Neural Models over Tree
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Trees

Sequences are nice.

But when working with language, we often
see tree structures.

An RNN encodes a sequence as a vector.
We would like to encode a tree as a vector



The boy who always wears blue shirts went home
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The boy who always wears blue shirts went home



the soup , which | expected to be good , was bad



the soup , which | expected to be good , was bad



the soup , which | expected to be good , was bad



the soup , which | expected to be good , was bad



e soup , which [ expected to be good , was bad



e soup , which T'expected to be good , was ba



Trees

Sequences are nice.

But when working with language, we often see
tree structures.

An RNN encodes a sequence as a vector.
We would like to encode a tree as a vector.



Recursive Neural Nets
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Recursive Neural Nets




Recursive Neural Nets
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Recursive Neural Nets
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Recursive Neural Nets

Like recurrent nets:
we have shared

parameters at nodes.

but structure is

no Ionger a sequence.
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Recursive Neural Nets

Like recurrent nets: — L _
we have shared s_[000] c5 = tanh(Wlcy;cq))
parameters at nodes. N l _
but structure is combine

no longer a sequence.
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Stanford Sentiment Treebank
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Need for a Sentiment Treebank

Almost all work on sentiment analysis has used
mostly word-order independent methods

But many papers acknowledge that sentiment
interacts with syntax in complex ways

Little work has been done on these interactions
because they’re very difficult to learn

Single-sentence sentiment classification accuracy
has languished at ~80% for a long time



Goal of the Sentiment Treebank

At every level of the parse tree, annotate the
sentiment of the phrase it subsumes

Use a 5-class scheme (--, -, O, +, ++)
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Construction of the Sentiment
Treebank

* For 11,855 sentences, parse and break into
phrases (215,154 total)

* The sentiment of each phrase is annotated
with Mechanical Turk

Please choose the sentiments that best describe the following phrases:
The change in color of the slide bar indicates that your answer has been recorded.

have that French realism

I I I I I I I
Very Negative Somewhat Neutral Somewhat Positive Very
negative negative positive positive

its utter sincerity

I I I I I I I
Very Negative Somewhat Neutral Somewhat Positive Very

negative negative positive positive



% of Sentiment Values

Construction of the Sentiment
Treebank

(b) (c) (d)

N-Gram Length



Matrix Vector RNN (MV-RNN)

Each word has both

— An associated vector (it’s meaning)
— An associated matrix (it’s personal composition

function)

This is a good idea, but in Recursive Matrix-Vector Model

practice, it's way too many ‘o) - vector

parameters to learn f(Ba, Ab)=s& /\ 22 - matrix
Ba=@@a Ab— O -
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Recursive Neural Tensor Network

(RTNN)
* At a high level:

— The composition function
is a tensor, which means
expressiveness, with fewer
parameters to learn

— In the same way that
similar words have similar
vectors, this lets similar
words have similar
composition behavior

R







What is this model able to do?

e Learns structures like “X but Y”
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What is this model able to do?

* Small changes are able to propagate all the
way up the tree

: ) this theme _
most compelling least compelling



What is this model able to do?

* Learns how negation works, including many
subtleties
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Negation Evaluation

A Accuracy
Negated Positive  Negated Negative
biNB 19.0 21.3
RNN G JIE 45.5
MV-RNN 52.4 54.6
RNTN 71.4 90.9

Negated Positive Sentences: Change in Activation
biNB |
RRN

MV-RNN
RNTN

-0.6 -0.4 -0.2 0.0 0.2 0.4

Negated Negative Sentences: Change in Activation

biNB -0.01
's definitely RRN o
MV-RNN +0.01
RNTN _ _ +0.25

-0.6 -0.4 -0.2 0.0 0.2 0.4



Positive and Negative N-grams

Most positive n-grams

Most negative n-grams

engaging : best ; powerful ; love ; beautiful ; entertain-
ing ; clever ; terrific ; excellent ; great ;

excellent performances ; amazing performance ; ter-
rific performances ; A masterpiece ; masterful film :
wonderful film ; terrific performance ; masterful piece
; wonderful movie ; marvelous performances ;

