Sequence Labeling I POS Tagging with Hidden Markov Models

Mausam

(Slides based on Michael Collins, Dan Klein, Chris Manning, Dan Jurafsky, Heng Ji, Luke Zettlemoyer, Alex Simma, Erik Sudderth, David Fernandez-Baca, Drena Dobbs, Serafim Batzoglou, William Cohen, Andrew McCallum, Dan Weld)

1

Sequence problems

- Many problems in NLP have data which is a sequence of characters, words, phrases, lines, or sentences ...
- We can think of our task as one of labeling each item

Word segmentation

Example: Speech Recognition

- Given an audio waveform, would like to robustly extract & recognize any spoken words
- Observations

 accoustics
- Labels
 - words

POS Tagging

DTNNPNNVBDVBNRPNNNNSThe Georgia branch had taken on loan commitments ...

DT NN IN NN VBD NNS VBD The average of interbank offered rates plummeted ...

- Observations
 - Sentence
- Tagging
 - POS for each word

What is Part-of-Speech (POS)

- Generally speaking, Word Classes (=POS) :
 Verb, Noun, Adjective, Adverb, Article, ...
- We can also include inflection:
 - Verbs: Tense, number, ...

- . . .

- Nouns: Number, proper/common, ...
- Adjectives: comparative, superlative, ...
- Lots of debate within linguistics about the number, nature, and universality of these
 - We'll completely ignore this debate.

Penn TreeBank POS Tag Set

- Penn Treebank: hand-annotated corpus of *Wall Street Journal*, 1M words
- 45 tags
- Some particularities:
 - to /TO not disambiguated
 - Auxiliaries and verbs not distinguished

Penn Treebank Tagset

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	دد	Left quote	' or ''
POS	Possessive ending	's	• • •	Right quote	' or "
PRP	Personal pronoun	I, you, he	(Left parenthesis	$[, (, \{, <$
PRP\$	Possessive pronoun	your, one's)	Right parenthesis],), $\}, >$
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	.!?
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	:;
RP	Particle	up, off			

Figure 5.6 Penn Treebank part-of-speech tags (including punctuation).

Open class (lexical) words	;			
Nouns		Verbs	Adjectives old older oldest		
Proper Common		Main	Adverbs <i>slowly</i>		
IBM Italy	cat / cats snow	see registered	Numbers 122,312	r	nore
Closed class (functional)		Modals	one		
Determiners the some		can	Prepositions to with		
Conjunction	ns and or	had	Particles	off up	<i>more</i>
Pronouns	he its		Interjection	s Ow Eh	

Open vs. Closed classes

- Open vs. Closed classes
 - Closed:
 - determiners: *a, an, the*
 - pronouns: *she, he, I*
 - prepositions: *on, under, over, near, by, ...*
 - Usually function words (short common words which play a role in grammar)
 - Why "closed"?
 - Open:
 - Nouns, Verbs, Adjectives, Adverbs.

Open Class Words

- Nouns
 - Proper nouns (Boulder, Granby, Eli Manning)
 - English capitalizes these.
 - Common nouns (the rest).
 - Count nouns and mass nouns
 - Count: have plurals, get counted: goat/goats, one goat, two goats
 - Mass: don't get counted (snow, salt, communism) (*two snows)
- Adverbs: tend to modify verbs
 - Unfortunately, John walked home extremely slowly yesterday
 - Directional/locative adverbs (here,home, downhill)
 - Degree adverbs (extremely, very, somewhat)
 - Manner adverbs (slowly, slinkily, delicately)
- Verbs
 - In English, have morphological affixes (eat/eats/eaten)

Closed Class Words

Examples:

- prepositions: on, under, over, ...
- particles: up, down, on, off, ...
- determiners: a, an, the, ...
- pronouns: *she, who, I, ..*
- conjunctions: and, but, or, ...
- auxiliary verbs: has, been, do, ...
- numerals: *one, two, three, third, ...*
- modal verbs: can, may, should, ...

