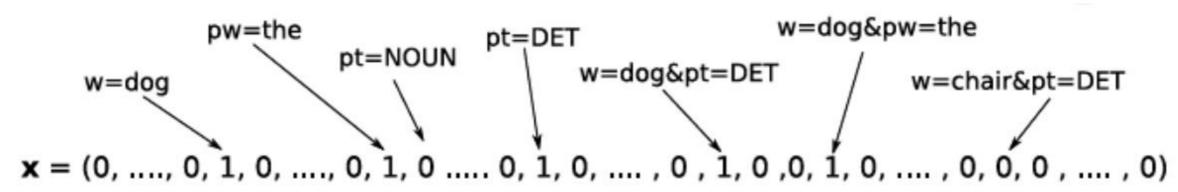
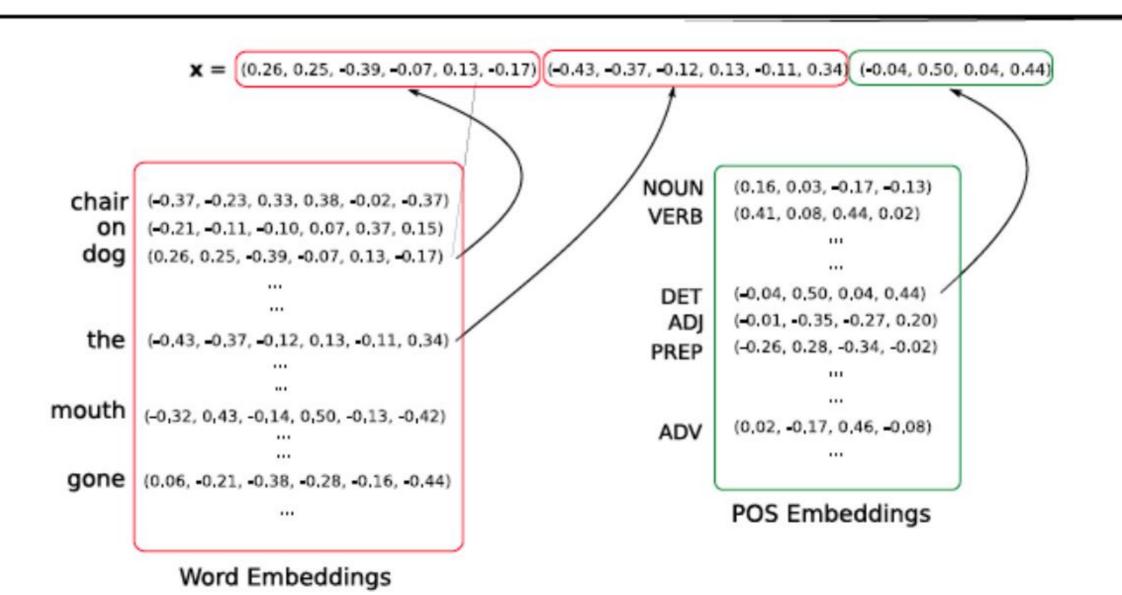
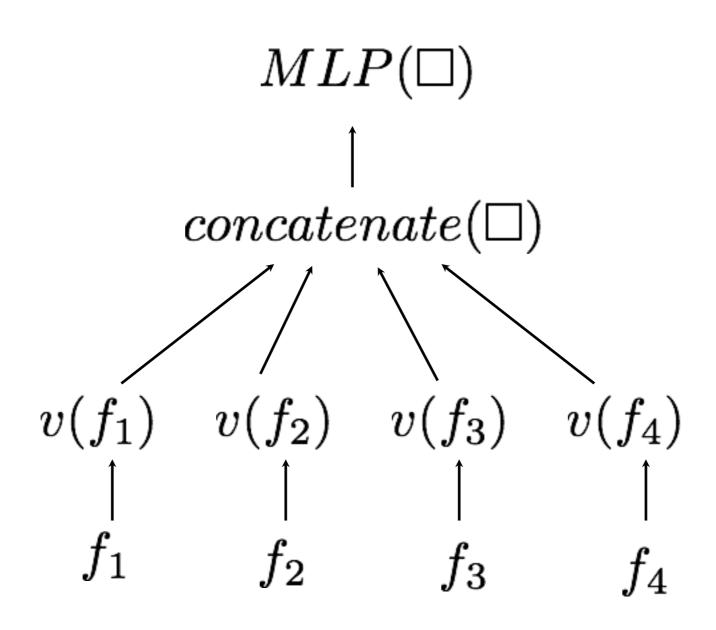
Variable Length Sequences N-gram features Convolutional Networks

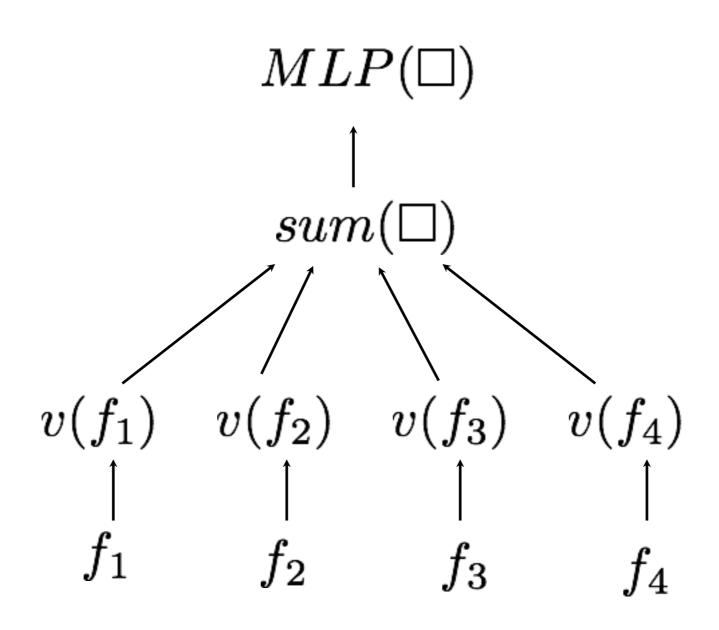
Yoav Goldberg

- Each feature is assigned a vector.
- The input is a combination of feature vectors.
- The feature vectors are parameters of the model and are trained jointly with the rest of the network.
- Representation Learning: similar features will receive similar vectors.









Concat vs. Sum

Concatenating feature vectors: the "roles" of each vector is retained.

$$concat\left(v("the"),v("thirsty"),v("dog")
ight)$$
 prev current next word word word

- Different features can have vectors of different dim.
- Fixed number of features in each example (need to feed into a fixed dim layer).

Concat vs. Sum

Summing feature vectors: "bag of features"

$$sum\left(v("the"),v("thirsty"),v("dog")
ight)$$
 word word word

- Different feature vectors should have same dim.
- Can encode arbitrary number of features.

Concat vs. Sum

Summing feature vectors: "bag of features"

$$sum\left(v("the"),v("thirsty"),v("dog")
ight)$$
 word word word

- Different feature vectors should have same dim.
- · Can encode arbitrary number of features.

Continuous Bag of Words (CBOW)

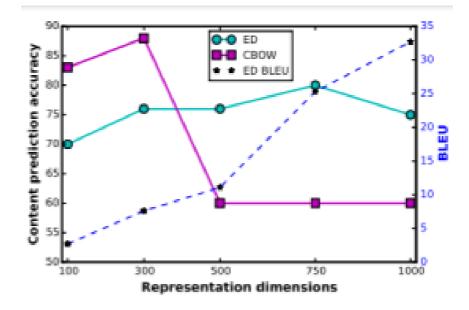
$$CBOW(f_1, ..., f_k) = \frac{1}{k} \sum_{i=1}^{k} v(f_i)$$

- a popular choice in document classification.
- can assign a different weight to each feature:

$$WCBOW(f_1, ..., f_k) = \frac{1}{\sum_{i=1}^k a_i} \sum_{i=1}^k a_i v(f_i)$$

$$CBOW(f_1, ..., f_k) = \frac{1}{k} \sum_{i=1}^{k} v(f_i)$$

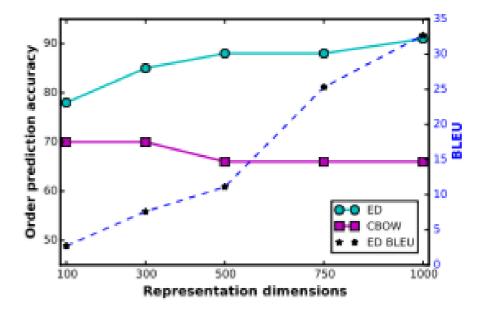
Given CBOW vector and word vector, can we predict if word is in cbow?



FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

$$CBOW(f_1, ..., f_k) = \frac{1}{k} \sum_{i=1}^{k} v(f_i)$$

Given CBOW vector and two word vectors, can we predict which word appeared before the other?



FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

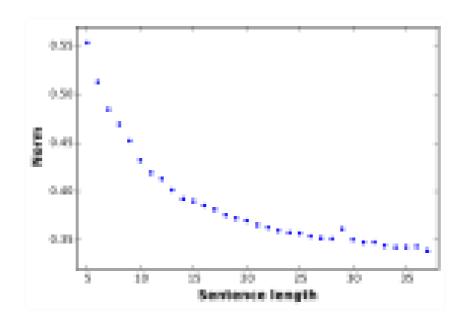
$$CBOW(f_1, ..., f_k) = \frac{1}{k} \sum_{i=1}^{k} v(f_i)$$

Given CBOW vector can we predict sentence length?

FINE-GRAINED ANALYSIS OF SENTENCE
EMBEDDINGS USING AUXILIARY PREDICTION TASKS

$$CBOW(f_1, ..., f_k) = \frac{1}{k} \sum_{i=1}^{k} v(f_i)$$

Given CBOW vector can we predict sentence length?



(b) Average embedding norm vs. sentence length for CBOW with an embedding size of 300. how come?

