Sequence to Sequence Models

Mausam

(Slides by Yoav Goldberg, Graham Neubig, Prabhakar Raghavan)

Neural Architectures

- Mapping from a sequence to a single decision.
 - with CNN or BiLSTM acceptor.
- Mapping from two sequences to a single decision.
 - with Siamese network.
- Mapping from a sequence to a sequence of same length.
 - with BiLSTM transducer

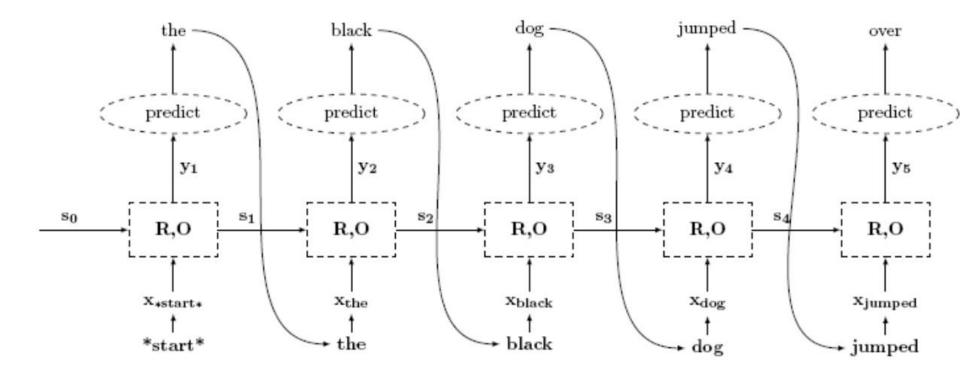
what do we do if the input and output sequences are of **different lengths**?

we already have an architecture from **0 to n** mapping.

(sequence generation)

RNN Language Models

- *Training*: an RNN Transducer.
- *Generation*: the output of step i is input to step i+1.



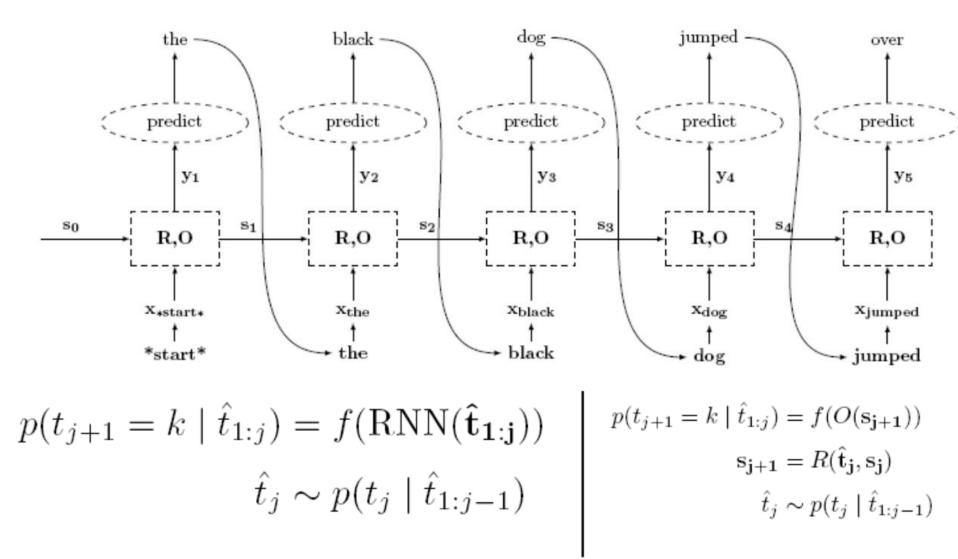
RNN Language Model for generation

 Define the probability distribution over the next item in a sequence (and hence the probability of a sequence).

 $P(w_{1:n}) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_{1:2})P(w_4 \mid w_{1:3}) \dots P(w_n \mid w_{1:n-1})$

$$P(w_1, ..., w_n) = \prod_{i=1}^n P(t_i = w_i | w_1, ..., w_{i-1})$$

RNN Language Models



RNN Language Models

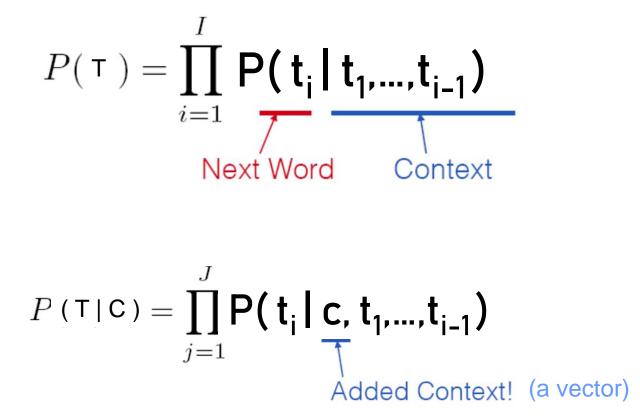
Generating sentences is nice, but what if we want to add some additional conditioning contexts?

Conditioned Language Model

 Not just generate text, generate text according to some specification

Input X	Output Y(Text)	<u>Task</u>
Structured Data	NL Description	NL Generation
English	Japanese	Translation
Document	Short Description	Summarization
Utterance	Response	Response Generation
Image	Text	Image Captioning
Speech	Transcript	Speech Recognition

Let's add the condition variable to the equation.



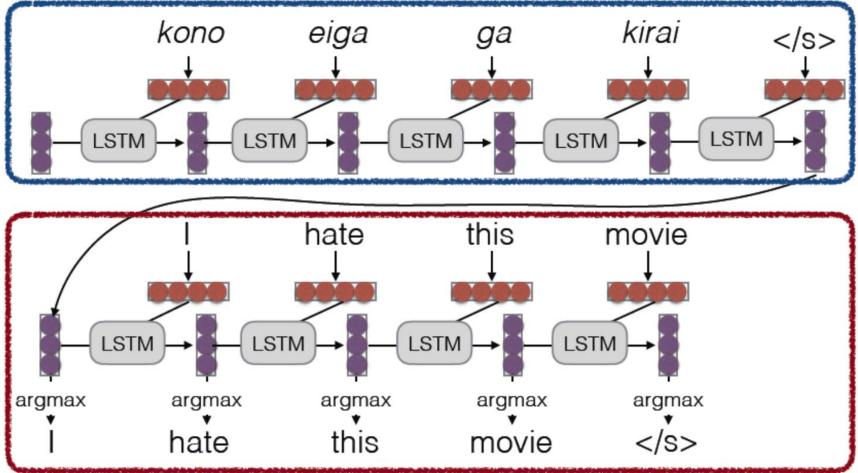
what if we want to condition on an entire sentence?

just encode it as a vector...