Prepositions from CELEX

of	540,085	through	14,964	worth	1,563	pace	12
in	331,235	after	13,670	toward	1,390	nigh	9
for	142,421	between	13,275	plus	750	re	4
to	125,691	under	9,525	till	686	mid	3
with	124,965	per	6,515	amongst	525	o'er	2
on	109,129	among	5,090	via	351	but	0
at	100,169	within	5,030	amid	222	ere	0
by	77,794	towards	4,700	underneath	164	less	0
from	74,843	above	3,056	versus	113	midst	0
about	38,428	near	2,026	amidst	67	o'	0
than	20,210	off	1,695	sans	20	thru	0
over	18,071	past	1,575	circa	14	vice	0

English Particles

aboard	aside	besides	forward(s)	opposite	through
about	astray	between	home	out	throughout
above	away	beyond	in	outside	together
across	back	by	inside	over	under
ahead	before	close	instead	overhead	underneath
alongside	behind	down	near	past	up
apart	below	east, etc.	off	round	within
around	beneath	eastward(s),etc.	on	since	without

Conjunctions

and	514,946	yet	5,040	considering	174	forasmuch as	0
that	134,773	since	4,843	lest	131	however	0
but	96,889	where	3,952	albeit	104	immediately	0
or	76,563	nor	3,078	providing	96	in as far as	0
as	54,608	once	2,826	whereupon	85	in so far as	0
if	53,917	unless	2,205	seeing	63	inasmuch as	0
when	37,975	why	1,333	directly	26	insomuch as	0
because	23,626	now	1,290	ere	12	insomuch that	0
SO	12,933	neither	1,120	notwithstanding	3	like	0
before	10,720	whenever	913	according as	0	neither nor	0
though	10,329	whereas	867	as if	0	now that	0
than	9,511	except	864	as long as	0	only	0
while	8,144	till	686	as though	0	provided that	0
after	7,042	provided	594	both and	0	providing that	0
whether	5,978	whilst	351	but that	0	seeing as	0
for	5,935	suppose	281	but then	0	seeing as how	0
although	5,424	cos	188	but then again	0	seeing that	0
until	5,072	supposing	185	either or	0	without	0

POS Tagging Ambiguity

- Words often have more than one POS: *back*
 - The <u>back</u> door = JJ
 - On my <u>back</u> = NN
 - Win the voters <u>back</u> = RB
 - Promised to \underline{back} the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

- Input: Plays well with others Penn Treebank
- Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS POS tags
- Output: Plays/VBZ well/RB with/IN others/NNS
- Uses:
 - Text-to-speech (how do we pronounce "lead"?)
 - Can write regexps like (Det) Adj* N+ over the output for phrases, etc.
 - An early step in NLP pipeline: output used later
 - If you know the tag, you can back off to it in other tasks

Human Upper Bound

- Deciding on the correct part of speech can be difficult even for people
- Mrs/NNP Shaefer/NNP never/RB got/VBD around/?? to/TO joining/VBG
- All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/?? the/DT corner/NN
- Chateau/NNP Petrus/NNP costs/VBZ around/?? 250/CD

Human Upper Bound

- Deciding on the correct part of speech can be difficult even for people
- Mrs/NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG
- All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN
- Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

Measuring Ambiguity

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous (1 tag)		44,019		38,857	
Ambiguous (2	–7 tags)	5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

How hard is POS tagging?

- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words. E.g., that
 - I know that he is honest = IN
 - Yes, that play was nice = DT
 - You can't go that far = RB
- 40% of the word tokens are ambiguous

POS tagging performance

- How many tags are correct? (Tag accuracy)
 - About 97% currently
 - But baseline is already 90%
 - Baseline is performance of stupidest possible method
 - Tag every word with its most frequent tag
 - Tag unknown words as nouns
 - Partly easy because
 - Many words are unambiguous
 - You get points for them (*the, a,* etc.) and for punctuation marks!