Deep Unordered Composition Rivals Syntactic Methods for Text Classification

Mohit Iyyer,¹ Varun Manjunatha,¹ Jordan Boyd-Graber,² Hal Daumé III¹

¹University of Maryland, Department of Computer Science and UMIACS

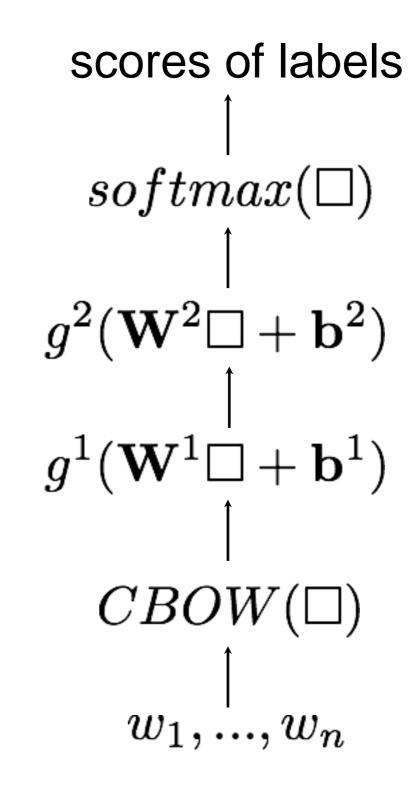
²University of Colorado, Department of Computer Science

{miyyer, varunm, hal}@umiacs.umd.edu, Jordan.Boyd.Graber@colorado.edu

"Document Averaging Networks"

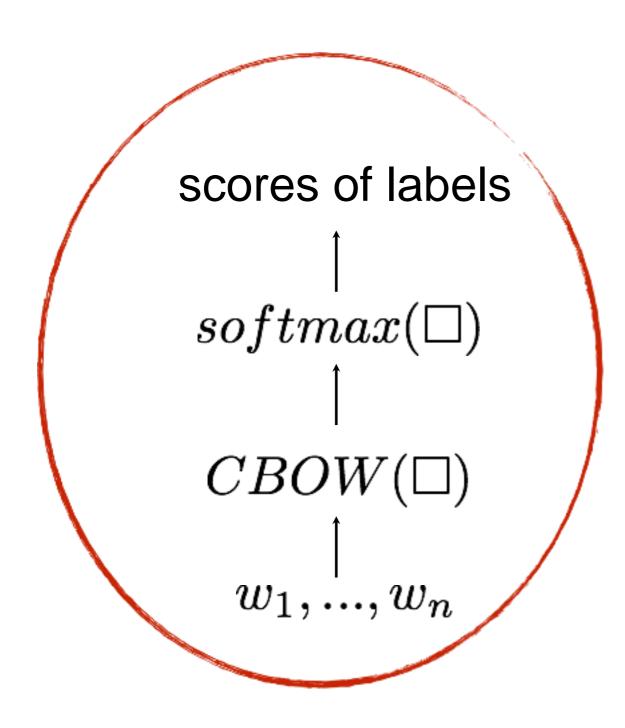
text classification

scores of labels
$$|a|$$
 $softmax(\Box)$ $|a|$ $CBOW(\Box)$ $|a|$ $|a|$ $|a|$ $|a|$ $|a|$ $|a|$



"neural bag of words"

"deep averaging network"



If each feature is bigram, works great.

Moving to unigrams, large drop.

Unigrams + MLP --> better but not like bigrams.

"neural bag of words"

Importance of Ngrams

- While we can ignore global order in many cases...
- … local ordering is still often very important.
- Local sub-sequences encode useful structures.

Importance of Ngrams

- While we can ignore global order in many cases...
- … local ordering is still often very important.
- Local sub-sequences encode useful structures.

(so why not just assign a vector to each ngram?)

ConvNets

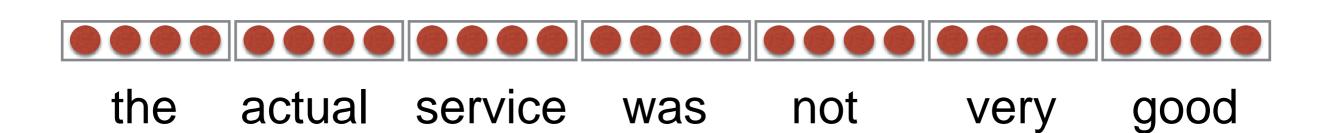
special architecture for local predictors

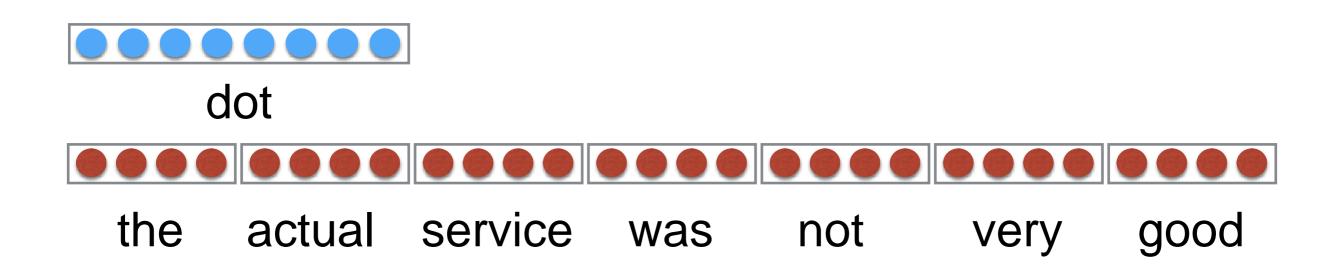
ConvNets

- CBOW allows encoding arbitrary length sequences, but loses all order information.
- Some local order (i.e. bigrams, trigrams) is informative.
 Yet, we do not care about exact position in the sequence. (think "good" vs. "not good")
- ConvNets (in language) allow to identify informative local predictors.
- Works by moving a shared function (feature extractor) over a sliding window, then pooling results.

ConvNets

- ConvNets have huge success in computer vision.
- It allows invariance to object position.
- It allows composing large predictors from small.



