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Dealing with Sequences

• For an input sequence x1,...,xn, we can:

• If n is fixed: concatenate and feed into an MLP.

• sum the vectors (CBOW) and feed into an MLP.

• Break the sequence into windows. Find n-gram 

embedding, sum into an MLP.

• Find good ngrams using ConvNet, using pooling

(either sum/avg or max) to combine to a single 

vector.



Dealing with Sequences

• For an input sequence x1,...,xn, we can:

• If n is fixed: concatenate and feed into an MLP.

• sum the vectors (CBOW) and feed into an MLP.

• Break the sequence into windows (i.e., for tagging). 

Each window is fixed size, concatenate into an MLP.

• Find good ngrams using ConvNet, using pooling

(either sum/avg or max) to combine to a single 

vector.

Some of these approaches consider local word 

order (which ones?).

How can we consider global word order?



Recurrent Neural Networks

• Very strong models of sequential data.

• Trainable function from n vectors to a single vector.

v(what) v(is) v(your) v(name) enc(what is your name)



Recurrent Neural Networks

• There are different variants (implementations).

• So far, we focused on the interface level.
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*this one is internal. we only care about the y

• Very strong models of sequential data.

• Trainable function from n vectors to a single* vector.
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can unroll the recursion.



Recurrent Neural Networks

for every finite input sequence,

can unroll the recursion.

An unrolled RNN is just a very deep Feed Forward Network

with shared parameters across the layers, 

and a new input at each layer.



Recurrent Neural Networks



Recurrent Neural Networks

trained parameters.

• But we can train them.
define function form

define loss



Recurrent Neural Networks

for Text Classification



(what are the parameters?)

CBOW as an RNN



(what are the parameters?)
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CBOW as an RNN

Is this a good parameterization?



CBOW as an RNN

how about this modification?



Simple RNN (Elman RNN)



Simple RNN (Elman RNN)

• Looks very simple.

• Theoretically very powerful.

• In practice not so much (hard to train).

• Why? Vanishing gradients.



Simple RNN (Elman RNN)

• RNN as a "computer": 

input xi arrives, memory s is updated.

• In the Elman RNN, entire memory is written at 

each time-step.

Another view on behavior:



LSTM RNN

better controlled memory access



continuous gates



Differentiable "Gates"

• The main idea behind the LSTM is that you want to 

somehow control the "memory access".

• In a SimpleRNN: 

• All the memory gets overwritten

read previous state memory write new input



Vector "Gates"

• We'd like to:

* Selectively read from some memory "cells".

* Selectively write to some memory "cells".

• A gate function:

vector of valuesgate controls access

(element-wise multiplication)
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• We'd like to:

* Selectively read from some memory "cells".

* Selectively write to some memory "cells".

• A gate function:

vector of values gate controls access
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which cells to read which cells to write



Vector "Gates"

• Using the gate function to control access:

• (can also tie them:                     )     

which cells to read which cells to write



Vector "Gates"



• Problem with the gates:

* they are fixed.

* they don't depend on the input or the output.

• Solution: make them smooth, input dependent, and 

trainable.

Differentiable "Gates"

"almost 0"

or

"almost 1"

function of input and state
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• The LSTM is a specific combination of gates.
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(Long short-term Memory)
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• The LSTM is a specific combination of gates.

LSTM 
(Long short-term Memory)



• The GRU is a different combination of gates.

GRU
(Gated Recurrent Unit)



• The GRU and the LSTM are very similar ideas.

• Invented independently of the LSTM, almost two 

decades later.

GRU vs LSTM



GRU
(Gated Recurrent Unit)

• The GRU formulation:
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• The GRU formulation.

GRU
(Gated Recurrent Unit)



• Many other variants exist.

• Mostly perform similarly to each other.

• Different tasks may work better with different 

variants.

• The important idea is the differentiable gates.

Other Variants



• The LSTM is formulation:
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• The LSTM is formulation:

LSTM 
(Long short-term Memory)



• The LSTM is formulation:

Recurrent Additive Networks



Bidirectional LSTMs





Infinite window around the word



Deep LSTMs



Deep Bi-LSTMs



• The gated architecture also helps the vanishing 

gradients problems.

• For a good explanation, see Kyunghyun Cho's 

notes:

http://arxiv.org/abs/1511.07916 sections 4.2, 4.3

• Chris Olah's blog post

Read More

http://arxiv.org/abs/1511.07916


Hierarchical RNN for Doc 

Classification

Tang et al 15