History of POS Tagging

Sources of information

- What are the main sources of information for POS tagging?
 - Knowledge of neighboring words
 - Bill saw that man yesterday
 - NNP NN DT NN NN
 - VB VB(D) IN VB NN
 - Knowledge of word probabilities
 - *man* is rarely used as a verb....
- The latter proves the most useful, but the former also helps

Markov Chain

- Set of states
 - Initial probabilities
 - Transition probabilities

Markov Chain models system dynamics

Markov Chains: Language Models

$$p(x_0, x_1, \dots, x_T) = p(x_0) \prod_{t=1}^T p(x_t \mid x_{t-1})$$

$$p(x_0) \underbrace{x_0}_{p(x_1 \mid x_0)} \underbrace{x_1}_{p(x_2 \mid x_1)} \underbrace{x_2}_{Q'=} p(x_3 \mid x_2) \underbrace{x_3}_{0.3 \quad 0.0 \quad 0.4}_{0.2 \quad 0.9 \quad 0.6}$$

Hidden Markov Model

- Set of states
 - -- Initial probabilities
 - Transition probabilities
- Set of potential observations

 Emission/Observation probabilities

HMM generates observation sequence

 W_2

Wz

W⊿

 W_1

W5

Hidden Markov Models (HMMs)

Graphical Model

HMM

Graphical Model

HMM

Graphical Model

Need Parameters:

Start state probabilities: $P(Y_1=s_k)$ Transition probabilities: $P(Y_1=s_i | Y_{t-1}=s_k)$ Observation probabilities: $P(X_t=w_j | Y_t=s_k)$

Hidden Markov Models for Text Just another graphical model... "Conditioned on the present, the past & future are independent" hidden states y_4 y_3 Observation Distribution Transition Distribution observed W_3 w_2 w_4 vars $P(w, y) = \prod_{t=1}^{T+1} q(y_t \mid y_{t-1}) \prod_{t=1}^{T} e(w_t \mid y_t)$ t=1t=130

HMM Generative Process

 We can easily sample sequences pairs: X1:n,Y1:n

- Sample initial state: <s>
- For i = 1 ... n
 - Sample y_i from the distribution q(y_i|y_{i-1})
 - Sample Xi from the distribution e(wi yi)
- Sample </s> from q(</s>|y_i)

Example: POS Tagging

- Setup:
 - states S = {DT, NNP, NN, ... } are the POS tags
- **Current word**

Neighboring states

- Observations W in V are words
- Transition dist'r Q(yi yi-1) models the tag sequences
- Observation distince(Wi yi) models words given their POS

Subtlety: not dependent on neighboring words directly influence thru neighboring tags.

- Most important task: tagging
 - Decoding: find the most likely tag sequence for words w

$$\arg \max_{y_{1...y_n}} P(y_{1},...,y_{n} | w_{1},...,w_{n})$$

Trigram HMMs

$$P(w, y) = \prod_{t=1}^{T} q(y_t | y_{t-1}) e(w_t | y_t)$$
$$P(w, y) = \prod_{t=1}^{T+1} q(y_t | y_{t-1}, y_{t-2}) \prod_{t=1}^{T} e(w_t | y_t)$$

•
$$y_0 = y_{-1} = \langle s \rangle$$
. $y_{T+1} = \langle s \rangle$

- Parameters
 - q(s|u,v) for s e S U {</s>}, u,v e S U {<s>}

-e(w|s) for $w \in V$ and $s \in S$

Parameter Estimation

Counting & Smoothing

$$q(y_t \mid y_{t-1}, y_{t-2}) = \lambda_1 \frac{c(y_{t-2}, y_{t-1}, y_t)}{c(y_{t-2}, y_{t-1})} + \lambda_2 \frac{c(y_{t-1}, y_t)}{c(y_{t-1})} + \lambda_3 \frac{c(y_t)}{N}$$
$$\sum_i \lambda_i = 1$$
$$e(w_t \mid y_t) = \frac{c(w_t, y_t)}{c(y_t)}$$
Bad idea: zeros!
$$how \text{ to smooth a} a really low freq word?}$$

Low Frequency Words

- Test sentence:
 - Astronaut Sujay M. Kulkarni decided not to leave the tricky spot, manning a tough situation by himself.