 $\mathbf{c} = \mathrm{RNN}^{\mathrm{enc}}(\mathbf{x}_{1:n})$

A simple Sequence to Sequence conditioned generation

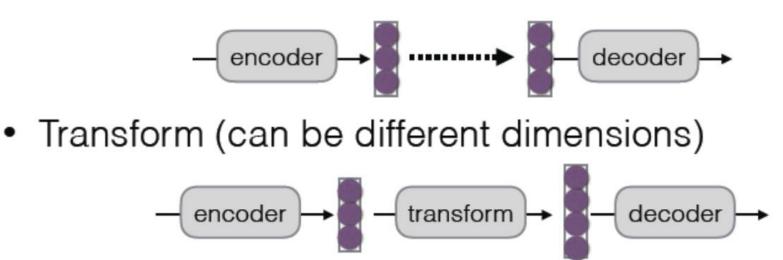
Encoder



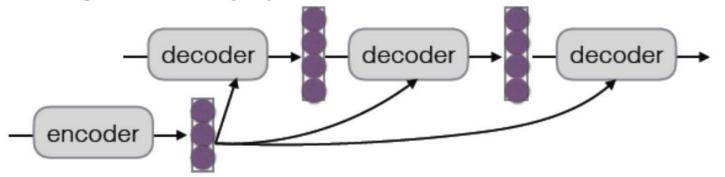
Decoder

How to Pass Hidden State

Initialize decoder w/ encoder (Sutskever et al. 2014)



Input at every time step (Kalchbrenner & Blunsom 2013)



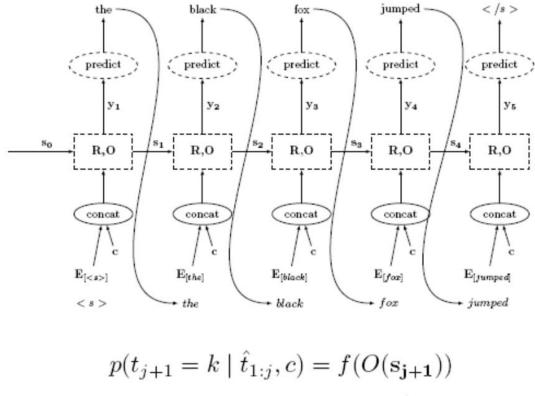
Let's add the condition variable to the equation.

$$p(t_{j+1} = k \mid \hat{t}_{1:j}(c) = f(\text{RNN}(\mathbf{v}_{1:j}))$$
$$\mathbf{v}_{\mathbf{i}} = [\hat{\mathbf{t}}_{\mathbf{i}}(c)]$$
$$\hat{t}_{j} \sim p(t_{j} \mid \hat{t}_{1:j-1}(c))$$

Let's add the condition variable to the equation.

$$p(t_{j+1} = k \mid \hat{t}_{1:j}(c) = f(\text{RNN}(\mathbf{v}_{1:j}))$$
$$\mathbf{v}_{\mathbf{i}} = [\hat{\mathbf{t}}_{\mathbf{i}}(\mathbf{c}])$$
$$\hat{t}_{j} \sim p(t_{j} \mid \hat{t}_{1:j-1}(c))$$

$$\begin{aligned} p(t_{j+1} = k \mid \hat{t}_{1:j}, c) &= f(O(\mathbf{s_{j+1}})) \\ \mathbf{s_{j+1}} &= R(\mathbf{s_j}, [\hat{\mathbf{t}_j}; \mathbf{c}]) \\ \hat{t}_j &\sim p(t_i \mid \hat{t}_{1:j-1}, c) \end{aligned}$$



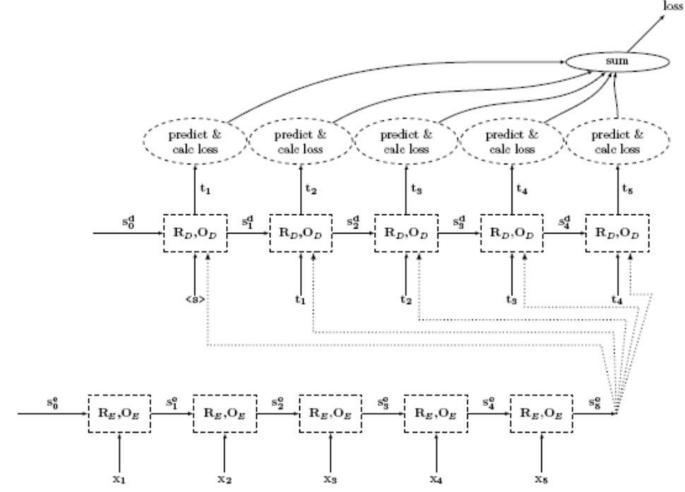
$$\begin{split} \mathbf{s_{j+1}} &= R(\mathbf{s_j}, [\hat{\mathbf{t}}_j; \mathbf{c}]) \\ \hat{t}_j &\sim p(t_i \mid \hat{t}_{1:j-1}, c) \end{split}$$

what if we want to condition on an entire sentence?

Sequence to Sequence conditioned generation

black </s> fox jumped predict (predict predict predict predict This is also called **y**4 **y**1 **y**2 **y**3 yв "Encoder Decoder" R_D, O_D R_D,O_D Rp,Op Rp,Op Rp,Op Decoder architecture. Decoder is concat concat concat concat concat just a conditioned E[for] E[the] Erblack E[<.>] E[jumped] language model < \$> black foz jumped Rg,Og Rg,Og Rg.Og Rg.,Og Rg,Og Encoder $\mathbf{E}_{[<s>]}$ $E_{[a]}$ E[conditioning] Eisegnencel E[</s>] </s> < \$ > conditioning sequence a

Sequence to Sequence training graph



The Generation Problem

We have a probability model, how do we use it to generate a sentence?

Two methods:

- **Sampling:** Try to generate a *random* sentence according to the probability distribution.
- **Argmax:** Try to generate the sentence with the *highest* probability.

Ancestral Sampling

Randomly generate words one-by-one.

while
$$y_{j-1} != "":$$

 $y_j \sim P(y_j | X, y_1, ..., y_{j-1})$

An **exact method** for sampling from P(X), no further work needed.

