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Trees

• Sequences are nice.

• But when working with language, we often 
see tree structures.

• An RNN encodes a sequence as a vector.

• We would like to encode a tree as a vector

vector.
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Recursive Neural Nets

Like recurrent nets:

we have shared 

parameters at nodes.

but structure is 

no longer a sequence.
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Stanford Sentiment Treebank



Need for a Sentiment Treebank

• Almost all work on sentiment analysis has used 
mostly word-order independent methods

• But many papers acknowledge that sentiment 
interacts with syntax in complex ways

• Little work has been done on these interactions 
because they’re very difficult to learn

• Single-sentence sentiment classification accuracy 
has languished at ~80% for a long time



Goal of the Sentiment Treebank

• At every level of the parse tree, annotate the 
sentiment of the phrase it subsumes

• Use a 5-class scheme (--, -, 0, +, ++)



Construction of the Sentiment 
Treebank

• For 11,855 sentences, parse and break into 
phrases (215,154 total)

• The sentiment of each phrase is annotated 
with Mechanical Turk



Construction of the Sentiment 
Treebank



Matrix Vector RNN (MV-RNN)

• Each word has both
– An associated vector (it’s meaning)

– An associated matrix (it’s personal composition 
function)

This is a good idea, but in 

practice, it’s way too many 

parameters to learn

If the vectors are d-

dimensional, then every 

word, has (d+1)×d 

parameters.



Recursive Neural Tensor Network 
(RTNN)

• At a high level:
– The composition function 

is a tensor, which means 
expressiveness, with fewer 
parameters to learn

– In the same way that 
similar words have similar 
vectors, this lets similar 
words have similar 
composition behavior





What is this model able to do?

• Learns structures like “X but Y”



What is this model able to do?

• Small changes are able to propagate all the 
way up the tree



What is this model able to do?

• Learns how negation works, including many 
subtleties



Negation Evaluation



Positive and Negative N-grams



Sentiment Analysis Evaluation



LSTM RNN
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LSTM



Child Sum Tree LSTM





Child Sum Tree LSTM

• does not take into account child order

• works with variable number of children

– good for dependency parses

• shares gates weight among children

• Application

– Dependency tree LSTM



N-ary Tree LSTM





N-ary Tree LSTM

• Each node must have at most N children

• Fine-grained control on how information 
propagates

• Forget gate parameterized such that siblings 
can affect the computation

• Application

– Constituency Tree LSTM



Sentiment Treebank Results



SICK Semantic Relatedness Task



Demo

• Live Demo of Sentiment Analysis

• http://nlp.stanford.edu:8080/sentiment/rntn
Demo.html

45

http://nlp.stanford.edu:8080/sentiment/rntnDemo.html


Bidirectional (Lexicalized) Tree LSTM

Bidirectional Con-Tree LSTM                    53.5                 90.3



Conclusions

• Can use neural ideas over parse trees

• Graph CNNs (not discussed) also exists

– Stacking BiLSTM + Graph CNN better than both

• Is it much better?

– remains to be seen