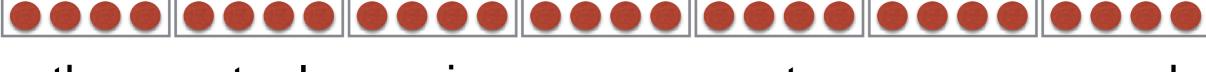


dot
the actual service was not very good

the actual

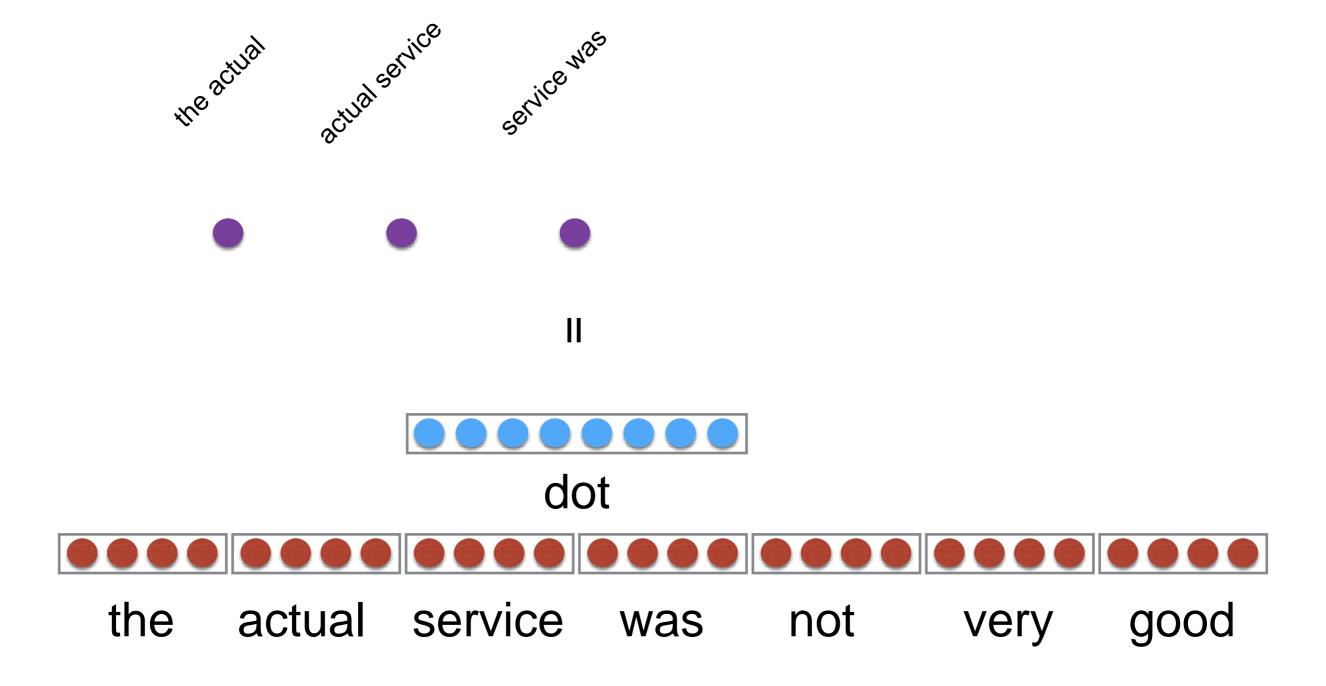
Ш

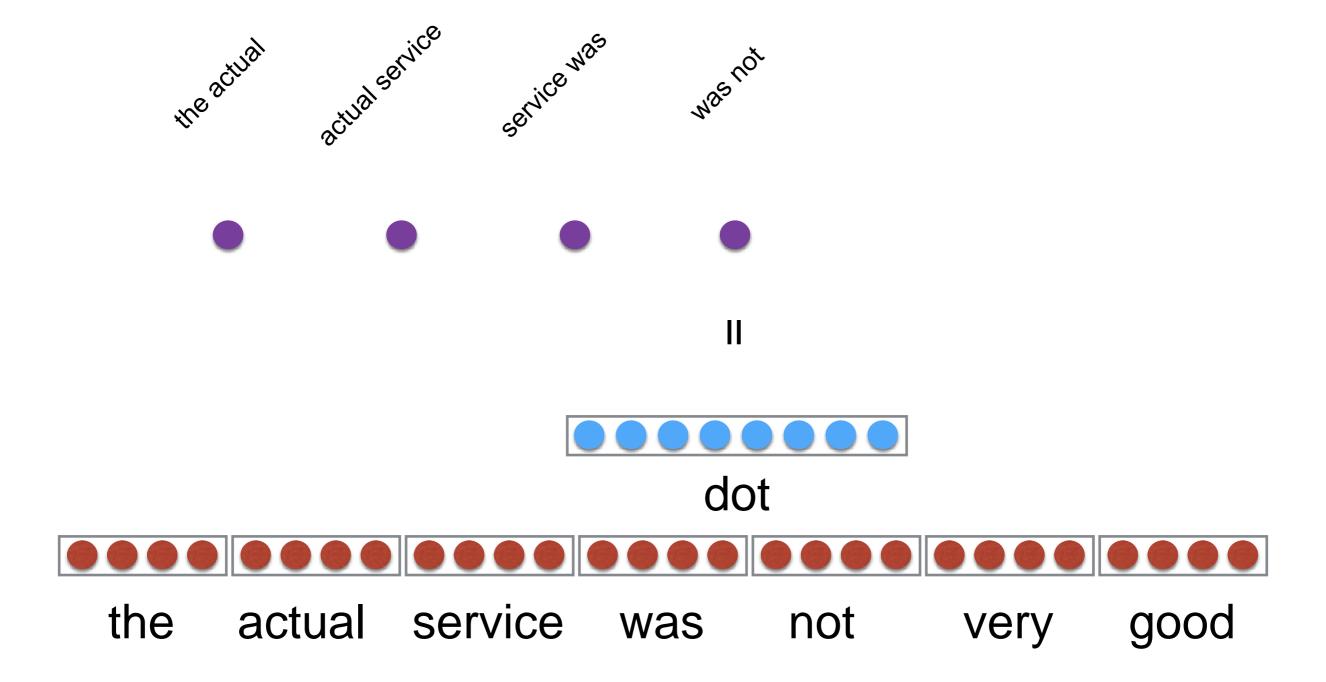
dot

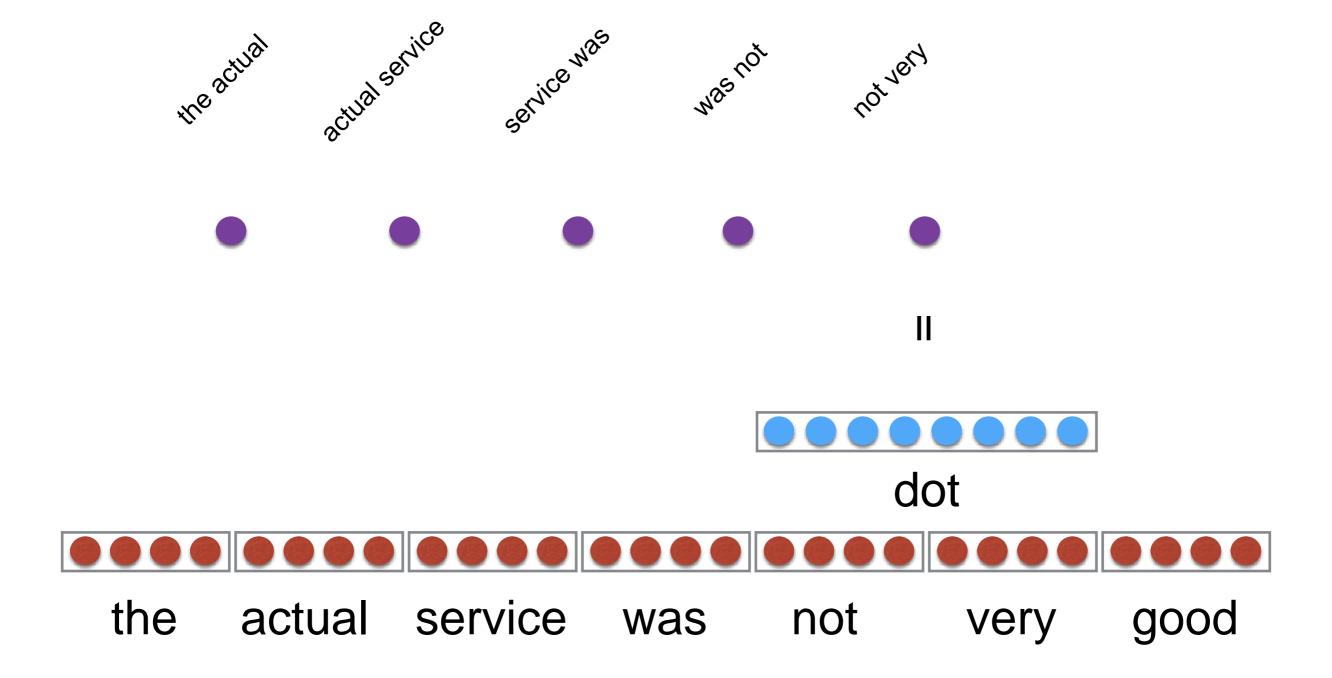


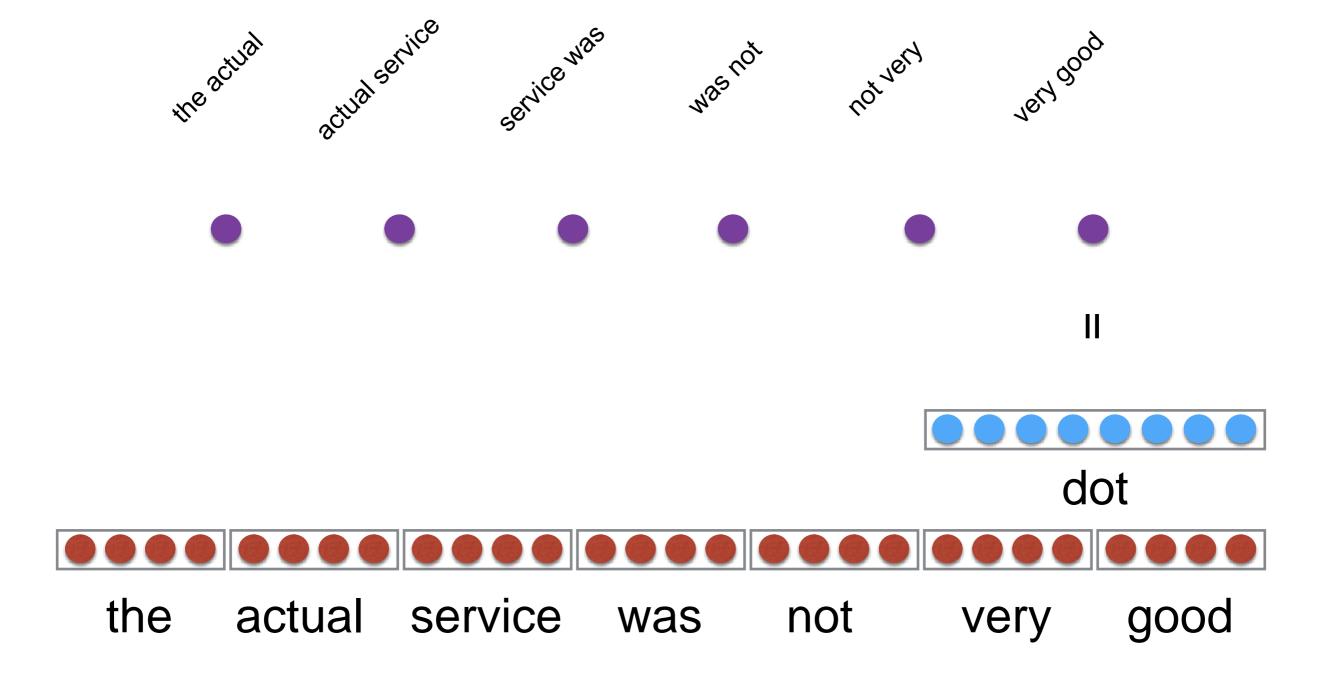
the actual service was not very good







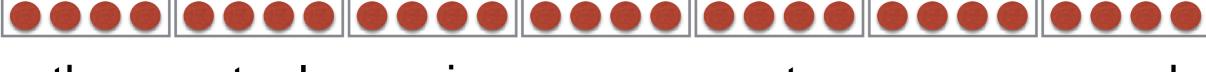




the actual

Ш

dot



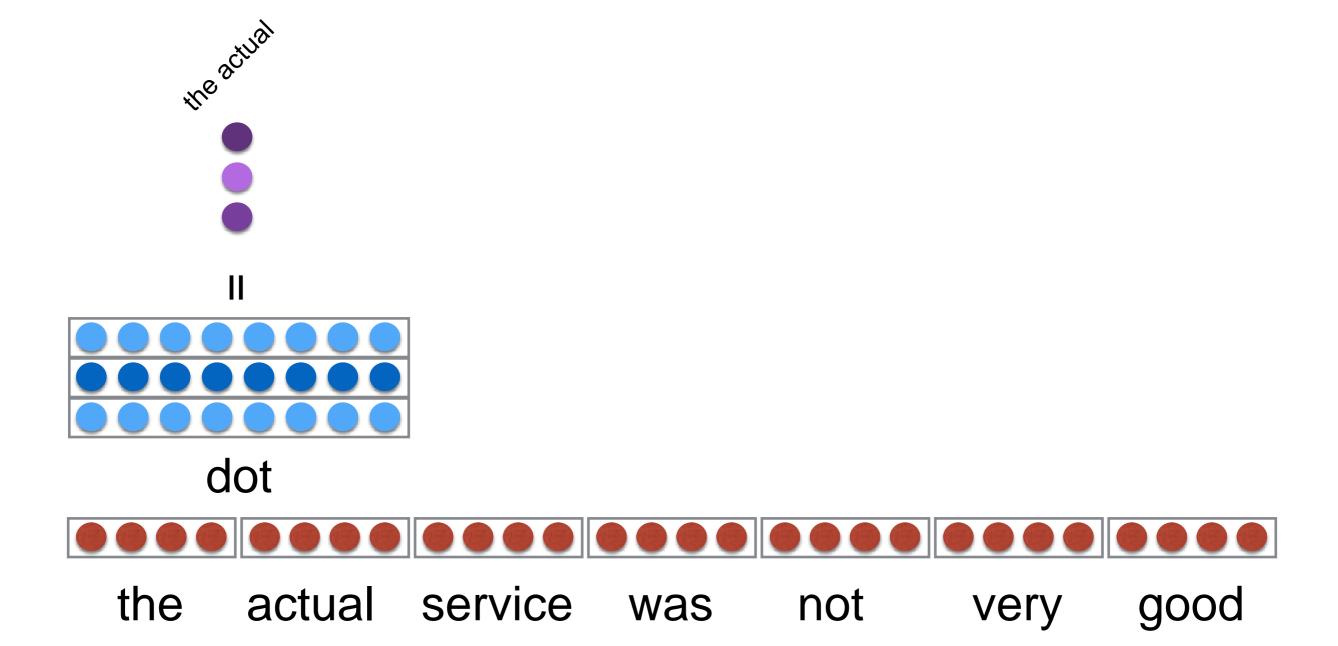