- Intuition
 - manning likely a verb. Why?
 - "-ing"
 - Sujay likely a noun. Why?
 - Capitalized in the middle of a sentence

Low Frequency Words Solution

• Split vocabulary into two sets:

– frequent (count >k) and infrequent

- Map low frequency words into a
 - small, finite set
 - using word's orthographic features

Words → Orthographic Features

• (Bikel et al 1999) for NER task

Word Feature	Example Text	Intuition			
twoDigitNum	90	Two-digit year			
fourDigitNum	1990	Four digit year			
containsDigitAndAlpha	A8956-67	Product code			
containsDigitAndDash	09-96	Date			
containsDigitAndSlash	11/9/89	Date			
containsDigitAndComma	23,000.00	Monetary amount			
containsDigitAndPeriod	1.00	Monetary amount, percentage			
otherNum	456789	Other number			
allCaps	BBN	Organization			
capPeriod	M.	Person name initial			
firstWord	first word of	No useful capitalization			
	sentence	inform ation			
initCap	Sally	Capitalized word			
lowerCase	can	Uncapitalized word			
other	,	Punctuation marks, all other words			

• Features computed in order.

- Training data
 - Astronaut/NN Sujay/NNP M./NNP Kulkarni/NNP decided/VBD not/RB to/TO leave/VB the/DT tricky/JJ spot/NN ,/, manning/VBG a/DT tough/JJ situation/NN by/IN himself/PRP .
 - firstword/NN initCap/NNP capPeriod/NNP initCap/NNP decided/VBD not/RB to/TO leave/VB the/DT tricky/JJ spot/NN ,/, endinING/VBG a/DT tough/JJ situation/NN by/IN himself/PRP.

HMM Inference

Decoding: most likely sequence of hidden states
 – Viterbi algorithm

Evaluation: prob. of observing an obs. sequence
 – Forward Algorithm (very similar to Viterbi)

Marginal distribution: prob. of a particular state
 – Forward-Backward

Decoding Problem

Given $w=w_1 \dots w_T$ and HMM θ , what is "best" parse $y_1 \dots y_T$?

Several possible meanings of 'solution'

- 1. States which are individually most likely
- 2. Single best state sequence

We want **sequence** $y_1 \dots y_T$, such that P(y | w) is maximized

 $y^* = argmax_v P(y|w)$

Most Likely Sequence

- Problem: find the most likely (Viterbi) sequence under the model
- Given model parameters, we can score any sequence pair

 NNP
 VBZ
 NN
 NNS
 CD
 NN
 .

 Fed
 raises
 interest
 rates
 0.5
 percent
 .

 P(Y1:T+1,W1:T) = q(NNP|<s>,<s>) q(Fed|NNP) P(VBZ|<s>,NNP) P(raises|VBZ)
 P(NN|NNP,VBZ).....
 Image: constraints
 Image: constraits
 Image: const

 In principle, we're done – list all possible tag sequences, score each one, pick the best one (the Viterbi state sequence)

NNP VBZ NN NNS CD NNIogP = -23per sequenceNNP NNS NN NNS CD NNIogP = -29NNP VBZ VB NNS CD NNIogP = -27

2T+1 operations

|Y|[⊤] tag seguences!

Finding the Best Trajectory

- Brute Force: Too many trajectories (state sequences) to list
- Option 1: Beam Search

- A beam is a set of partial hypotheses
- Start with just the single empty trajectory
- At each derivation step:
 - Consider all continuations of previous hypotheses
 - Discard most, keep top k
- Beam search works ok in practice
 - ... but sometimes you want the optimal answer
 - ... and there's often a better option than naïve beams

State Lattice / Trellis (Bigram HMM)

State Lattice / Trellis (Bigram HMM)

Dynamic Programming (Bigram)

- Decoding: $y^* = \arg \max_{\substack{g \\ y \\ y}} P(y \mid w) = \arg \max_{\substack{g \\ y \\ t=1}} P(w, y)$ $= \arg \max_{\substack{g \\ y \\ t=1}} \prod_{t=1}^{T+1} q(y_t \mid y_{t-1}) \prod_{t=1}^{T} e(w_t \mid y_t)$
- First consider how to compute max
- Define $\delta_i(y_i) = \max_{y_{[1:i-1]}} P(y_{[1..i]}, w_{[1..i]})$
 - probability of *most likely* state sequence ending with tag
 y_i, given observations w₁, ..., w_i

