Constrained Conditional Models

Mausam

Slides by Ming-Wei Chang, Nick Rizzolo, Dan Roth, Dan Jurafsky

Nice to Meet You

ILP & Constraints Conditional Models (CCMs)

- Making global decisions in which several local interdependent decisions play a role.
- Informally:

- Eventthing that has to do with constraints (and learning models)
 Issues to attend to:
 Forr
 - While we formulate the problem as an ILP problem, Inference can be done multiple ways
 - □ Search; sampling; dynamic programming; SAT; ILP
 - The focus is on joint global inference
 - Learning may or may not be joint.
 - Decomposing models is often beneficial

CCMs make predictions in the presence of /guided by constraints

5:

ons

Constraints Driven Learning and Decision Making

Why Constraints?

The Goal: Building a good NLP systems <u>easily</u>

We have prior knowledge at our hand

- How can we use it?
- We suggest that knowledge can often be injected directly

Can use it to guide learning

Can use it to improve decision making

□ Can use it to simplify the models we need to learn

How useful are constraints?

- Useful for supervised learning
- Useful for semi-supervised & other label-lean learning paradigms
- Sometimes more efficient than labeling data directly

Motivation: IE via Hidden Markov Models

Lars Ole Andersen . Program analysis and specialization for the C Programming language. PhD thesis. DIKU , University of Copenhagen, May 1994 .

Prediction result of a trained HMM

[AUTHOR] [TITLE] [EDITOR] [BOOKTITLE] [TECH-REPORT] [INSTITUTION]

<u>[DATE]</u>

Lars Ole Andersen . Program analysis and specialization for the C Programming language . PhD thesis . DIKU , University of Copenhagen , May 1994 .

Unsatisfactory results !

Strategies for Improving the Results

- (Pure) Machine Learning Approaches
 - □ Higher Order HMM/CRF?
 - Increasing the window size?
 - □ Adding a lot of new features
 - Requires a lot of labeled examples
 - □ What if we only have a few labeled examples?

Can we keep the learned model simple and still make expressive decisions?

- Any other options?
 - Humans can <u>immediately</u> detect bad outputs
 - □ The output does not make sense

Increasing the model complexity

Information extraction without Prior Knowledge

Lars Ole Andersen . Program analysis and specialization for the C Programming language. PhD thesis. DIKU , University of Copenhagen, May 1994 .

Prediction result of a trained HMM

[AUTHOR] [TITLE] [EDITOR] [BOOKTITLE] [TECH-REPORT] [INSTITUTION]

<u>[DATE]</u>

Lars Ole Andersen . Program analysis and specialization for the C Programming language . PhD thesis . DIKU , University of Copenhagen , May 1994 .

Violates lots of natural constraints!

Examples of Constraints

- Each field must be a consecutive list of words and can appear at most once in a citation.
 - State transitions must occur on punctuation marks.
 - The citation can only start with <u>AUTHOR</u> or <u>EDITOR</u>.
 - The words pp., pages correspond to <u>PAGE</u>.
 - Four digits starting with 20xx and 19xx are <u>DATE</u>.
 - Quotations can appear only in *TITLE*
 Easy to express pieces of "knowledge"

Non Propositional; May use Quantifiers

Information Extraction with Constraints

Adding constraints, we get correct results!
 Without changing the model

[AUTHOR]
[TITLE]

<u>[TECH-REPORT]</u> <u>[INSTITUTION]</u> <u>[DATE]</u> Lars Ole Andersen . Program analysis and specialization for the C Programming language . PhD thesis . DIKU , University of Copenhagen , May, 1994 .