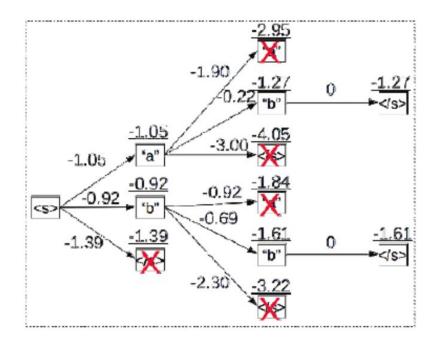
Greedy Search

One by one, pick the single highest-probability word

Not exact, real problems:

- Will often generate the "easy" words first
- Will prefer multiple common words to one rare word

Instead of picking one high-probability word, maintain several paths



How to evaluate?

• Basic Paradigm

- Use parallel test set
- Use system to generate translations
- Compare target translations w/ reference

Human Evaluation

• Final goal, but slow, expensive, and sometimes inconsistent

BLEU

Works by comparing n-gram overlap w/ reference

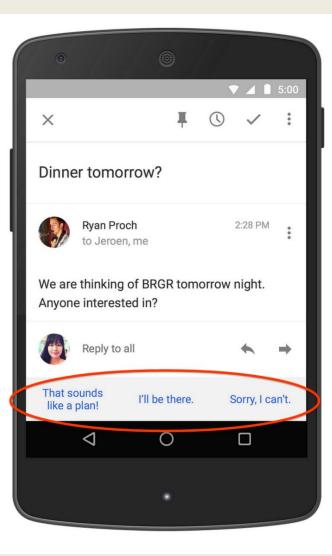
- Pros: Easy to use, good for measuring system improvement
- Cons: Often doesn't match human eval, bad for comparing very different systems

METEOR

- Like BLEU in overall principle, with many other tricks: consider paraphrases, reordering, and function word/content word difference
- **Pros:** Generally significantly better than BLEU, esp. for high-resource languages
- **Cons:** Requires extra resources for new languages (although these can be made automatically), and more complicated

Perplexity

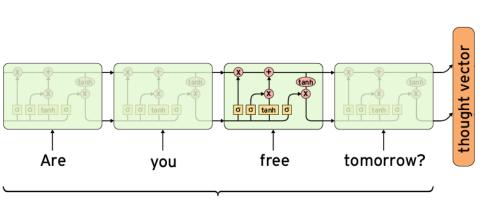
- Calculate the perplexity of the words in the held-out set *without* doing generation
- **Pros:** Naturally solves multiple-reference problem!
- **Cons:** Doesn't consider decoding or actually generating output. May be reasonable for problems with lots of ambiguity.



Case Study: Smart Reply in Gmail

Preprocessing an incoming email

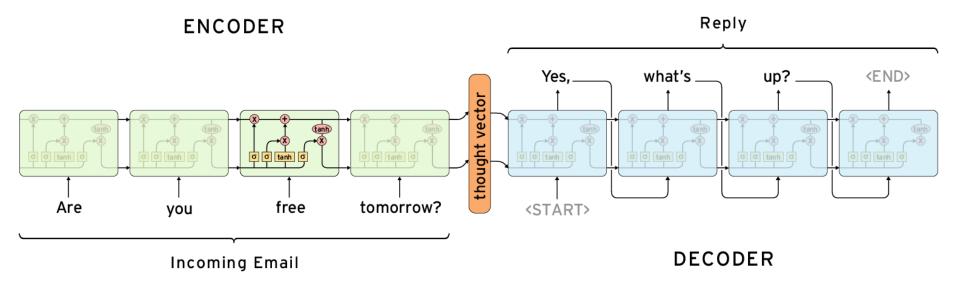
- Language detection
 - Currently handle English, Portuguese, Spanish ... a few more languages are in preparation
- Tokenization of subject and message body
- Sentence segmentation
- Normalization of infrequent words and entities replaced by special tokens
- Removal of quoted and forward email portions
- Removal of greeting and closing phrases ("Hi John",... "Regards, Mary")



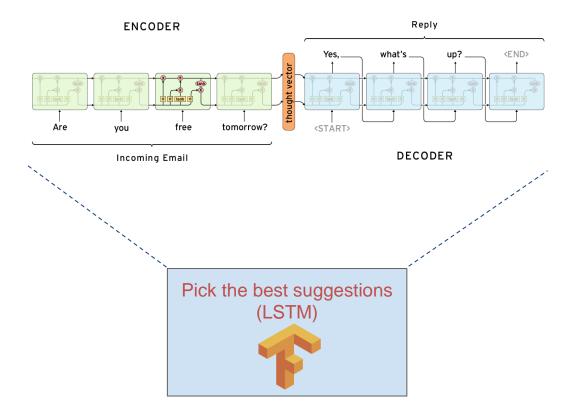
Incoming Email

ENCODER

LSTM translation



Vinyals & Le, 2015



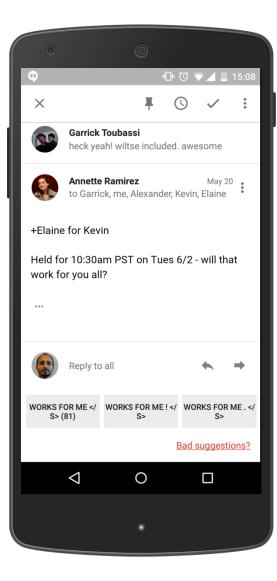
Is it worth it?