the actual service was not very good

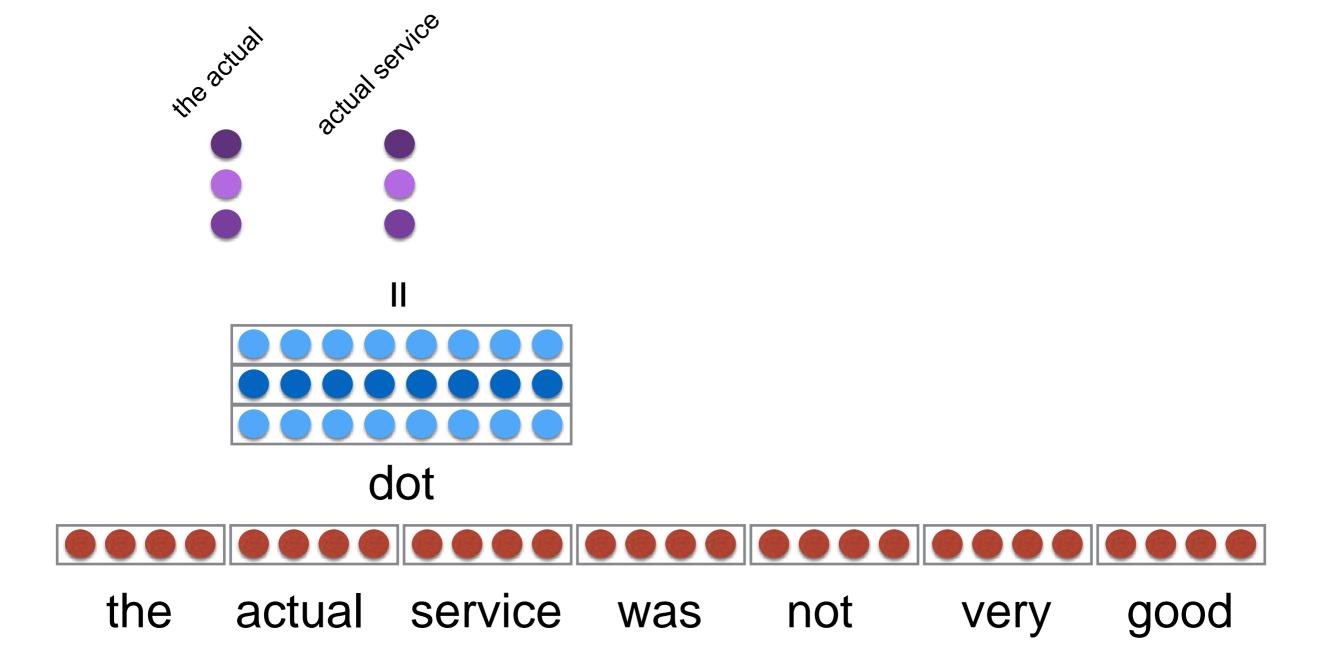
the actual

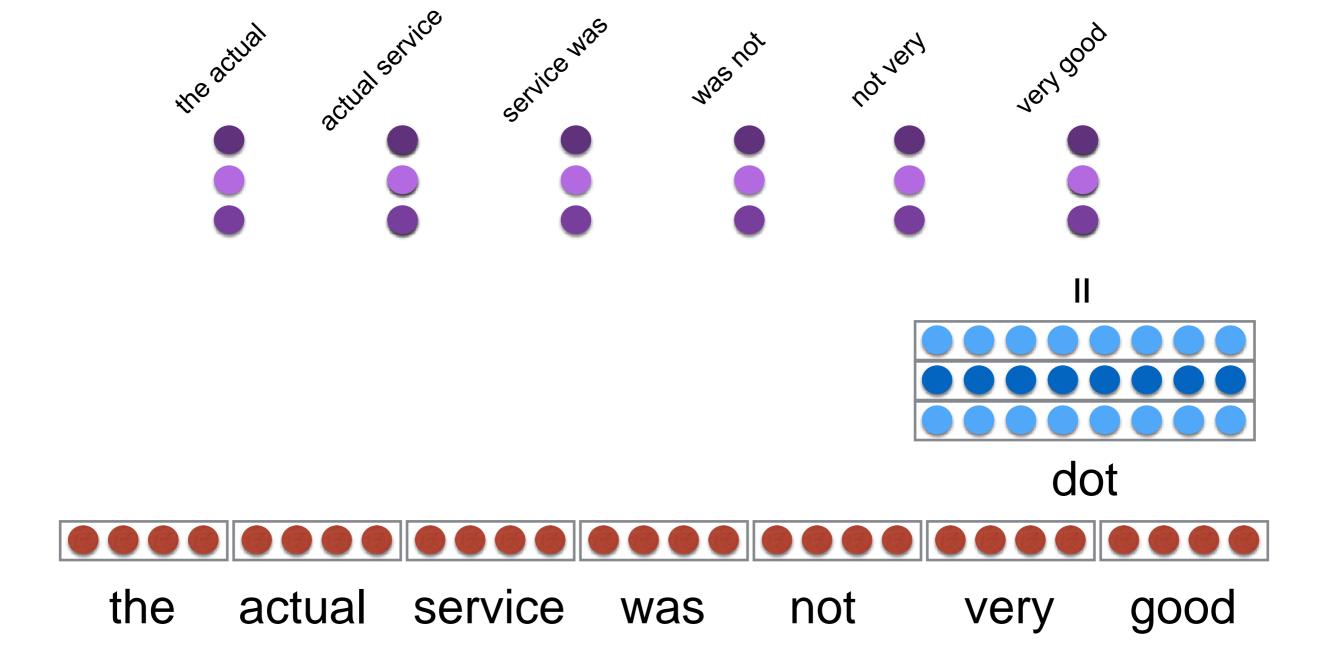
П

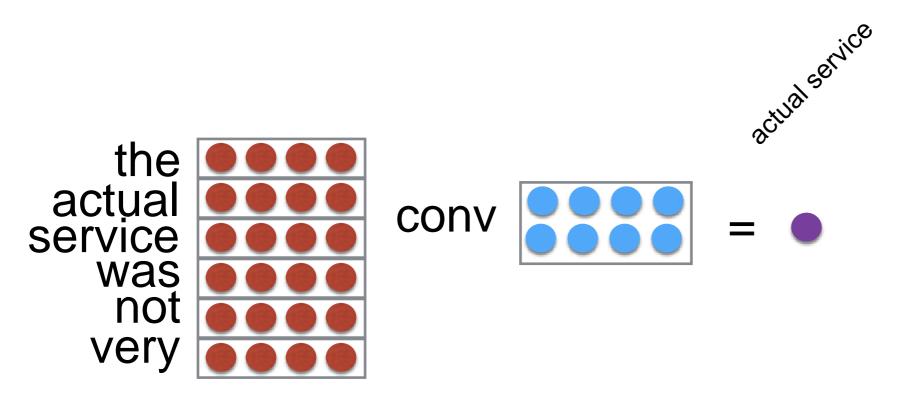
dot

the actual service was not very good

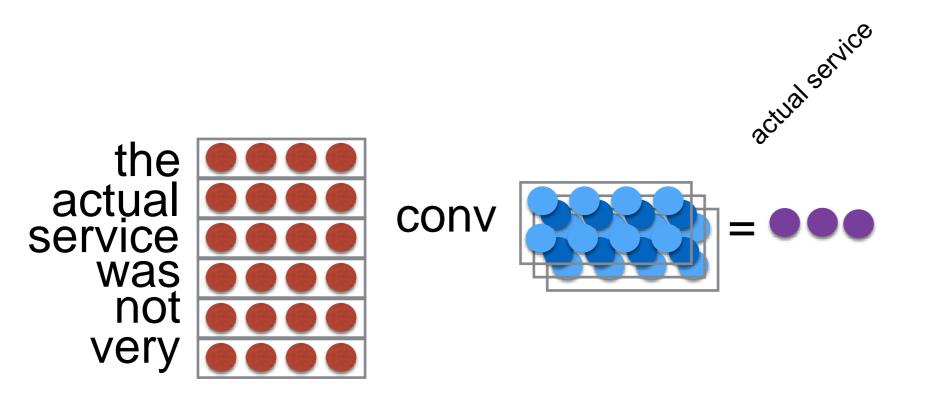




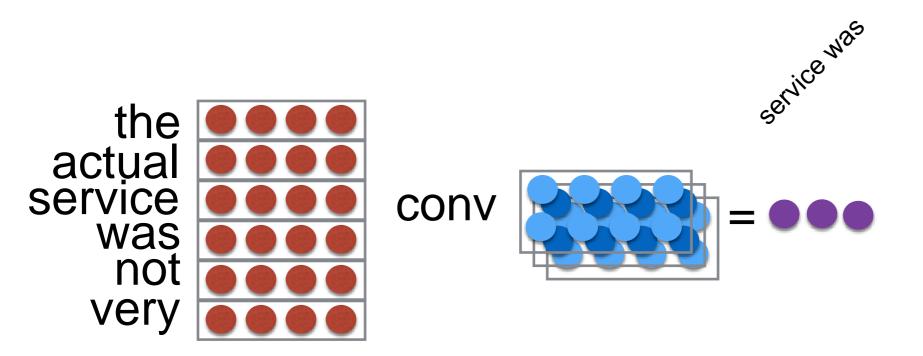




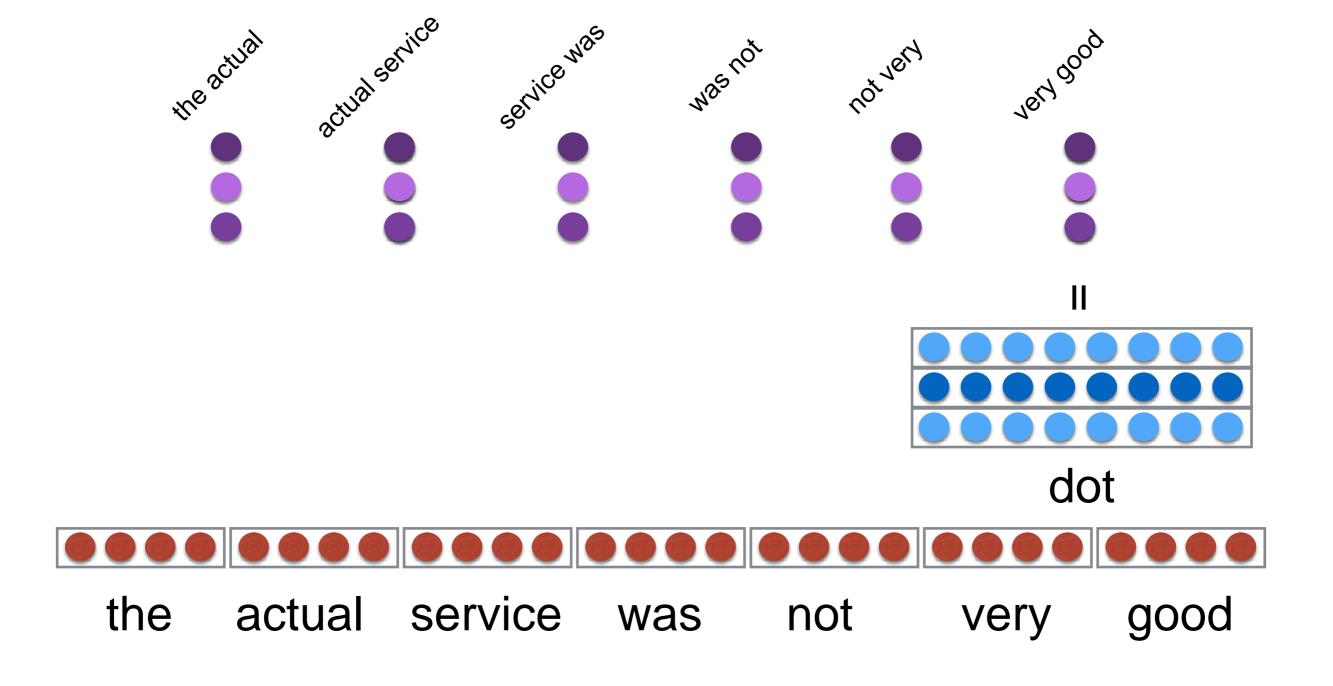
(another way to represent text convolutions)