Constrained Conditional Models Allow:

- Learning a simple model
- Make decisions with a more complex model
- Accomplished by directly incorporating constraints to bias/reranks decisions made by the simpler model

Features Versus Constraints

□ In principle, constraints and features can encode the same propeties

□ In practice, they are very different

Features

□ Local , short distance properties – to allow tractable inference

□ Propositional (grounded):

□ E.g. True if: <u>"the" followed by a Noun occurs in the sentence"</u>

Constraints

□ Global properties

□ Quantified, first order logic expressions

□ E.g.True if: <u>"all y_is in the sequence y are assigned different values."</u>

 $f_{\Phi,C}(\mathbf{x}, \mathbf{y}) = \sum w_i \phi_i(\mathbf{x}, \mathbf{y}) - \sum \rho_i d_{C_i}(\mathbf{x}, \mathbf{y}).$

Indeed, used differently

Encoding Prior Knowledge

- Consider encoding the knowledge that:
 - Entities of type A and B cannot occur simultaneously in a sentence
- The "Feature" Way
 - Results in higher order HMM, CRF
 - May require designing a model tailored to knowledge/constraints
 - Large number of new features: might require more labeled data
 - □ Wastes parameters to learn indirectly knowledge we have.
- The Constraints Way

A form of supervision

- □ Keeps the model simple; add expressive constraints directly
- A small set of constraints
- □ Allows for decision time incorporation of constraints

Need more training data

CCMs are Optimization Problems

- We pose inference as an optimization problem
 - Integer Linear Programming (ILP)

Advantages:

- □ Keep model small; easy to learn
- □ Still allowing expressive, long-range constraints
- Mathematical optimization is well studied
- Exact solution to the inference problem is possible
- Powerful off-the-shelf solvers exist
- Disadvantage:
 - □ The inference problem could be NP-hard

CCM Example

- Many works in NLP make use of constrained conditional models, implicitly or explicitly.
- Next we describe one example in detail.
- Sequence Tagging
 - Adding long range constraints to a simple model

subject to

Solvers

- All applications presented so far used ILP for inference.
- People used different solvers
 - □ Xpress-MP
 - □ GLPK
 - □ Ipsolve
 - 🗆 R

- □ Mosek
- Other search-based algorithms can also be used

Training Constrained Conditional Models

$$\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y) - \sum_{i=1}^{K} \rho_i d(y, 1_{C_i(x)})$$

Learning model

- □ Independently of the constraints (L+I)
- □ Jointly, in the presence of the constraints (IBT)
- Decomposed to simpler models

Learning constraints' penalties

- Independently of learning the model
- Jointly, along with learning the model
- Dealing with lack of supervision
 - Constraints Driven Semi-Supervised learning (CODL)
 - □ Indirect Supervision
- Learning Constrained Latent Representations

Soft Constraints

$$-\sum_{i\,=\,1}^{K} \rho_{k} d(y, 1_{C_{i}(x)})$$

Hard Versus Soft Constraints

- $\Box\,$ Hard constraints: Fixed Penalty $\,\,\rho_{\,i}\,=\,\,\infty\,$
- □ Soft constraints: Need to set the penalty

Why soft constraints?

- Constraints might be violated by gold data
- Some constraint violations are more serious
- An example can violate a constraint multiple times!
- Degree of violation is only meaningful when constraints are soft!

Examples of Constraints

- Each field must be a consecutive list of words and can appear at most once in a citation.
- State transitions must occur on punctuation marks.
- The citation can only start with <u>AUTHOR</u> or <u>EDITOR</u>.
- The words pp., pages correspond to <u>PAGE</u>.
- Four digits starting with 20xx and 19xx are <u>DATE</u>.
- Quotations can appear only in <u>TITLE</u>

Degree of Violations

One way: Count how many times the assignment y violated the constraint

$$d(y, 1_{C(x)}) = \sum_{j=1}^{T} \phi_{C}(y_{j})$$

 $\phi_{\,C} \;(\,y_{\,j}\,) \;=\;$

1 - if assigning y_i to x_i violates the constraint C with respect to assignment $(x_1, ..., x_{i-1}; y_1, ..., y_{i-1})$

0 - otherwise

State transition must occur on punctuations.

$$\forall i, y_{i-1} \neq y_i \Longrightarrow x_{i-1}$$
 is a punctuation

		Andersen	Ole	Lars
$\sum \Phi_c(y_j)$	EDITOR	EDITOR	BOOK	AUTH
	$\Phi_c(y_4) = 0$	$\Phi_{c}(y_{3})=1$	$\Phi_{c}(y_{2})=1$	$\Phi_{c}(y_{1})=0$