- Precision/accuracy how well can we guess good replies?
 - Self-reinforcing behavior often machine predictions are "good enough"
 - \circ $\,$ Machines learn from humans, and vice versa
- Coverage do most emails have simple, predictable responses?
 - Do a small number of utterances cover a large fraction of responses?
 - Language/cultural variations? Linguistic entropy

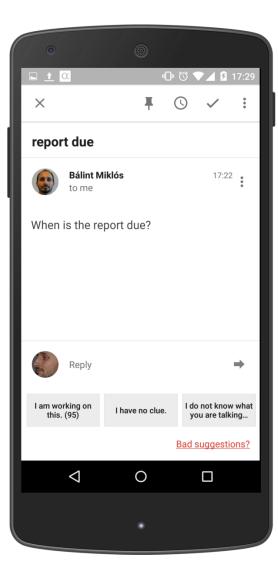
Metric

- What fraction of the time do users select a suggested reply?
 - How many replies do we suggest? 3
 - Constraint based on user interface, but also users' ability to quickly process choices
- We get a boost from allowing users to edit responses before sending
 - In early studies, users were nervous that choosing a response would instantly send
 - Careful tuning of this UI gave us bigger gains than a lot of ML tuning

Some early observations



Some early observations



A scoring algorithm doesn't make a product

- Semantic variation: doesn't help if all three suggestions say the same thing ...
 - Can't simply take the 3 highest scoring suggestions
- The "I love you" problem
 - Some responses are unhelpful and a human can say them, but not a computer ...*
 - A lot of responses in the training corpus have "I love you"
 - In many cases this isn't appropriate
 - "Family friendliness"
- Sensitivity
 - There are many incoming emails where you don't want the computer to guess replies - Bad news, etc
- * in general our expectations of "working" AI are higher than of humans

Michael Gadberry @michaelgadberry · 13h Google Inbox's automated suggested replies are mind-blowingly awesome and accurate. #CheckOutDatStuff #GoogleInbox @inboxbygmail

Simon Dingle @SimonDingle · Nov 12 It's like @inboxbygmail has telepathy with its automated responses.

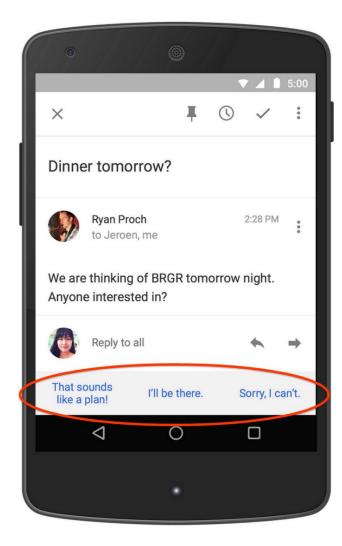
Tatiana King Jones @TatianaKing · Nov 12 The new @inboxbygmail auto response choices have been pretty good

so far. Have been using them maybe 50% of the time.

>10%

of Gmail responses are Smart Replies.

(Users accept computer-generated replies.)



Encoder-Decoder with different modalities

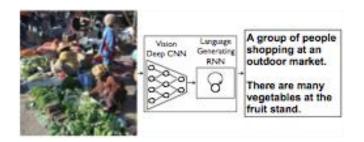
The encoded conditioning context need not be text, or even a sequence.

Encoder-Decoder with different modalities

Show and Tell: A Neural Image Caption Generator

Oriol Vinyals	Alexander Toshev	Samy Bengio	Dumitru Erhan	
Google	Google	Google	Google	
vinyals@google.com	toshev@google.com	bengio8google.com		

• Encode: **image** to vector. Decode: a sentence describing the image.



This sort-of works. In my opinion, looks more impressive than really is.

I think it's a man in a business suit standing on a bench.

I am not really confident, but I think it's a man standing on a beach near the water.

I think it's a group of people sitting in front of a crowd.

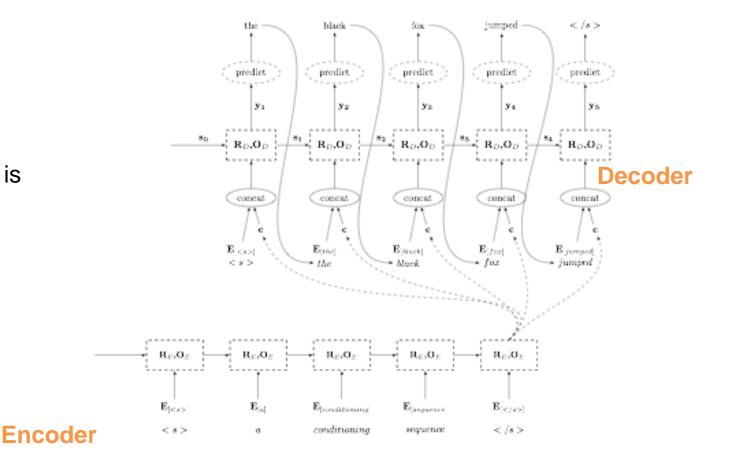
I am not really confident, but I think it's a close up of a sheep.

You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#* vector!

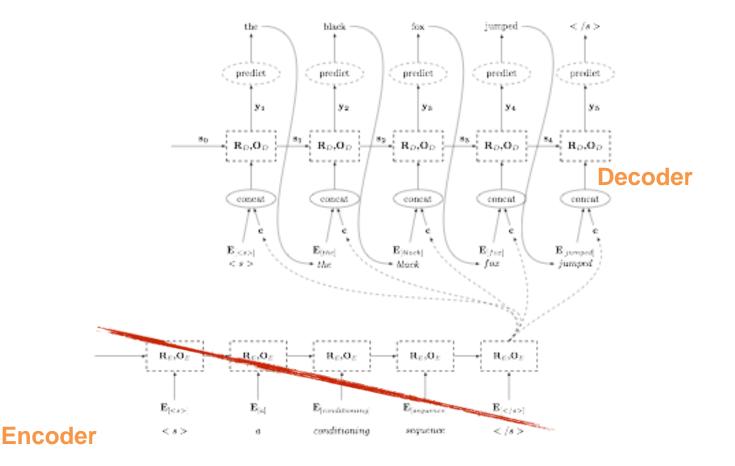
But what if we could use multiple vectors, based on the length of the sentence.

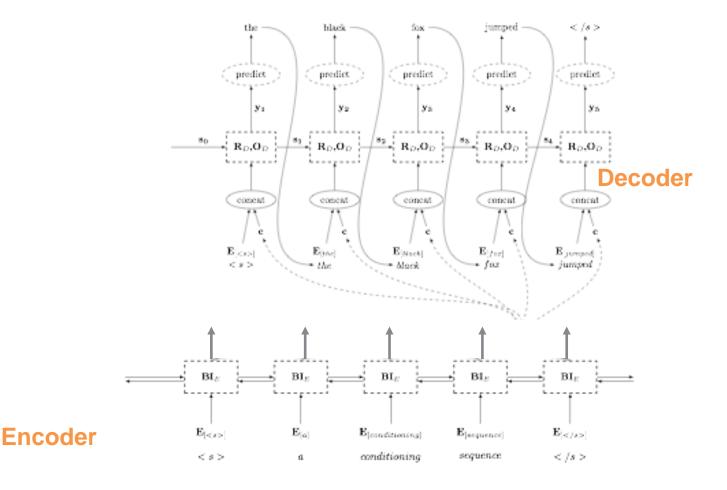
this is an example \longrightarrow this is an example \longrightarrow