an amazing performance ; a terrific performance ; a
wonderful film ; wonderful all-ages triumph ; A mas-
terful film ; a wonderful movie ; a tremendous perfor-
mance ; drawn excellent performances ; most visually
stunning ; A stunning piece ;

nicely acted and beautifully shot ; gorgeous imagery .,
effective performances ; the best of the year ; a terrific
American sports movie ; very solid , very watchable ;
a fine documentary does best ; refreshingly honest and
ultimately touching ;

one of the best films of the year ; simply the best family
film of the year ; the best film of the year so far ; A
love for films shines through each frame ; created a
masterful piece of artistry right here ; A masterful film
from a master filmmaker , ; 's easily his finest American
film ... comes ;

bad ; dull ; boring ; fails ; worst ; stupid ; painfully ;
cheap ; forgettable ; disaster ;

worst movie ; bad movie ; very bad ; shapeless mess
: worst thing : tepid waste ; instantly forgettable ; bad
film ; extremely bad ; complete failure ;

for worst movie ; A lousy movie ; most joyless movie ;
a complete failure ; another bad movie ; fairly terrible
movie ; a bad movie ; extremely unfunny film ; most
painfully marginal ; very bad sign ;

silliest and most incoherent movie ; completely crass
and forgettable movie ; just another bad movie . ;
drowns out the lousy dialogue ; a fairly terrible movie
... » A cumbersome and cliche-ridden movie ; a humor-
less , disjointed mess ;

A trashy , exploitative , thoroughly unpleasant experi-
ence ; this sloppy drama is an empty vessel . ; a mean-
dering , inarticulate and ultimately disappointing film ;
an unimaginative , nasty , glibly cynical piece ; bad , he
’s really bad , and :; quickly drags on becoming boring
and predictable . ; be the worst special-effects creation
of the year ;




Sentiment Analysis Evaluation

Model

B RNTN
B MV-RNN
- g M RNN
oy M bins
g ; NB
% 3
g
X (&)
0.2 0.6
5 10 15 20 25 5 10 15 20 25
N-Gram Length N-Gram Length

Fine-grained Positive/Negative
All Root All Root

T NB 672 410 826 818
ORIt SyM 643 407 846 794
SUTIIERENS.  BINB 710 419 827 83
e iiants Mo oAt Vec Avg T35 32.7 85.1 0.1
RNN 79.0 43.2 86.1 82.4

MV-RNN 78.7 44.4 86.8 82.9

RNTN 80.7 45.6 87.6 854




LSTM RNN
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Child Sum Tree LSTM

Child-sum tree LSTM at node j with children k; and ks



ij =0 (Whz; + UDR; +49),
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Child Sum Tree LSTM

does not take into account child order
works with variable number of children

— good for dependency parses

shares gates weight among children

Application
— Dependency tree LSTM



N-ary Tree LSTM

Binary tree LSTM at node j with children k; and k;
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N-ary Tree LSTM

Each node must have at most N children
Fine-grained control on how information
propagates

Forget gate parameterized such that siblings
can affect the computation

Application
— Constituency Tree LSTM



Sentiment Treebank Results

Improved Semantic Representations From
Tree-Structured Long Short-Term Memory Networks

Kai Sheng Tai, Richard Socher*, Christopher D. Manning

Computer Science Department, Stanford University, *MetaMind Inc.
kst@cs.stanford.edu, richard@metamind.io, manning@stanfor

Method Fine-grained  Binary
RAE (Socher et al., 2013) 43.2 8§2.4
MV-RNN (Socher et al., 2013) 44.4 §2.9
RNTN (Socher et al., 2013) 45.7 85.4
DCNN (Blunsom et al., 2014) 48.5 86.8
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8
CNN-non-static (Kim, 2014) 48.0 87.2
CNN-multichannel (Kim, 2014) 474 88.1
DRNN (Irsoy and Cardie, 2014) 49.8 86.6
LSTM 46.4 (1.1) 84.9 (0.6)
Bidirectional LSTM 49.1 (1.0) 87.5 (0.5)
2-layer LSTM 46.0 (1.3) 86.3 (0.6)
2-layer Bidirectional LSTM 48.5 (1.0) 87.2 (1.0)
Dependency Tree-LSTM 48.4 (0.4) 85.7 (0.4)
Constituency Tree-LSTM