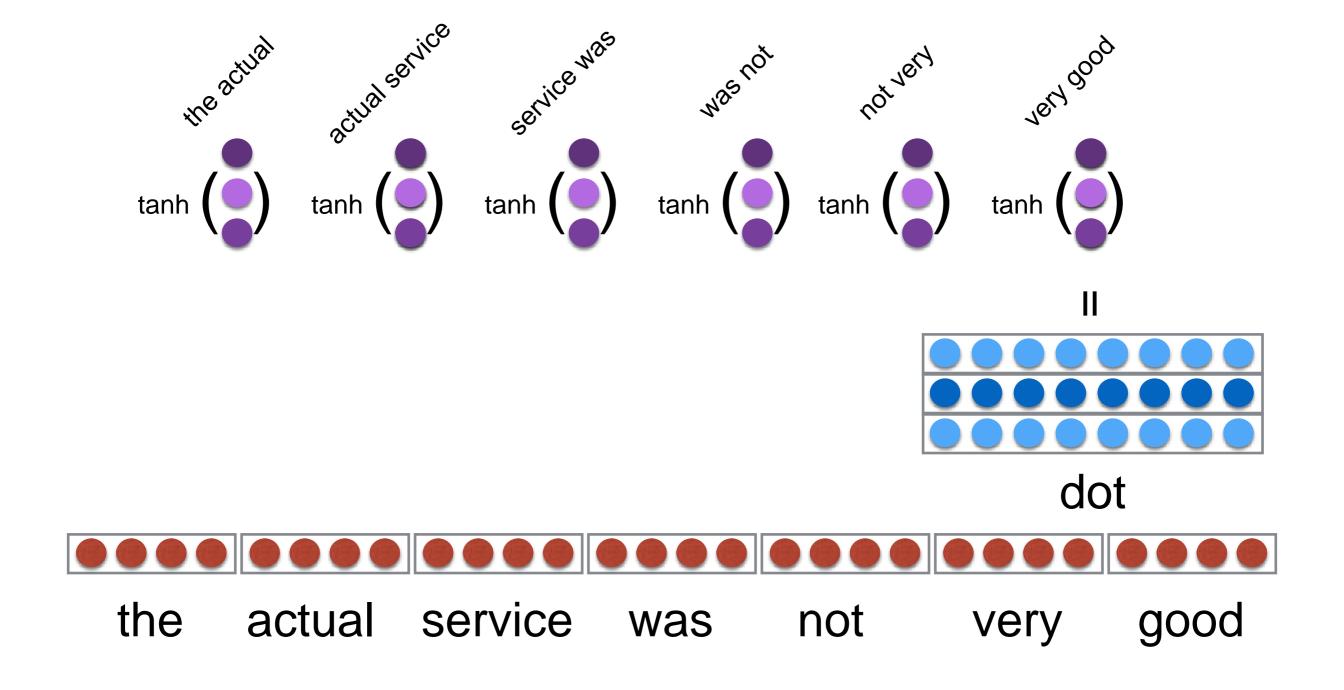
(another way to represent text convolutions)



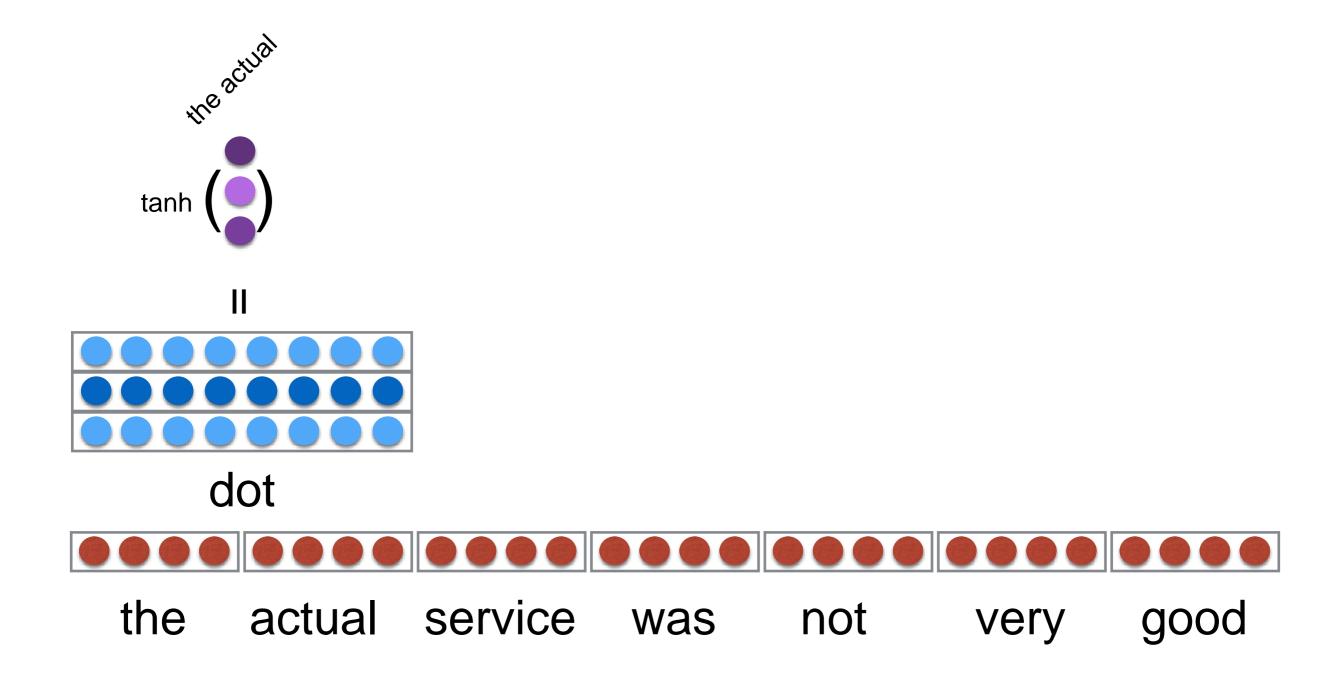
(another way to represent text convolutions)



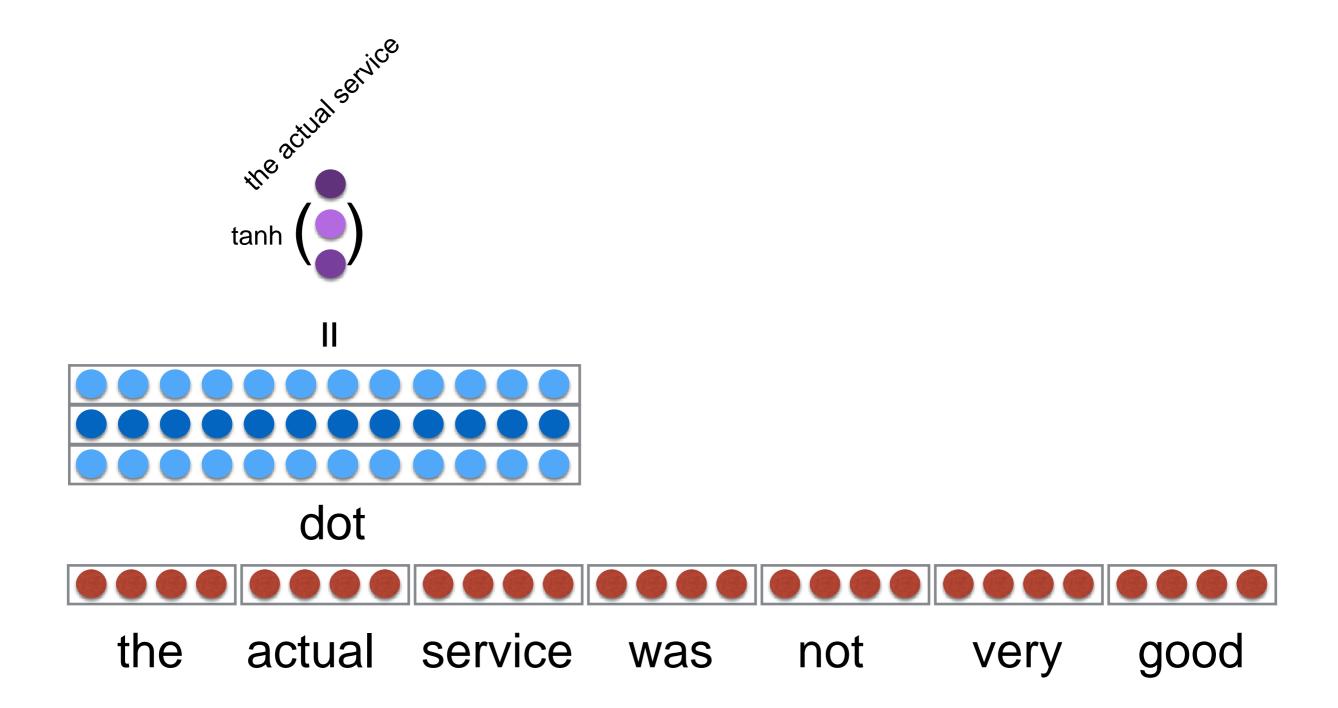
(we'll focus on the 1-d view here, but remember they are equivalent)



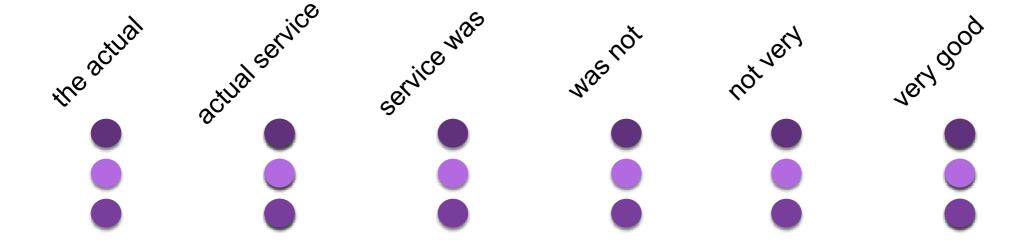
(usually also add non linearity)