$$\begin{split} \delta_{i}(y_{i}) &= \max_{y_{1}:i-1} e(w_{i} \mid y_{i}) q(y_{i} \mid y_{i-1}) P(y_{1..i-1}, w_{1..i-1}) \\ &= e(w_{i} \mid y_{i}) \max_{y_{i-1}} q(y_{i} \mid y_{i-1}) \max_{y_{1}:i-2} P(y_{1..i-1}, w_{1..i-1}) \\ &= e(w_{i} \mid y_{i}) \max_{y_{i-1}} q(y_{i} \mid y_{i-1}) \delta_{i-1}(y_{i-1}) \\ &= e(w_{i} \mid y_{i}) \max_{y_{i-1}} q(y_{i} \mid y_{i-1}) \delta_{i-1}(y_{i-1}) \end{split}$$

Viterbi Algorithm for Bigram HMMs

- Input: w₁,...,w_T, model parameters q() and e()
- Initialize: $\delta_0(\langle s \rangle) = 1$
- For k=1 to T do

- For (y') in all possible tagset

$$\delta_i(\mathbf{y}') = e(w_i \mid \mathbf{y}') \max_{\mathbf{y}} q(\mathbf{y}' \mid \mathbf{y}) \delta_{i-1}(\mathbf{y})$$

Return

$$\max_{\mathbf{y}'} q(\langle s \rangle | \mathbf{y}') \delta_T(\mathbf{y}')$$

returns only the optimal value keep backpointers

Viterbi Algorithm for Bigram HMMs

- Input: w₁,...,w_T, model parameters q() and e()
- Initialize: $\delta_0(\langle s \rangle, \langle s \rangle) = 1$
- For k=1 to T do

- For (y') in all possible tagset

$$\delta_i(y') = e(w_i \mid y') \max_{y} q(y' \mid y) \delta_{i-1}(y)$$
$$bp_i(y') = e(w_i \mid y') \arg\max q(y' \mid y) \delta_{i-1}(y)$$

- Set $y_T = \operatorname{arg\,max} q(\langle s \rangle | y') \delta_T(y')$
- For k=T-1 to 1 do

- Set
$$y_k = bp_k(y_{k+1})$$

• Return y[1..T]

Time: O(|Y|²T) Space: O(|Y|T)

Viterbi Algorithm for Bigram HMMs

Remember: $\overline{\mathbf{\delta}}_{i}(y)$ = probability of most likely tag seq ending with y at time i

How did we compute δ^* ? Max_{s'} $\delta_{T-1}(y') * P_{trans} * P_{obs}$

Time: $O(|Y|^2T)$ Space: O(|Y|T)

Now Backchain to Find Final Sequence

Linear in length of sequence

Fish sleep.

Example: Bigram HMM

Data

- A two-word language: "fish" and "sleep"
- Suppose in our training corpus,
 - "fish" appears 8 times as a noun and 5 times as a verb
 - "sleep" appears twice as a noun and 5 times as a verb
- Emission probabilities:
 - Noun
 - P(fish | noun) : 0.8
 - P(sleep | noun) : 0.2
 - Verb
 - P(fish | verb) : 0.5
 - P(sleep | verb) : 0.5

Viterbi Probabilities

- 0 1 2 3
- start 1
- verb 0
- noun 0
- end 0

State Lattice / Trellis (Trigram HMM)

Dynamic Programming (Trigram)

- Decoding: $y^* = \arg \max_{g} P(y \mid w) = \arg \max_{g} P(w, y)$ = $\arg \max_{g} \prod_{t=1}^{T+1} q(y_t \mid y_{t-1}, y_{t-2}) \prod_{t=1}^{T} e(w_t \mid y_t)$
- First consider how to compute max
- Define $\delta_i(y_{i-1}, y_i) = \max_{y_{[1:i-2]}} P(y_{[1.i]}, w_{[1.i]})$ - probability of *most likely* state sequence ending with tags y_{i-1}, y_i , given observations $w_1, ..., w_i$ $\delta_i(y_{i-1}, y_i) = \max_{y_{[1:i-2]}} e(w_i \mid y_i) q(y_i \mid y_{i-2}, y_{i-1}) P(y_{[1.i-1]}, w_{[1.i-1]})$ $= e(w_i \mid y_i) \max_{y_{i-2}} q(y_i \mid y_{i-2}, y_{i-1}) \max_{y_{[1:i-3]}} P(y_{[1.i-1]}, w_{[1.i-1]})$ $= e(w_i \mid y_i) \max_{y_{i-2}} q(y_i \mid y_{i-2}, y_{i-1}) \delta_{i-1}(y_{i-2}, y_{i-1})$ $= e(w_i \mid y_i) \max_{y_{i-2}} q(y_i \mid y_{i-2}, y_{i-1}) \delta_{i-1}(y_{i-2}, y_{i-1})$

