the sheep language from
Chapter 2

¢ /baa+!/

a
b a () !

@) @) @ (%

1/23/2019 Speech and Language Processing - Jurafsky and Martin 19

!Heep !!l

- We can say the following things about this
machine

+ It has 5 states

+ b, a, and ! are in its alphabet
* (s the start state

* Q4 1S an accept state

a
+ It has 5 transitions @ b @ ° @ - é !

1/23/2019 Speech and Language Processing - Jurafsky and Martin 20

m*oe

- There are other machines that
correspond to this same language

@ @)@@

1/23/2019 Speech and Language Processing - Jurafsky and Martin 21

Ware ormally

 You can specify an FSA by enumerating
the following things.

* The set of states: Q

+ A finite alphabet: X

+ A start state

* A set of accept/final states

+ A transition function that maps Qxz to Q

1/23/2019 Speech and Language Processing - Jurafsky and Martin 22

one SIX

. seven

three eight

faiir nine
ten

twenty sixty

eleven
twelve
thirteen
fourteen

one

thirty seventy two

forty eighty three

fifty ninety four
five

fifteen
sixteen
seventeen
eighteen

S

six
seven
eight
nine

1/23/2019

Speech and Language Processing - Jurafsky and Martin

24

Dollars and Cents

O 0 00 O O O

1/23/2019 Speech and Language Processing - Jurafsky and Martin 25

Yet AnotHer View

- The guts of FSAs
can ultimately be
represented as

b
0 1
tables /1//
2,3
If you're in state 1
3
4

and you're looking at
an a, go to state 2

a
b a ()a _ |
(90) {(9) (%) (%,

1/23/2019 Speech and Language Processing - Jurafsky and Martin

(&)

26

e
Recognition

« Recognition is the process of determining if
a string should be accepted by a machine

* Or... it's the process of determining if a
string is in the language we're defining with
the machine

 Or... it's the process of determining if a
regular expression matches a string

- Those all amount the same thing in the end

1/23/2019 Speech and Language Processing - Jurafsky and Martin 2%

!ecognll!llon o

- Traditionally, (Turing’s notion) this process is
depicted with a tape.

1/23/2019 Speech and Language Processing - Jurafsky and Martin 28

!ecognll!llon

- Simply a process of starting in the start
state

- Examining the current input
 Consulting the table

- Going to a new state and updating the
tape pointer.

- Until you run out of tape.

1/23/2019 Speech and Language Processing - Jurafsky and Martin 29

function D-RECOGNIZE(fape, machine) returns accept or reject

index — Beginning of tape
current-state — Iniftial state of machine
loop
if End of input has been reached then
if current-state 1s an accept state then
return accept
else
return reject
elsif /ransifion-table[current-state,tape[index]] is empty then
return reject
else
current-state — transition-table[current-state,tapefindex] |
index —index + 1
end

1/23/2019 Speech and Language Processing - Jurafsky and Martin

30

e
Key Points

- Deterministic means that at each point in
processing there is always one unique
thing to do (no choices).

- D-recognize is a simple table-driven
iInterpreter

« The algorithm is universal for all
unambiguous regular languages.

* To change the machine, you simply change
the table.

1/23/2019 Speech and Language Processing - Jurafsky and Martin 31

Rey Bolln!s

 Crudely therefore... matching strings with
regular expressions (ala Perl, grep, etc.) is a
matter of

+ translating the regular expression into a machine
(a table) and

+ passing the table and the string to an interpreter

1/23/2019 Speech and Language Processing - Jurafsky and Martin 33

O
Generative Formalisms

- Formal Languages are sets of strings
composed of symbols from a finite set of

symbols.

- Finite-state automata define formal
languages (without having to enumerate all
the strings in the language)

- The term Generative is based on the view
that you can run the machine as a
generator to get strings from the language.

1/23/2019 Speech and Language Processing - Jurafsky and Martin 34

Eenera!we !ormallsms

« FSAs can be viewed from two
perspectives:

+ Acceptors that can tell you if a string is in the
language

+ Generators to produce a// and only the strings
in the language

1/23/2019 Speech and Language Processing - Jurafsky and Martin 35

Iuon-EeEermlnlsm

1/23/2019 Speech and Language Processing - Jurafsky and Martin 36

|!OI1-BE!EI‘mII‘II5m CO“!.

* Yet another technique
+ Epsilon transitions

* Key point: these transitions do not examine or
advance the tape during recognition

@@@@

1/23/2019 Speech and Language Processing - Jurafsky and Martin 37

T
Equivalence

» Non-deterministic machines can be
converted to deterministic ones with a
fairly simple construction

- That means that they have the same
power; nhon-deterministic machines are
not more powerful than deterministic
ones in terms of the languages they can
accept

1/23/2019 Speech and Language Processing - Jurafsky and Martin 38

R,
ND Recognition

- Two basic approaches (used in all major
implementations of regular expressions,

see Friedl 2006)

1. Either take a ND machine and convert it to a
D machine and then do recognition with

that.