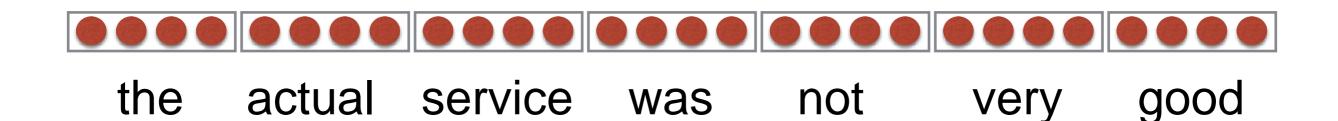


(can have larger filters)

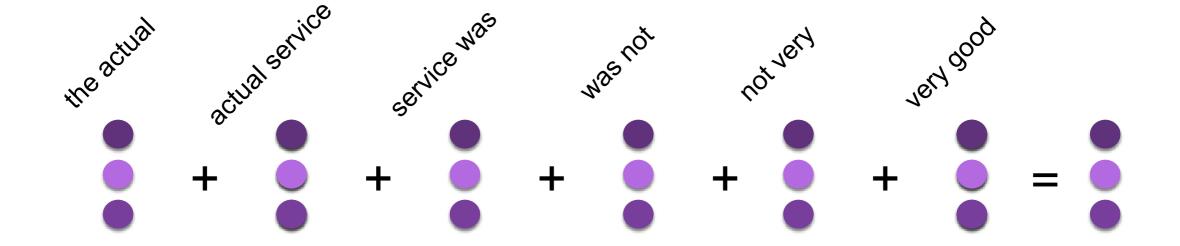


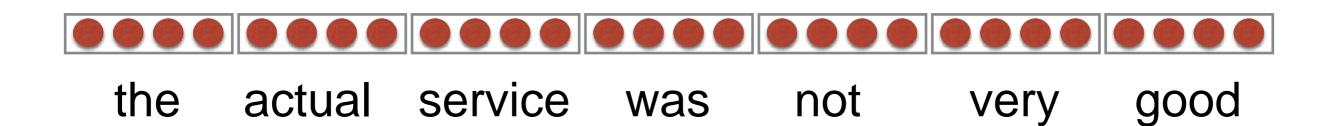
(can have larger filters)





we have the ngram vectors. now what?





can do "pooling"

"Pooling"

Combine K vectors into a single vector

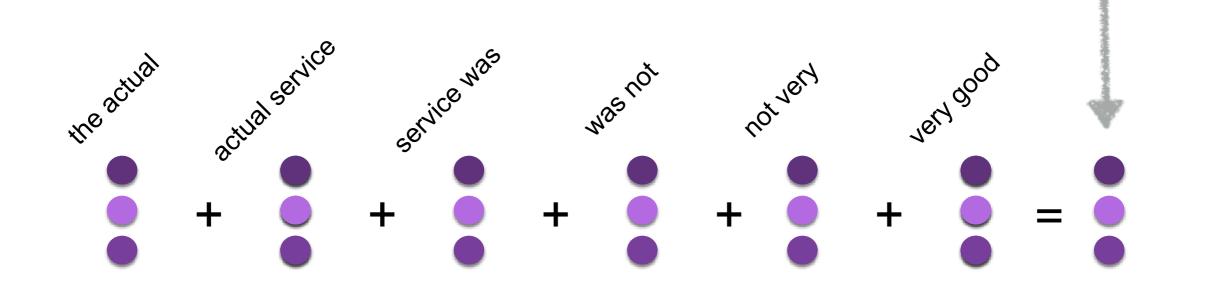
"Pooling"

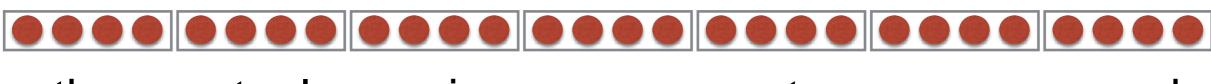
Combine K vectors into a single vector

This vector is a summary of the K vectors, and can be used for prediction.

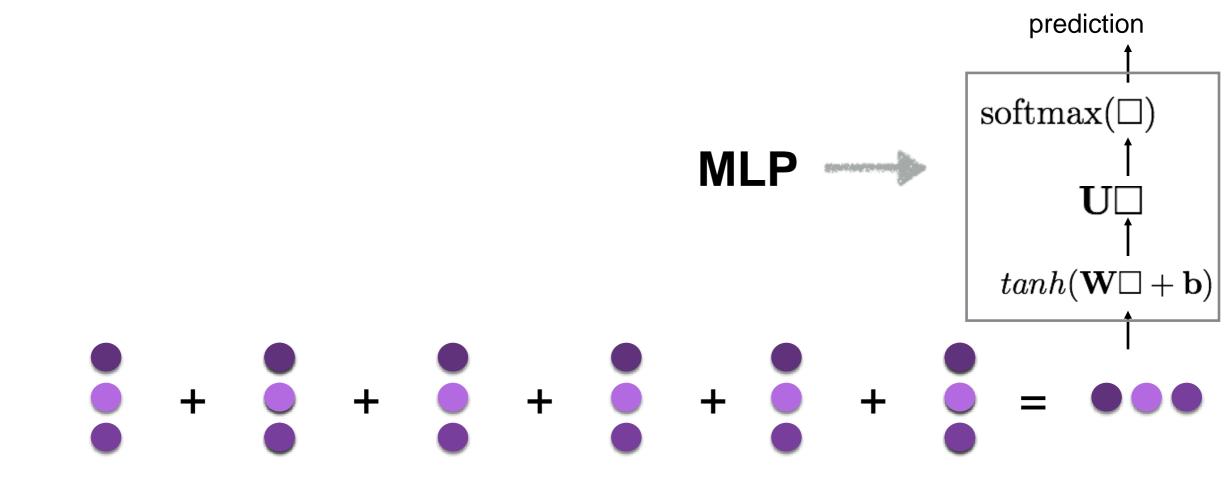
average pooling

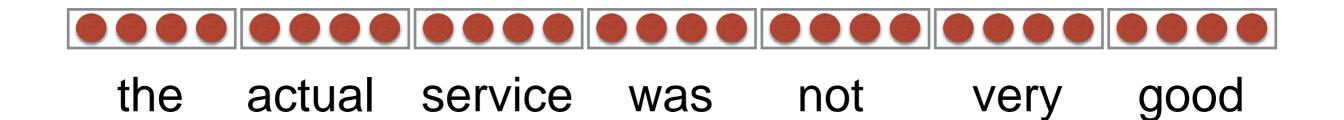
average vector





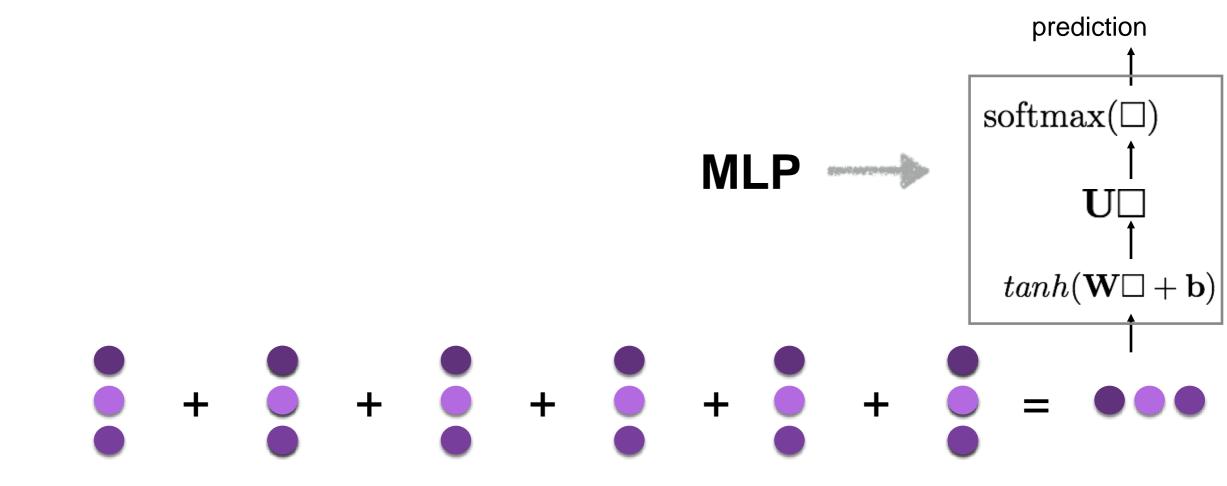
the actual service was not very good

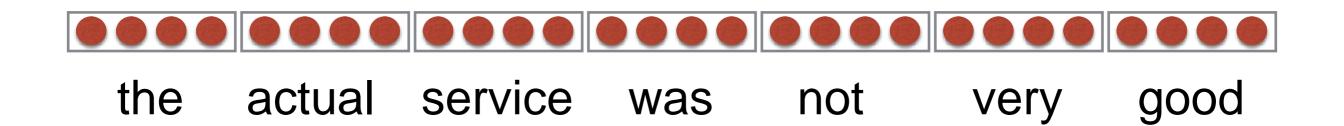




train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together)





train end-to-end for some task

(train the MLP, the filter matrix, and the embeddings together) the vectors learn to capture what's important

we have the ngram vectors. now what?

Can look at the differences between terms.

microsoft office software		car body shop	
Free office 2000	0.550	car body kits	0.698
download office excel	0.541	auto body repair	0.578
word office online	0.502	auto body parts	0.555
apartment office hours	0.331	wave body language	0.301
massachusetts office location	0.293	calculate body fat	0.220
international office berkeley	0.274	forcefield body armour	0.165

Table 2: Sample word n-grams and the cosine similarities between the learned word-n-gram feature vectors of "office" and "body" in different contexts after the CLSM is trained.