Viterbi Algorithm for Trigram HMMs

- Input: w₁,...,w_T, model parameters q() and e()
- Initialize: $\delta_0(\langle s \rangle, \langle s \rangle) = 1$
- For k=1 to T do

- For (y',y'') in all possible tagset

 $\delta_i(y', y'') = e(w_i \mid y'') \max_{y} q(y'' \mid y, y') \delta_{i-1}(y, y')$

• Return

$$\max_{y',y''} q(|y',y'')\delta_T(y',y'')$$

returns only the optimal value keep backpointers

Viterbi Algorithm for Trigram HMMs

- Input: w₁,...,w_T, model parameters q() and e()
- Initialize: $\delta_0(\langle s \rangle, \langle s \rangle) = 1$
- For k=1 to T do

- For (y',y'') in all possible tagset

 $\delta_i(y', y'') = e(w_i | y'') \max_{y} q(y'' | y, y') \delta_{i-1}(y, y')$ $bp_i(y', y'') = e(w_i | y'') \arg\max_{y} q(y'' | y, y') \delta_{i-1}(y, y')$

- Set $y_{T-1}, y_T = \operatorname*{arg\,max}_{y',y''} q(</s>|y',y'') \delta_T(y',y'')$
- For k=T-2 to 1 do

- Set
$$y_k = bp_k(y_{k+1}, y_{k+2})$$

• Return y[1..T]

Time: O(|Y|³T) Space: O(|Y|²T)

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:

- Trigram HMM:

~95% / ~55%

~90% (~50%)

Most errors on unknown words

- TnT (Brants, 2000):
 - A carefully smoothed trigram tagger
 - Suffix trees for emissions
 - 96.7% on WSJ text

Common Errors

• Common errors [from Toutanova & Manning 00]

	JJ	NN	NNP	NNPS	RB	RP	IN	VB	VBD	VBN	VBP	Total]
JJ	0	177	56	0	61	2	5	10	15	108	0	488	
NN	(244)	0	103	0	12	1	1	29	5	6	19	525	
NNP	107	106	0	132	5	0	7	5	1	2	0	427	
NNPS	1	0	110	0	0	0	0	0	0	0	0	142	
RB	72	21	7	0	0	16	138	1	0	0	0	295	
RP	0	0	0	0	39	0	65	0	0	0	0	104	
IN	11	0	1	0	(169)	103	0	1	0	0	0	323	
VB	17	64	9	0	2	0	1	0	4	7	85	189	
VBD	10	5	3	0	0	0	0	3	0	143	2	166	
VBN	101	3	3	0	0	0	0	3	108	Q	1	221	
VBP	5	34	3	1	1	0	2	49	6	3	0	104	
Total	626	536	348	144	317	122	279	102	140	269	108	3651	
N/JJ	NN			VBD	RP/	N D1	Γ NN			RB	VBD/	VBN	NNS
icial kno	owled	ge		mad	e up	the	stor	y	r	ecentl	y sol	ld sh	ares

Issues with HMMs for POS Tagging

- Slow for long sentences
- Only one feature for less frequent words
- No features for frequent words

Why not try a feature rich classifier?
 MaxEnt?

Feature-based tagger

- Can do surprisingly well just looking at a word by itself:
 - Word the: the \rightarrow DT
 - Lowercased word Importantly: importantly \rightarrow RB
 - Prefixes unfathomable: un- \rightarrow JJ
 - Suffixes Importantly: $-Iy \rightarrow RB$
 - Capitalization Meridian: $CAP \rightarrow NNP$
 - Word shapes 35-year: $d-x \rightarrow JJ$
- Then build a maxent (or whatever) model to predict tag
 Maxent P(y|w): 93.7% overall / 82.6% unknown

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - Maxent P(t|w):
 - TnT (HMM++):

- ~90% / ~50%
- ~95% / ~55%
- 93.7% / 82.6%
- 96.2% / 86.0%

How to improve supervised results?