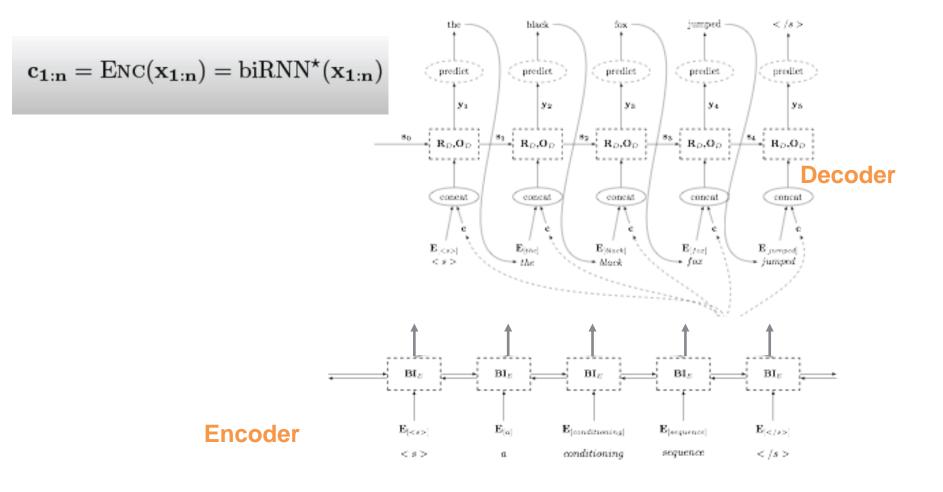
main idea: encoding a single vector is too restrictive.

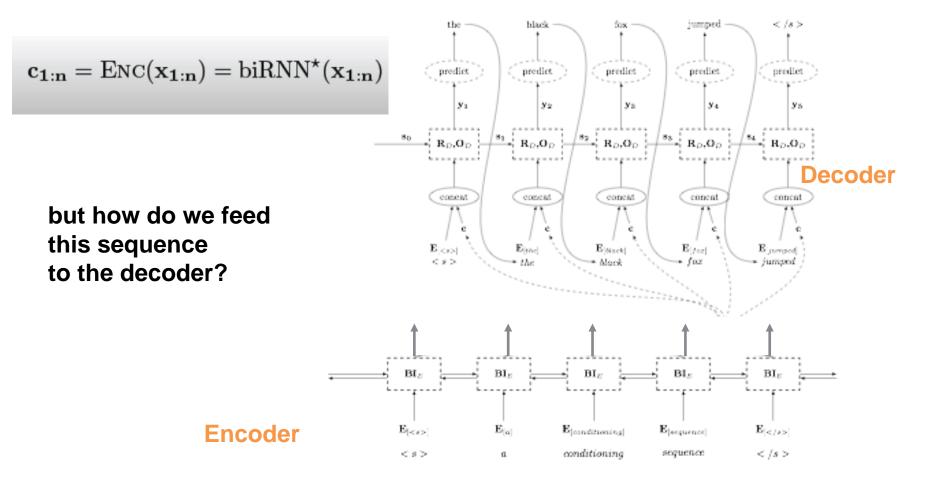


 Instead of the encoder producing a single vector for the sentence, it will produce a one vector for each word.

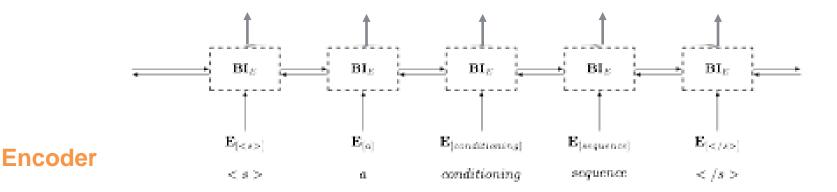




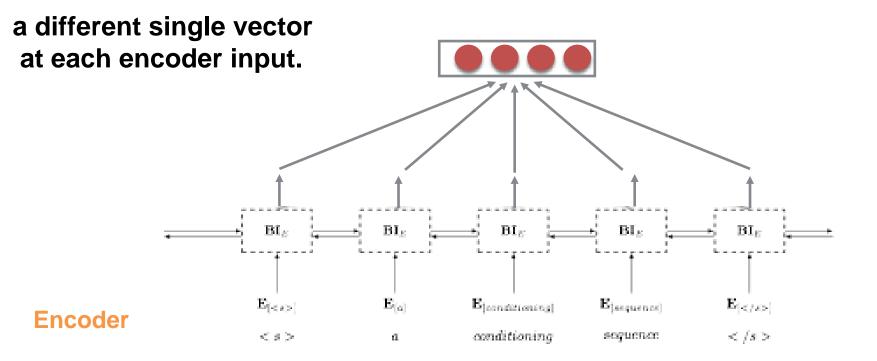




we can combine the different outputs into a single vector (attended summary)



we can combine the different outputs into a single vector (attended summary)



$$p(t_{j+1} = k \mid \hat{t}_{1:j}, \mathbf{x_{1:n}}) = f(O(\mathbf{s_{j+1}}))$$
$$\mathbf{s_{j+1}} = R(\mathbf{s_j}, [\hat{\mathbf{t}_j}, \mathbf{c^j}])$$
$$\mathbf{c^j} = \operatorname{attend}(\mathbf{c_{1:n}}, \hat{t}_{1:j})$$
$$\hat{t}_j \sim p(t_j \mid \hat{t}_{1:j-1}, \mathbf{x_{1:n}})$$