A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval

Yelong Shen

Xiaodong He Microsoft Research Microsoft Research Redmond, WA, USA

Jianfeng Gao Microsoft Research Redmond, WA, USA jfgao@microsoft.com

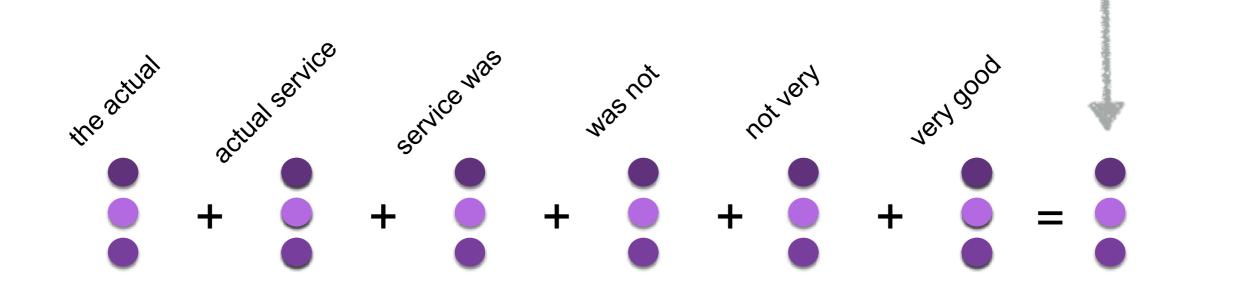
Li Deng Microsoft Research Redmond, WA, USA

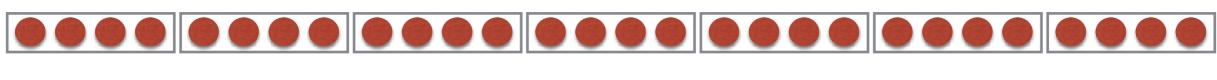
Grégoire Mesnil

University of Montréal Montréal, Canada deng@microsoft.com gregoire.mesnil@umont real.ca

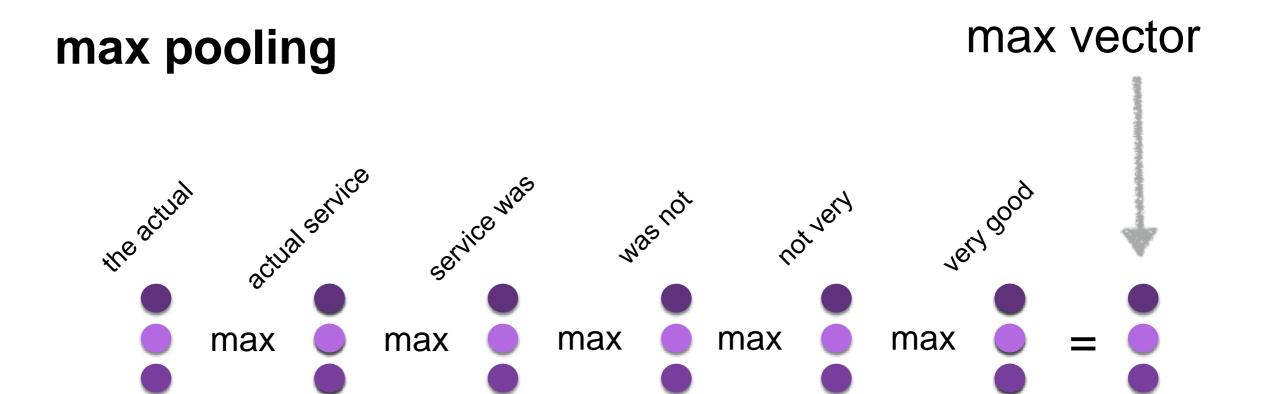
average pooling

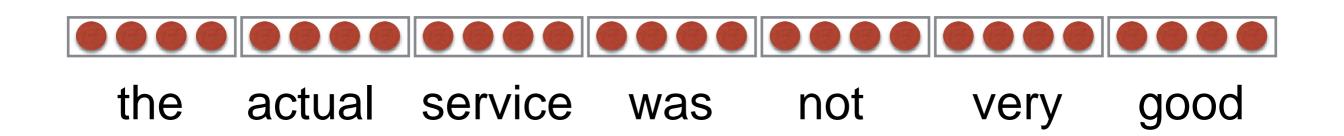
average vector





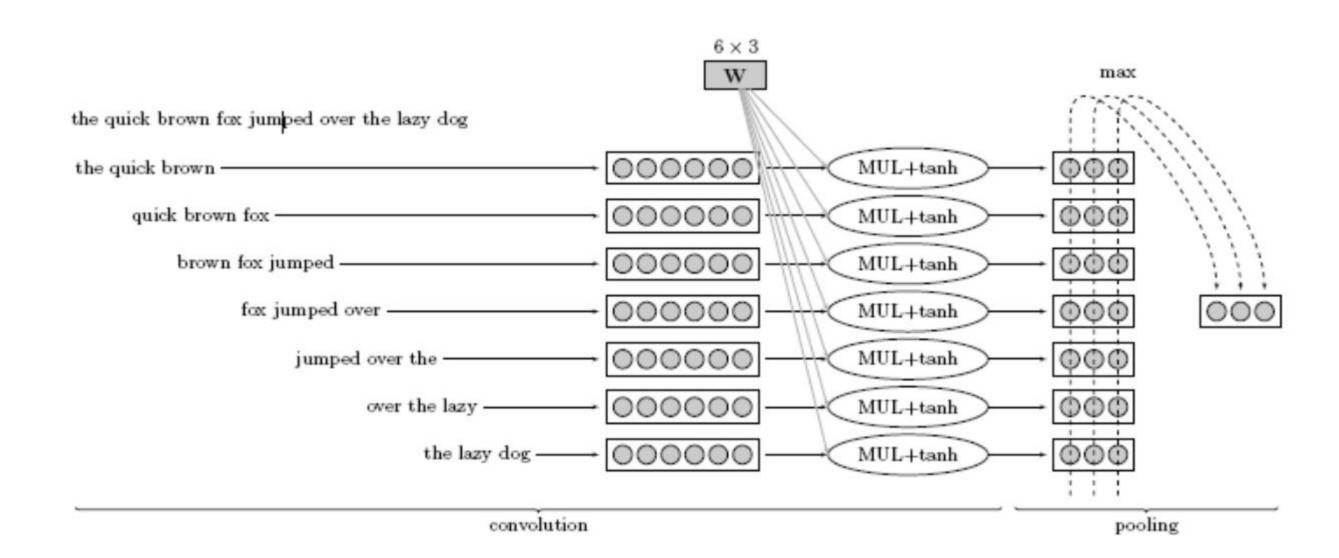
the actual service was not very good

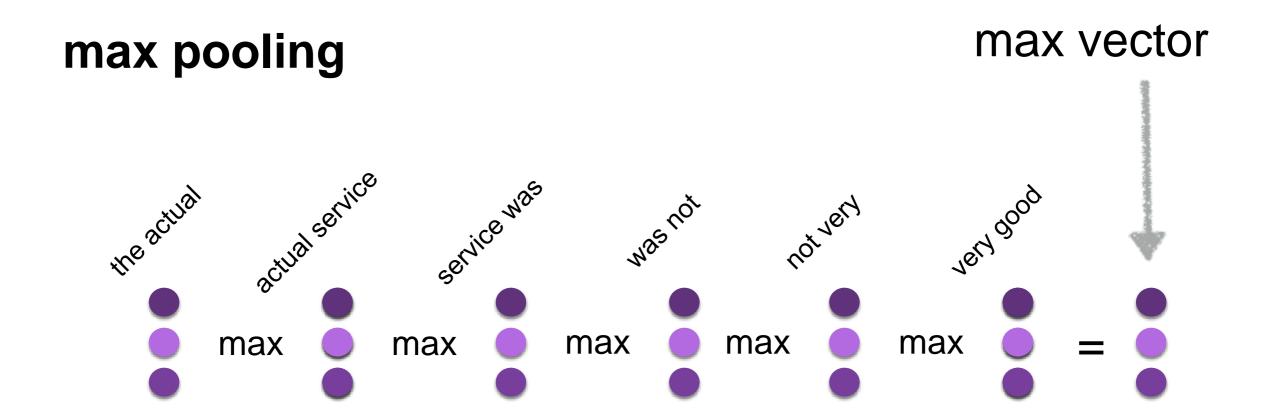


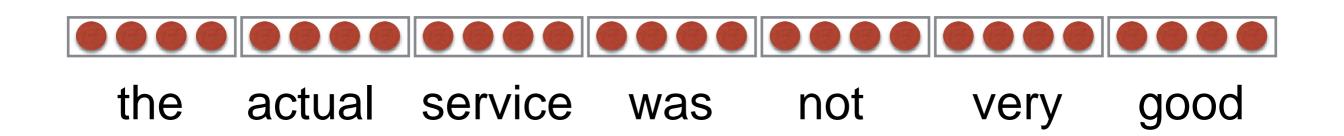


(max in each coordinate)

Another way to draw this:







max vs average – discuss

Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification

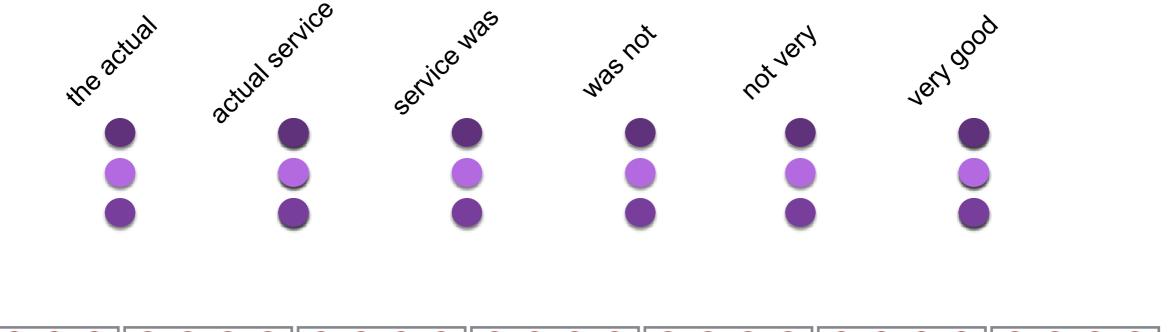
one benefit of max-pooling: it's "interpretable"

we can know where each element in the summary vector came from

Examples of resulting "summaries"

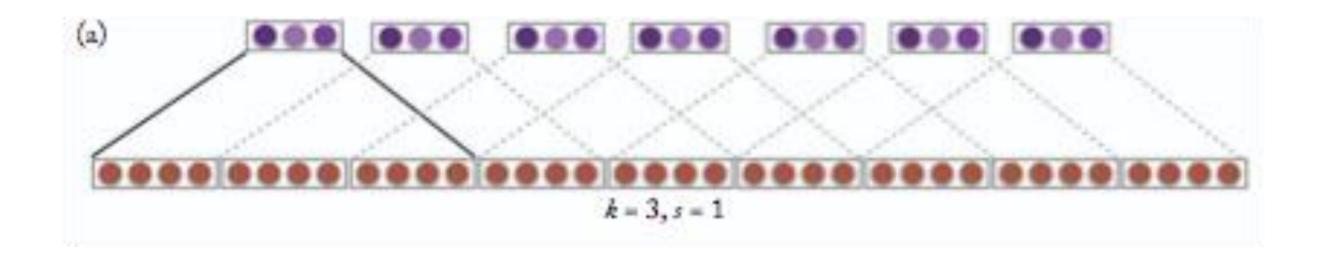
microsoft office excel could allow remote code execution
welcome to the apartment office
online body fat percentage calculator
online auto body repair estimates
vitamin a the health benefits given by carrots
calcium supplements and vitamin d discussion stop sarcoidosis

Table 3: Sample document titles. We examine the five most active neurons at the max-pooling layer and highlight the words in **bold** who win at these five neurons in the *max* operation. Note that, the feature of a word is extracted from that word together with the context words around it, but only the center word is highlighted in bold.