=2

Strategy: Independently of learning the model

Model: (First order) Hidden Markov Model $P_{\theta}(x, y)$

Constraints: long distance constraints

- \Box The i-th the constraint: C_i
- \Box The probability that the i-th constraint is violated $P(C_i = 1)$

The learning problem

- □ Given labeled data, estimate θ and $P(C_i = 1)$
- □ For one labeled example,

SCORE(x, y) = HMM Probability × Constraint Violation Score

□ Training: Maximize the score of all labeled examples!

 $\Omega(\mathbf{x}^{j}, \mathbf{y}^{j}) = \text{HMM}$ Probability × Constraint Violation Score

$$= P_{\Theta}(\mathbf{x}^{j}, \mathbf{y}^{j}) \prod_{k=1}^{m} \prod_{i=1}^{T_{j}} P(C_{k} = 1)^{c_{k,i}^{j}} P(C_{k} = 0)^{1-c_{k,i}^{j}},$$

where Θ are the parameters of the HMM, T_j represents the number of tokens in the sentence \mathbf{x}^j , $c_{k,i}^j$ is a binary variable equal to 1 if the label assignment to y_i^j violates the constraint C_k with respect to partial assignment $\mathbf{y}_{[1...i-1]}^j$, and $C_k = 1$ indicates the event that the constraint C_k is violated.

$$\log \Omega \left(\mathbf{x}^{j}, \mathbf{y}^{j} \right) \equiv \hat{f}_{w,\rho} \left(\mathbf{x}^{j}, \mathbf{y}^{j} \right)$$
$$= \mathbf{w}^{T} \Phi \left(\mathbf{x}^{j}, \mathbf{y}^{j} \right) + \sum_{k=1}^{m} \log \frac{P(C_{k} = 1)}{P(C_{k} = 0)} \sum_{i}^{T_{j}} c_{k,i}^{j} + c$$
$$= \mathbf{w}^{T} \Phi \left(\mathbf{x}^{j}, \mathbf{y}^{j} \right) - \sum_{k=1}^{m} \rho_{k} d_{C_{k}} \left(\mathbf{x}^{j}, \mathbf{y}^{j} \right) + c,$$

where $\rho_k = -\log \frac{P(C_k=1)}{P(C_k=0)}, \ d_{C_k}(\mathbf{x}^j, \mathbf{y}^j) = \sum_{i}^{T_j} c_{k,i}^j$

Strategy: Independently of learning the model (cont.)

SCORE(x, y) = HMM Probability × Constraint Violation Score

- The new score function is a CCM!
 - $\Box \text{ Setting } \rho_i = -\log \frac{P(C_i = 1)}{P(C_i = 0)}$
 - New score:

$$\log \, \mathrm{S}\,\mathrm{c}\,\mathrm{o}\,\mathrm{r}\,\mathrm{e}\,(\,x\,,\,y\,) \;=\; \lambda \;\cdot\, F\,(\,x\,,\,y\,) \;-\; \sum_{i\,=\,1}^{K}\,\rho_{\,i}\,d\,(\,y\,,\,\mathbf{1}_{\,C_{\,i}\,(\,x\,)}\,) \;+\; c$$

- Maximize this new scoring function on labeled data
 - □ Learn a HMM separately
 - □ Estimate $P(C_i = 1)$ separately by counting how many times the constraint is violated by the training data!
- A formal justification for optimizing the model and the penalty weights separately!

Summary

- Constrained Conditional Models: Computational Framework for global inference and a vehicle for incorporating knowledge
- Direct supervision for structured NLP tasks is **expensive**
- Indirect supervision is cheap and easy to obtain
- Constrained Conditional Models combine
 - Learning conditional models with using declarative expressive constraints
 - Within a constrained optimization framework
- diverse usage CCMs have already found in NLP
 Significant success on several NLP and IE tasks (often, with ILP)