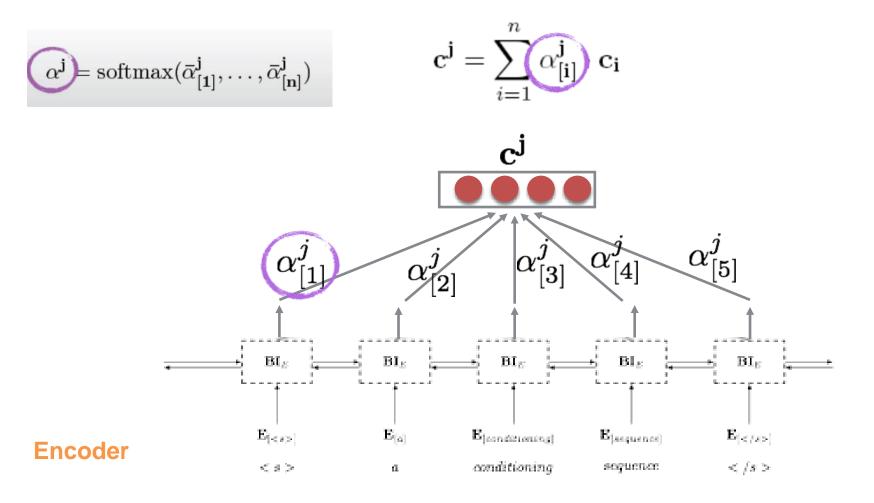
$$p(t_{j+1} = k \mid \hat{t}_{1:j}, \mathbf{x_{1:n}}) = f(O(\mathbf{s_{j+1}}))$$

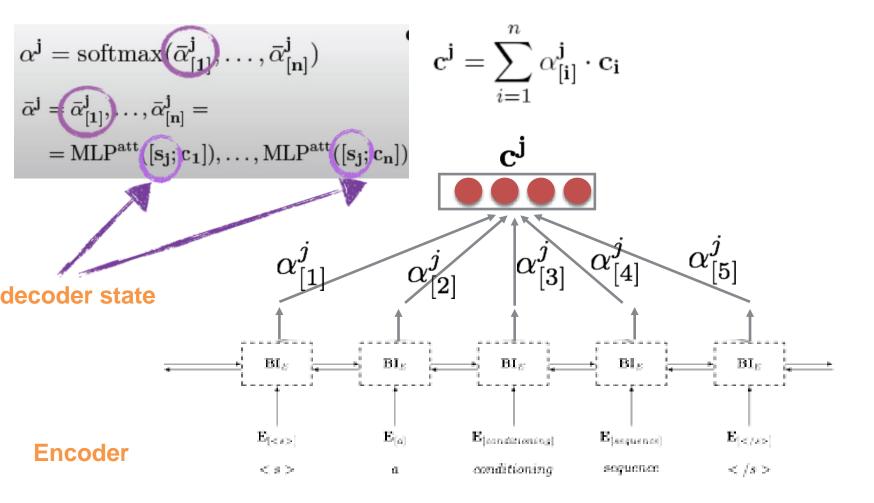
$$\mathbf{s_{j+1}} = R(\mathbf{s_j}, [\hat{\mathbf{t}_j}; \mathbf{c^j}])$$

$$\mathbf{c^j} = \operatorname{attend}(\mathbf{c_{1:n}}, \hat{t}_{1:j})$$

$$\hat{t}_j \sim p(t_j \mid \hat{t}_{1:j-1}, \mathbf{x_{1:n}})$$

$$\mathbf{c^j} = \sum_{i=1}^n \alpha_{[i]}^j \cdot \mathbf{c_i}$$





$$p(t_{j+1} = k \mid \hat{t}_{1:j}, \mathbf{x}_{1:n}) = f(O_{dec}(\mathbf{s}_{j+1}))$$

$$\mathbf{s}_{j+1} = R_{dec}(\mathbf{s}_j, [\hat{\mathbf{t}}_j; \mathbf{c}^j])$$

$$\mathbf{c}^j = \sum_{i=1}^n \alpha_{[i]}^j \cdot \mathbf{c}_i$$

$$\mathbf{c}_{1:n} = \mathrm{biRNN}_{enc}^{\star}(\mathbf{x}_{1:n})$$

$$\alpha^j = \mathrm{softmax}(\bar{\alpha}_{[1]}^j, \dots, \bar{\alpha}_{[n]}^j)$$

$$\bar{\alpha}_{[i]}^j = \mathrm{MLP}^{\mathrm{att}}([\mathbf{s}_j; \mathbf{c}_i])$$

$$\hat{t}_j \sim p(t_j \mid \hat{t}_{1:j-1}, \mathbf{x}_{1:n})$$

$$f(\mathbf{z}) = \mathrm{softmax}(\mathrm{MLP}^{\mathrm{out}}(\mathbf{z}))$$

 $\mathrm{MLP}^{\mathrm{att}}([\mathbf{s_j}; \mathbf{c_i}]) = 1$

$$p(t_{j+1} = k \mid \hat{t}_{1:j}, \mathbf{x}_{1:n}) = f(O_{dec}(\mathbf{s}_{j+1}))$$

$$\mathbf{s}_{j+1} = R_{dec}(\mathbf{s}_j, [\hat{\mathbf{t}}_j; \mathbf{c}^j])$$

$$\mathbf{c}^j = \sum_{i=1}^n \alpha_{[i]}^j \cdot \mathbf{c}_i$$

$$\mathbf{c}_{1:n} = \operatorname{biRNN}_{enc}^{\star}(\mathbf{x}_{1:n})$$

$$\alpha^j = \operatorname{softmax}(\bar{\alpha}_{[1]}^j, \dots, \bar{\alpha}_{[n]}^j)$$

$$\bar{\alpha}_{[i]}^j = \operatorname{MLP}^{\operatorname{att}}([\mathbf{s}_j; \mathbf{c}_i])$$

$$\hat{t}_j \sim p(t_j \mid \hat{t}_{1:j-1}, \mathbf{x}_{1:n})$$

$$f(\mathbf{z}) = \operatorname{softmax}(\operatorname{MLP}^{\operatorname{out}}(\mathbf{z}))$$

 $\mathrm{MLP}^{\mathrm{att}}([\mathbf{s_j}; \mathbf{c_i}]) = 1$

$$p(t_{j+1} = k \mid \hat{t}_{1:j}, \mathbf{x}_{1:n}) = f(O_{dec}(\mathbf{s}_{j+1}))$$