— randomly initialized vectors 43.9 (0.6) 82.0 (0.5)

— Glove vectors, fixed 49.7 (0.4) 87.5 (0.8)

— Glove vectors, tuned 51.0 (0.5) 88.0 (0.3)




SICK Semantic Relatedness Task

Method Pearson’s r Spearman’s p MSE
Ilinois-LH (Lai and Hockenmaier, 2014) 0.7993 0.7538 0.3692
UNAL-NLP (Jimenez et al., 2014) 0.8070 0.7489 0.3550
Meaning Factory (Bjerva et al., 2014) 0.8268 0.7721 0.3224
ECNU (Zhao et al_, 2014) 0.8414 - —~

Mean vectors 0.7577 (0.0013) 0.6738 (0.0027) 0.4557 (0.0090)
DT-RNN (Socher et al., 2014) 0.7923 (0.0070) 0.7319 (0.0071) 0.3822 (0.0137)
SDT-RNN (Socher et al., 2014) 0.7900 (0.0042) 0.7304 (0.0076) 0.3848 (0.0074)
LSTM 0.8528 (0.0031) 0.7911 (0.0059) 0.2831 (0.0092)
Bidirectional LSTM 0.8567 (0.0028) 0.7966 (0.0053) 0.2736 (0.0063)
2-layer LSTM 0.8515 (0.0066) 0.7896 (0.0088) 0.2838 (0.0150)
2-layer Bidirectional LSTM 0.8558 (0.0014) 0.7965 (0.0018) 0.2762 (0.0020)
Constituency Tree-LSTM 0.8582 (0.0038) 0.7966 (0.0053) 0.2734 (0.0108)
Dependency Tree-LSTM 0.8676 (0.0030) 0.8083 (0.0042) 0.2532 (0.0052)




Demo

Live Demo of Sentiment Analysis
nttp://nlp.stanford.edu:8080/sentiment/rntn

Demo.html
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http://nlp.stanford.edu:8080/sentiment/rntnDemo.html

Bidirectional (Lexicalized) Tree LSTM

Bidirectional Tree-Structured LSTM with Head Lexicalization

Zhiyang Teng and Yue Zhang
Singapore University of Technology and Design
zhiyang_teng@mymail.sutd.edu.sg
yue_zhang@sutd.edu.sg

Method Fine-grained  Binary
RAE (Socher et al., 2013) 43.2 82.4
MV-RNN (Socher et al., 2013) 444 82.9
RNTN (Socher et al., 2013) 457 85.4
DCNN (Blunsom et al., 2014) 48.5 86.8
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8
CNN-non-static (Kim, 2014) 48.0 §7.2
CNN-multichannel (Kim, 2014) 474 88.1
DRNN (Irsoy and Cardie, 2014) 498 86.6
LSTM 46.4 (1.1) 84.9 (0.6)
Bidirectional LSTM 49.1 (1.0) 87.5 (0.5)
2-layer LSTM 46.0 (1.3) 86.3 (0.6)
2-layer Bidirectional LSTM 48.5 (1.0) 87.2 (1.0)
Dependency Tree-LSTM 48.4 (0.4) 85.7 (0.4)
Constituency Tree-LSTM

— randomly initialized vectors 43.9 (0.6) 82.0 (0.5)

— Glove vectors, fixed 49.7 (0.4) 87.5 (0.8)

— Glove vectors, tuned 51.0 (0.5) 88.0 (0.3)
Bidirectional Con-Tree LSTM 53.5 90.3



Conclusions

* Can use neural ideas over parse trees

* Graph CNNs (not discussed) also exists
— Stacking BiLSTM + Graph CNN better than both

e |s it much better?

— remains to be seen