• Build better features!

RB PRP VBD IN RB IN PRP VBD . They left as soon as he arrived .

- We could fix this with a feature that looked at the next word

JJ NNP NNS VBD VBN . Intrinsic flaws remained undetected .

- We could fix this by linking capitalized words to their lowercase versions

Tagging Without Sequence Information

Using words only in a straight classifier works as well as a basic sequence model!!

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - Maxent P(y|w):
 - TnT (HMM++):

- ~90% / ~50%
- ~95% / ~55%
- 93.7% / 82.6%
- 96.2% / 86.0%
- Maxent (local nbrs): 96.8% / 86.8%

Discriminative Sequence Taggers

- Maxent P(y|w) is too local
 - completely ignores sequence labeling problem
 - and predicts independently
- Discriminative Sequence Taggers
 - Feature rich
 - neighboring labels can guide tagging process
 - Example: Max Entropy Markov Models (MEMM), Linear Perceptron

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - Maxent P(y|w):
 - TnT (HMM++):
 - Maxent (local nbrs): 96.8% / 86.8%
 - MEMMs:

96.9% / 86.9%

96.7% / ??

- Linear Perceptron:
- Upper bound: ~98%

- ~90% / ~50%
- ~95% / ~55%
- 93.7% / 82.6%
- 96.2% / 86.0%

Cyclic Network _π

 t_2

 w_2

 t_1

 w_1

[Toutanova et al 03]

 t_n

 w_n

- Train two MEMMs, multiple together to score
- And be very careful
 - Tune regularization
 - Try lots of different features
 - See paper for full detail

(a) Left-to-Right CMM

 w_3

 t_3

(b) Right-to-Left CMM

(c) Bidirectional Dependency Network

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - Maxent P(y|w):
 - TnT (HMM++):
 - Maxent (local nbrs): 96.8% / 86.8%
 - MEMMs:
 - Linear Perceptron:
 - Cyclic tagger:

- ~90% / ~50%
- ~95% / ~55%
- 93.7% / 82.6%
- 96.2% / 86.0%
- 96.9% / 86.9%
- n: 96.7% / ??
 - 97.2% / 89.0%
- Upper bound: ~98%

- Roadmap of (known / unknown) accuracies:
 - Most freq tag:
 - Trigram HMM:
 - Maxent P(y|w):
 - TnT (HMM++):
 - Maxent (local nbrs): 96.8% / 86.8%
 - MEMMs:
 - Linear Perceptron:
 - Cyclic tagger:
 - Maxent+Ext ambig.
 - Upper bound:

- ~90% / ~50%
- ~95% / ~55%
- 93.7% / 82.6%
- 96.2% / 86.0%
- 96.8% / 86.8% 96.9% / 86.9%
- 96.7% / ??
 - 97.2% / 89.0%
 - 97.4% / 91.3%
 - ~98%

Summary of POS Tagging

- For tagging, the change from generative to discriminative model **does not by itself** result in great improvement
- One profits from models for specifying dependence on **overlapping features of the observation** such as spelling, suffix analysis, etc.
- An MEMM allows integration of rich features of the observations, but can suffer strongly from assuming independence from following observations; this effect can be relieved by adding dependence on following words
- This additional power (of the MEMM ,CRF, Perceptron models) has been shown to result in improvements in accuracy
- The **higher accuracy** of discriminative models comes at the price of **much slower training**

Simple MaxEnt models perform close to state of the art What does it say about the sequence labeling task?

Domain Effects

- Accuracies degrade outside of domain
 - Up to triple error rate
 - Usually make the most errors on the things you care about in the domain (e.g. protein names)
- Open questions
 - How to effectively exploit unlabeled data from a new domain (what could we gain?)
 - How to best incorporate domain lexica in a principled way (e.g. UMLS specialist lexicon, ontologies)