$$\mathbf{s}_{j+1} = R_{dec}(\mathbf{s}_j, [\hat{\mathbf{t}}_j; \mathbf{c}^j])$$

$$\mathbf{c}^j = \sum_{i=1}^n \alpha_{[i]}^j \cdot \mathbf{c}_i$$

$$\mathbf{c}_{i:n} = \operatorname{biRNN}_{enc}^{\star}(\mathbf{x}_{1:n})$$

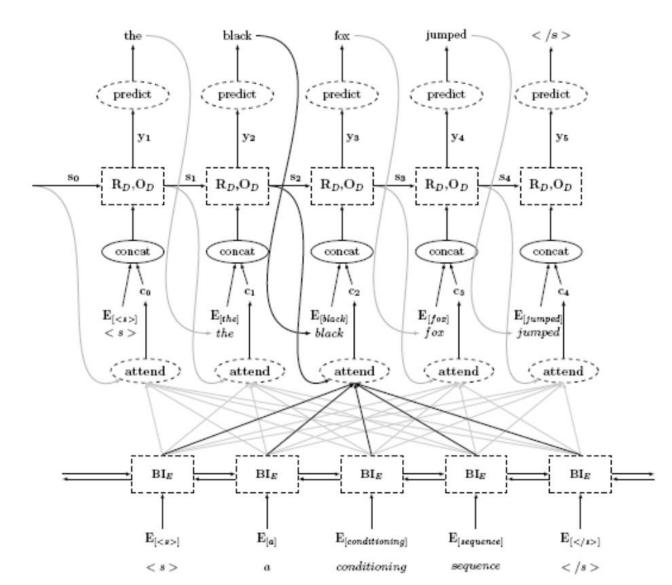
$$\alpha^j = \operatorname{softmax}(\bar{\alpha}_{[1]}^j, \dots, \bar{\alpha}_{[n]}^j)$$

$$\bar{\alpha}_{[i]}^j = \operatorname{MLP}^{\operatorname{att}}([\mathbf{s}_j; \mathbf{c}_i])$$

$$\hat{t}_j \sim p(t_j \mid \hat{t}_{1:j-1}, \mathbf{x}_{1:n})$$

$$f(\mathbf{z}) = \operatorname{softmax}(\operatorname{MLP}^{\operatorname{out}}(\mathbf{z}))$$

 $\mathrm{MLP}^{\mathrm{att}}([\mathbf{s_j}; \mathbf{c_i}]) = 1$



• Encoder encodes a sequence of vectors, c₁,...,c_n

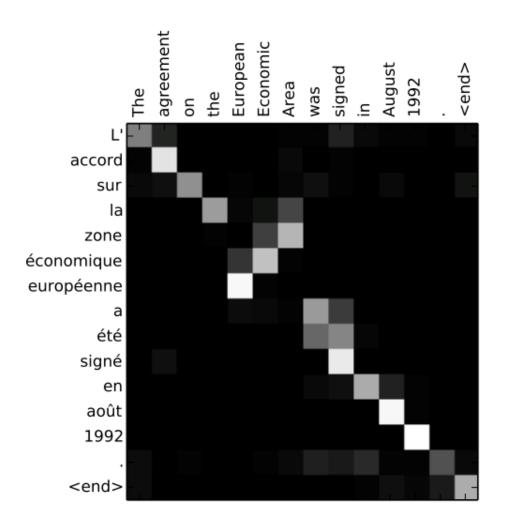
• At each decoding stage, an MLP assigns a relevance score to each Encoder vector.

• The relevance score is based on c_i and the state s_i

 Weighted-sum (based on relevance) is used to produce the conditioning context for decoder step j.

- Decoder "pays attention" to different parts of the encoded sequence at each stage.
- The attention mechanism is "soft" -- it is a mixture of encoder states.
- The encoder acts as a read-only memory for the decoder
- The decoder chooses what to read at each stage

- Attention is very effective for sequence-to-sequence tasks.
- Current state-of-the-art systems all use attention. (this is basically how Machine Translation works)
- Attention also makes models somewhat more interpretable.
- (we can see where the model is "looking" at each stage of the prediction process)



ih the evening until 21 ! 00 ! there was a further 5mm rain on the town ! after 6, @@ 6@@ mm ! which had already dropped to Sunday during the night

am Abend bis 21 Uhr fielen weitere 5mm Regen auf die Stadt , nach 6,@@ 6@@ mm , die bereits in der Nacht zum Sonntag nieder@@ gegangen waren .

sinjce then ! the island authorities have tribed to plut an end to the illegal behaviour of non-@@ alcoholic tourists jh Mag@@ alugb@} by minimizizing the number of participants jh the notophious alcoholi@@ -free bar !

die Insel@@ behÄyfiden haben seither versucht , das ordnungs@@ widrige Verhalten alkohol@@ isierter Urlauber in Mag@@ alu@@ f zu stoppen , indem die Anzahl der Teilnehmer an den berÄkchtigten alkohol@@ get@@ rĤnkten Knei@@ pent@@ ouren minimiert wurde

Complexity

- Encoder decoder:
- Encoder-decoder with attention:

Complexity

- Encoder decoder: O(n+m)
- Encoder-decoder with attention: O(nm)

Beyond Seq2Seq

- Can think of a general design pattern in neural nets:
 - Input: sequence, query
 - Encode the input into a sequence of vectors
 - Attend to the encoded vectors, based on query (weighted sum, determined by query)
 - Predict based on the attended vector

Attention Functions

V: attended vec, q: query vec MLP^{att}(q;v)=

• Additive Attention: $ug(W^1v + W^2q)$

• Dot Product: $\mathbf{v} \cdot \mathbf{q}$

• Multiplicative Attention: $\mathbf{v}^{\top}\mathbf{W}\mathbf{q}$

Additive vs Multiplicative

While the two are similar in theoretical complexity, dot-product attention is much faster and more space-efficient in practice, since it can be implemented using highly optimized matrix multiplication code.

While for small values of d_k the two mechanisms perform similarly, additive attention outperforms dot product attention without scaling for larger values of d_k [3]. We suspect that for large values of d_k , the dot products grow large in magnitude, pushing the softmax function into regions where it has extremely small gradients ⁴. To counteract this effect, we scale the dot products by $\frac{1}{\sqrt{d_{\rm F}}}$.

 d_{k} is the dimensionality of q and v

Attention Is All You Need

loam Shazeer Google Brain Google Research Google Brain aswani@google.com noam@google.com nikip@google.com Aidan N. Gomez* † Llion Iones Google Research University of Toronto

aidan@cs.toronto.edu

Ashish Vaswani

llion@google.com

Łukasz Kaiser Google Brain lukaszkaiser@google.com

Jakob Uszkoreiť

Google Research

usz@google.com

Niki Parmar*

Illia Polosukhin* illia.polosukhin@gmail.com

Key-Value Attention

- Split v into two vectors $v = [v_k; v_v]$
 - $-v_k$: key vector
 - $-v_v$: value vector
- Use key vector for computing attention MLP^{att}(q;v)= ug(W¹v_k + W²q) //additive
- Use value vector for computing attended summary

$$\mathbf{v}^{\mathbf{j}} = \sum_{i=1}^{n} \alpha_{[\mathbf{i}]}^{\mathbf{j}} \cdot (\mathbf{v}_{\mathbf{v}})_{\mathbf{i}}$$