2. Or explicitly manage the process of
recognition as a state-space search (leaving

the machine as is).

1/23/2019 Speech and Language Processing - Jurafsky and Martin 39

Recognition: Search

- In a ND FSA there exists at least one path
through the machine for a string that is in the
language defined by the machine.

 But not all paths directed through the machine
for an accept string lead to an accept state.

- No paths through the machine lead to an accept
state for a string not in the language.

1/23/2019 Speech and Language Processing - Jurafsky and Martin 40

~ Non-Deterministic
Recognition

« S0 success in non-deterministic
recognition occurs when a path is found
through the machine that ends in an
accept.

- Failure occurs when all of the possible
paths for a given string lead to failure.

1/23/2019 Speech and Language Processing - Jurafsky and Martin 41

OO COCO OO0 CO00O0C0O00O00O000O0 00 | 000080080000 mda]

300000

o000 000O008000800 |0 0000000000000

Jo q; d; d, d3 J4

1/23/2019 Speech and Language Processing - Jurafsky and Martin 42

1 2 Iblalalalt] [|3

1/23/2019 Speech and Language Processing - Jurafsky and Martin 44

(W)

1 %|b|a|a|a|!| | |§
‘:&o\> ~
T/
|

2 tiblalalale] | |3

&
o
@-
©.
&

1/23/2019 Speech and Language Processing - Jurafsky and Martin 45

(W)

1 %|b|a|a|a|!| | |§
(:io\> \
T/
|

2 tiblalalale] | |

@ |
a

3 2 blalalale [T T3

&
o
@-
©.
&

-

1/23/2019 Speech and Language Processing - Jurafsky and Martin 46

1/23/2019

1

(W)

%|b|a|a|a|!| | |§
@ |

1

\

tiblalalale] | |

/”\\
\dy/
Y
\
a

alalt [| [3

&
o
@-
©.
&

Speech and Language Processing - Jurafsky and Martin

47

(W)

1 %|b|a|a|a|!| | |§
(:io\> \
T/
|

2 tiblalalale] | |

/”\\
\dy/
Y
\
a

alalt [| [3

&
o
@-
©.
&

5é|b|a|aa!|||§

1/23/2019 Speech and Language Processing - Jurafsky and Martin 48

(W)

1 %|b|a|a|a|!| | |§
(:io\> \
T/
|

2 tiblalalale] | |

/”\\
\dy/
Y
\
a

alalt [| [3

/\

4 é|b|a alal!l l |§ é'b'a'al_a“l l Ié 6

&
o
@-
©.
&

5é|b|a|aa!|||§

1/23/2019 Speech and Language Processing - Jurafsky and Martin 49

(W)

1 %|b|a|a|a|!| | |§
(:io\> \
T/
|

2 tiblalalale] | |

/”\\
\dy/
Y
\
a

alalt [| [3

/\

4 é|b|a alal!l l |§ é'b'a'al_a“l l Ié 6

< | | 9

5 < Tblalalaltl [T3 ébaal_a|!|||f7

&
o
@-
©.
&

1/23/2019 Speech and Language Processing - Jurafsky and Martin 50

X

(W)

1 %|b|a|a|al!l | |§
(:io\> \
0
|

2 tiblalalale] | |

/”\\
\dy/
Y
\
a

3 2 blalalale [T T3

/\

4 fhhalaanl T 13 {hhlhall 113 6

< | | ®
B $Tblalalaltl | T3 ilblalalalt[[T3 7
X

i blalalalb [T T3 8

&
o
@-
©.
&

1/23/2019 Speech and Language Processing - Jurafsky and Martin 51

!ey Bolln!s

- States in the search space are pairings of
tape positions and states in the machine.

« By keeping track of as yet unexplored
states, a recognizer can systematically
explore all the paths through the machine
given an input.

1/23/2019 Speech and Language Processing - Jurafsky and Martin 52

FSTs (Contd)

1/23/2019 Speech and Language Processing - Jurafsky and Martin 54

~ FST Fragment: Lexicalto
Intermediate

- N is morpheme boundary; # is word
boundary

@

Buttlng !Hem !ogetHer

Lexical<§ flo| x|+N|[+PI g

Tlex @@@@ £ @
Intermediate E | f | o) " X| M s |# 2

Te-insert @@@ A ‘f@

Surfacelgwf"o"x e|s f

" Practical Uses

- This kind of parsing is normally called
morphological analysis

- Can be

» An important stand-alone component of an
application (spelling correction, information
retrieval, part-of-speech tagging,...)

» Or simply a link in a chain of processing
(machine translation, parsing,...)

#! /usr/bin/perl

sletternumber = "[A-Za-z0-2]1";

snotletter = "["R-Za-z0-9]";

galwayssep = "[M\NPIOIN";AAN] TS :

sclitiec = "("|:|=]|"s| D| M| 'LL| 'RE|"VE|N'T| 's| 'd| 'm| 11| 're| 've|n"t)";

Sabbr{"Co."} = 1; Sabbr{"Dr."} = 1; Sabbr{"Jan."} = 1; Sabbr{"Feb."} = 1;
while ($line = <>)}{ # read the next line from standard input

put whitespace arcund unambiguous separators
$line =" s/salwayssep/ $& /g;

put whitespace around commas that aren’'t inside numbers
$line =" s/(["0-9]),/81 , /g;
sline =" s/,([70-9]}/ , sl/g;

distinguish singlequctes from apostrophes by

segmenting off single guctes not preceded by letter
¢$line =" =/""/fs& /g;

$line =" s/(%notletter)’/sl "/qg;

segment off unambiguous word-final clitics and punctuation
sline =" s/sclitics/ $&/g;
$line =" s/gclitic($notletter)/ 51 $2/g;

now deal with pericds. For each possible word
Bpossiblewords=split(/\s+/,%line);
foreach Sword (€possiblewcrds) {
if it ends in a pericd,
if ((gword =" /sletternumbery./)
&& !(sabbr{sword}) # and isn't on the abbreviation list
and isn‘t a seguence of letters and periocds (U.B5.)
and doesn't resemble an abbreviation (no vowels: Inc.)
&& !(Sword ="
/T ([BA-Za-z]\.([A-Za-z]\.)+|[A-E][becdfghj-nptwxz]+\.)5/)) {
then segment off the period
gword =" s/\.3$/ \./;
}
expand clitics
sword ="s/"ve/have/;
$word ="s/'m/fam/;
print gword," *;

print "\n";

'

1/23/2019

Speech and Language Processing - Jurafsky and Martin

59

Porter Stemmer (1980)

« Common algorithm for stemming English

- Conventions + 5 phases of reductions
+ phases applied sequentially
+ each phase consists of a set of commands

+ sample convention: Of the rules in a compound
command, select the one that applies to the
fongest suffix.

!OI‘!EI‘ !!emmer l !!!U’

Standard, very popular and usable stemmer (IR,
IE) — identify a word’s stem

Sequence of cascaded rewrite rules, e.qg.
* [ZE - € (e.g. unionize - union)

¢+ CY > T (e.qg. frequency - frequent)

+ ING - ¢, if stem contains vowel (motoring =2
motor)

Can be implemented as a lexicon-free FST
(many implementations available on the web)

http://text-processing.com/demo/stem/

http://text-processing.com/demo/stem/

*

User;:

ELIZA,:

User:

ELIZA,:

Users:

ELIZAj:

UEEI‘4 -

ELIZA:

1/23/2019

Men are all alike.

IN WHAT WAY

They’re always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE
He says I'm depressed much of the time.

[AM SORRY TO HEAR YOU ARE DEPRESSED

Speech and Language Processing - Jurafsky and Martin 67

" Eliza EST

I'M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/
all .*/IN WHAT WAY/

always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

s/.
s/.
s/.
s/.

% % ¥,

1/23/2019 Speech and Language Processing - Jurafsky and Martin 68

Constructions Phrase Extraction

Verbl Francis Collins 15 the director of NIH | (Francis Collins; 15 the director of; NIH)
Verb?2 the director of NIH 1s Francis Collins | (Francis Collins; is the direclor of; NTH)
Appositivel Francis Collins, the director of NIH (Francis Collins; [1s] the director of; NIH)
Appositive2 the director of NIH, Francis Collins, | (Francis Collins; [15] the director of; NIH)
Appositive3 Francis Collins, the NIH director (Francn En]lms [l-a] the dm:cmr |[of]; NIH)
AppositiveTitle Francis Collins, the director, :

CompoundNoun NIH director Francis Collins

POSSEssIve s di r Francis Collins

PossessiveAppositive | NIH’s director, Francis Collins (Francis Collins; [is] director |£If] NLH}
AppositivePossessive | Francis Collins, NIH's director (Francis Collins; [is]| director [of]; NIH)
PossessiveVerb NIH’s director is Francis Collins (Francis Collins; is director [of]; NIH)
VerbPossessive Francis Collins 1s NIH s director (Francis Collins; is director [of]; NIH)

Compound Noun Extraction
Baseline
. \N'IH,\ Dir'ectq(Franc'is Collins

(Francis Collins, is the Director of, NIH)

- Challenges
. New' York Banﬁr Association ORG NAMES
¢ Gerwan Cha'ncellcur Angg‘lra Merke| DEMONYMS

+ Prime Minister, Modi iy

y RELATIONAL NOUNS
* @I\}I Vice dhair an Bob Lutz

!ule-!asea !ys!em

- Classifies and filters orgs

- List of demonyms
+ appropriate location conversion

- Bootstrap a list of relational noun prefixes
* vice, ex, health, ...

R,
Summing Up

- Regular expressions and FSAs can represent subsets
of natural language as well as regular languages

+ Both representations may be difficult for humans to
use for any real subset of a language

+ But quick, powerful and easy to use for small problems

- Finite state transducers and rules are common
ways to incorporate linguistic ideas in NLP for
small applications

- Particularly useful for no data setting