Multi-head Key-Value Attention

• For each head

- Learn different projection matrices W_q, W_k, W_v

- MLP^{att}(q;v)= $[(v_k W_k).(q W_q)]/sqrt(d_k)$
- For summary use $v_v W_v$ (instead of v_v)
- Train many such heads and
 use aggr(all such attended summaries)

Hard Attention

Instead of a soft interpolation, make a **zero-one decision** about where to attend (Xu et al. 2015)

 Harder to train, requires methods such as reinforcement learning (see later classes)

Perhaps this helps interpretability? (Lei et al. 2016)

Look: 5 stars

Review

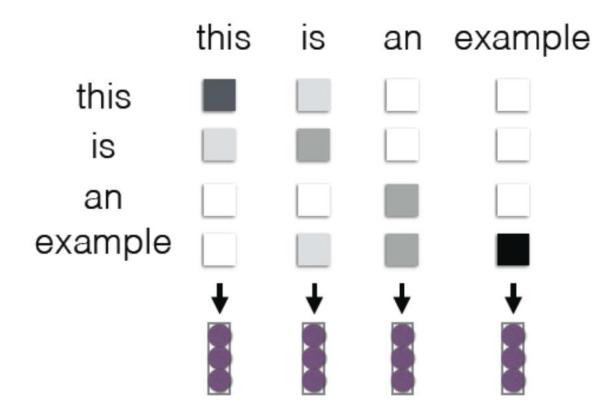
the beer was n't what i expected, and i'm not sure it's "true to style", but i thought it was delicious. **a very pleasant ruby red-amber color** with a relatively brilliant finish, but a limited amount of carbonation, from the look of it. aroma is what i think an amber ale should be - a nice blend of caramel and happiness bound together.

Ratings

Smell: 4 stars

Self-attention/Intra-attention

Each element in the sentence attends to other elements → context sensitive encodings!



Recall the attended Enc-dec

$$\begin{aligned} p(t_{j+1} = k \mid \hat{t}_{1:j}, \mathbf{x}_{1:n}) &= f(O_{\text{dec}}(\mathbf{s}_{j+1})) \\ \mathbf{s}_{j+1} &= R_{\text{dec}}(\mathbf{s}_j, [\hat{\mathbf{t}}_j; \mathbf{c}^j]) \\ \mathbf{c}^j &= \sum_{i=1}^n \alpha_{[i]}^j \cdot \mathbf{c}_i \\ \mathbf{c}_{1:n} &= \text{biRNN}_{\text{enc}}^\star(\mathbf{x}_{1:n}) \\ \alpha^j &= \text{softmax}(\bar{\alpha}_{[1]}^j, \dots, \bar{\alpha}_{[n]}^j) \\ \bar{\alpha}_{[i]}^j &= \text{MLP}^{\text{att}}([\mathbf{s}_j; \mathbf{c}_i]) \\ \hat{t}_j &\sim p(t_j \mid \hat{t}_{1:j-1}, \mathbf{x}_{1:n}) \\ f(\mathbf{z}) &= \text{softmax}(\text{MLP}^{\text{out}}(\mathbf{z})) \end{aligned}$$

$$\mathrm{MLP^{att}}([s_j;c_i]) = v \tanh([s_j;c_i]U + b)$$

Self attention with LSTM

- c (in prev slide) = h (in this slide)
- h (hidden state); x (input); h~ (attended summary)

 $a_i^t = v^{\mathrm{T}} \tanh(W_h h_i + W_x x_t + W_{\tilde{h}} \tilde{h}_{t-1})$

 $s_i^t = \operatorname{softmax}(a_i^t)$

• (Attended) Hidden state/Cell State

$$\begin{bmatrix} \tilde{h}_t \\ \tilde{c}_t \end{bmatrix} = \sum_{i=1}^{t-1} s_i^t \cdot \begin{bmatrix} h_i \\ c_i \end{bmatrix}$$

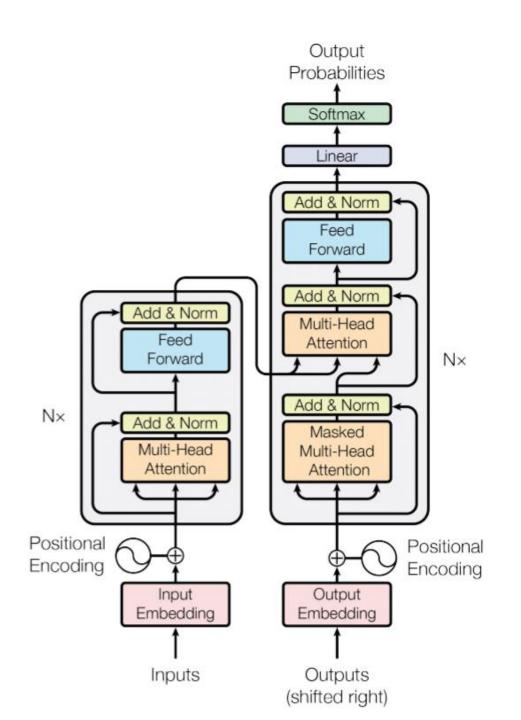
Rest of LSTM

$$\begin{bmatrix} i_t \\ f_t \\ o_t \\ \hat{c}_t \end{bmatrix} = \begin{bmatrix} \sigma \\ \sigma \\ \sigma \\ tanh \end{bmatrix} W \cdot [\tilde{h}_t, x_t]$$
$$c_t = f_t \odot \tilde{c}_t + i_t \odot \hat{c}_t$$
$$h_t = o_t \odot \tanh(c_t)$$

Do we "need" an LSTM?

Objective

- RNN is slow; can't be parallelized
- Reduce sequential computation
- Self-attention encoder (Transformer)
 - creatively combines layers of attention
 - with other bells and whistles
- Self-attention decoder!!



Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Summary

- RNNs are very capable learners of sequential data.
- n -> 1: (bi)RNN acceptor
- n -> n : biRNN (transducer)
- 1 -> m : conditioned generation (conditioned LM)
- n -> m : conditioned generation (encoder-decoder)
- n -> m : encoder-decoder with attention