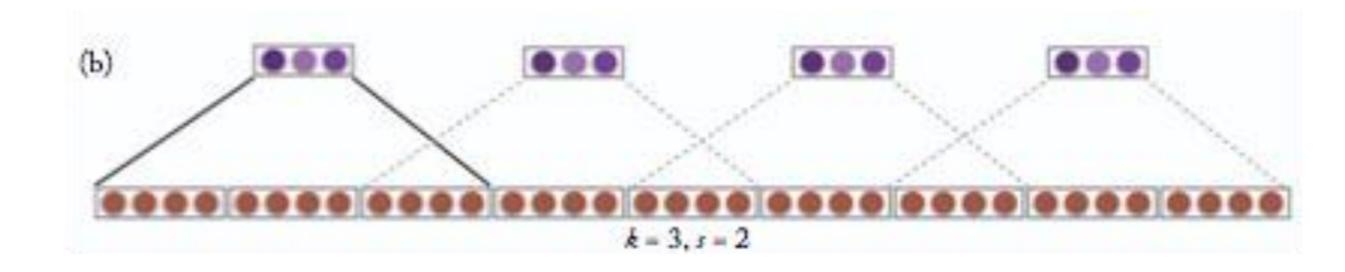


the actual service was not very good

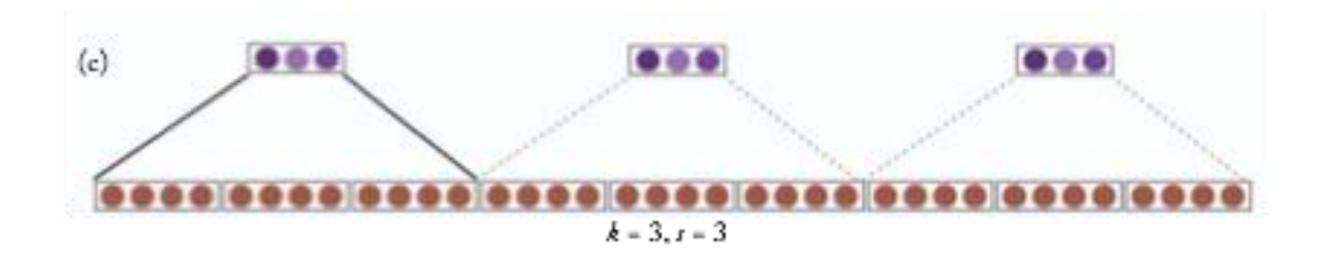
strides = how much you move



$$k = 3$$
, stride = 1



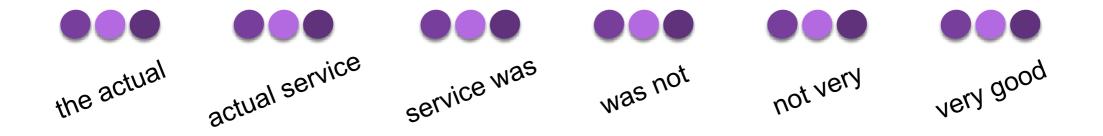
$$k = 3$$
, stride = 2

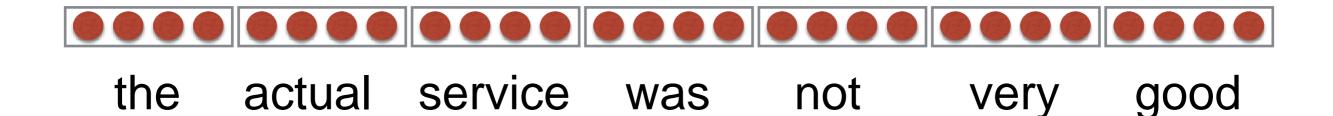


$$k = 3$$
, stride = 3

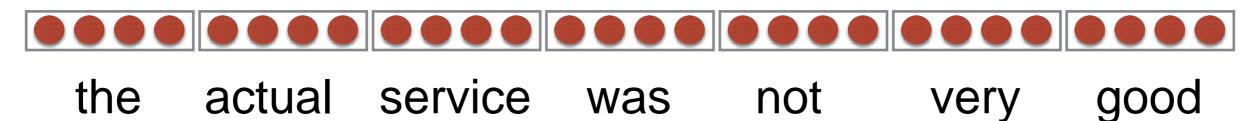
Hierarchy

Hierarchy

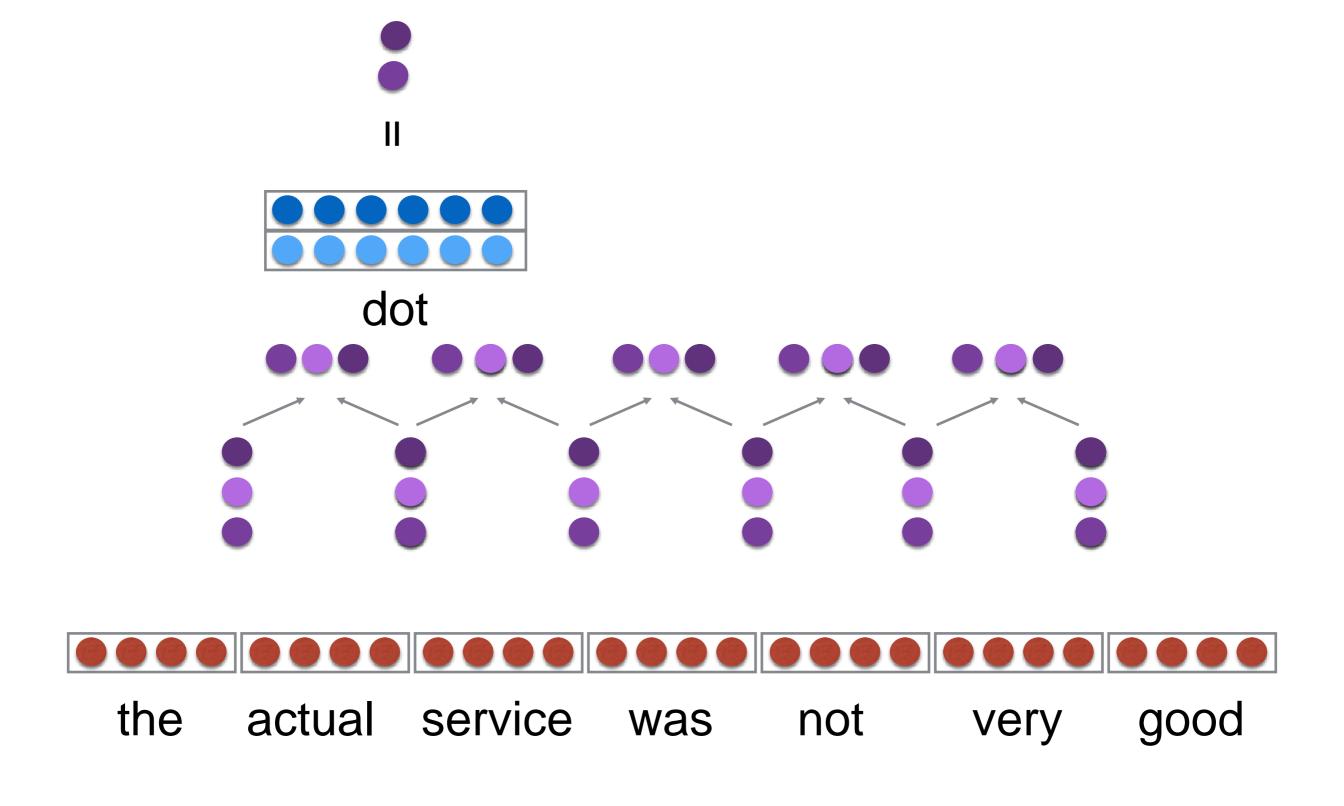




can have hierarchy

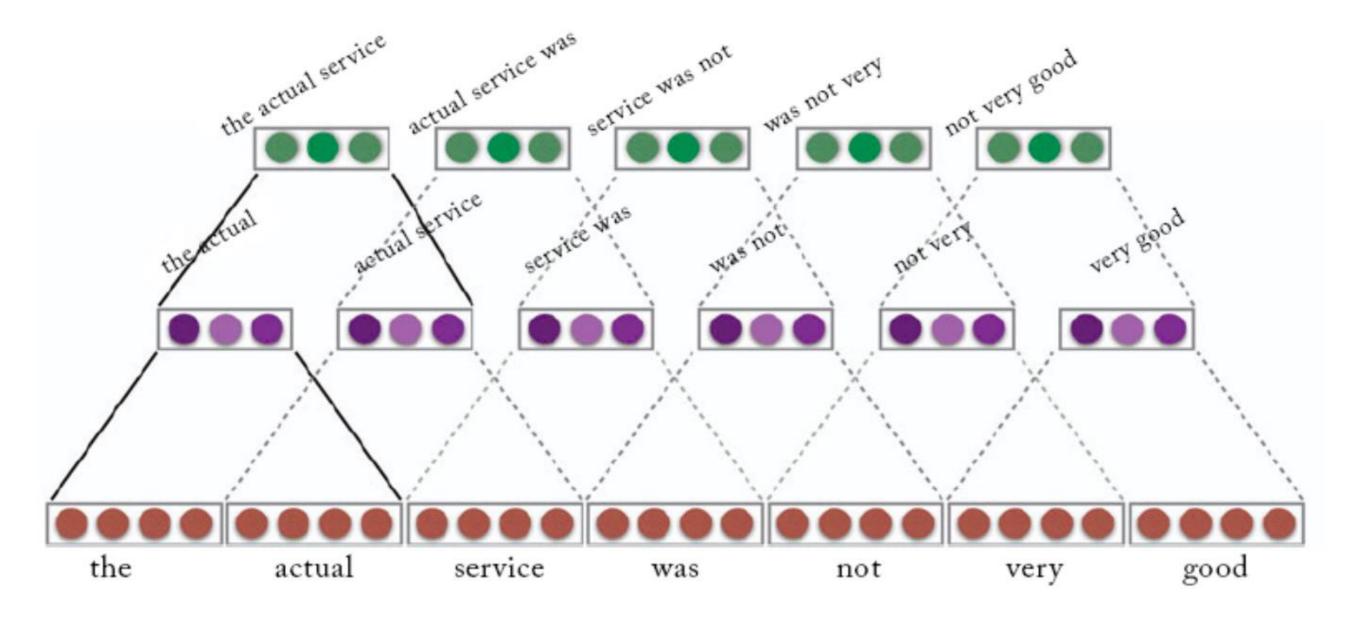


can have hierarchy



(can combine: pooling + hierarchy)

Hierarchy



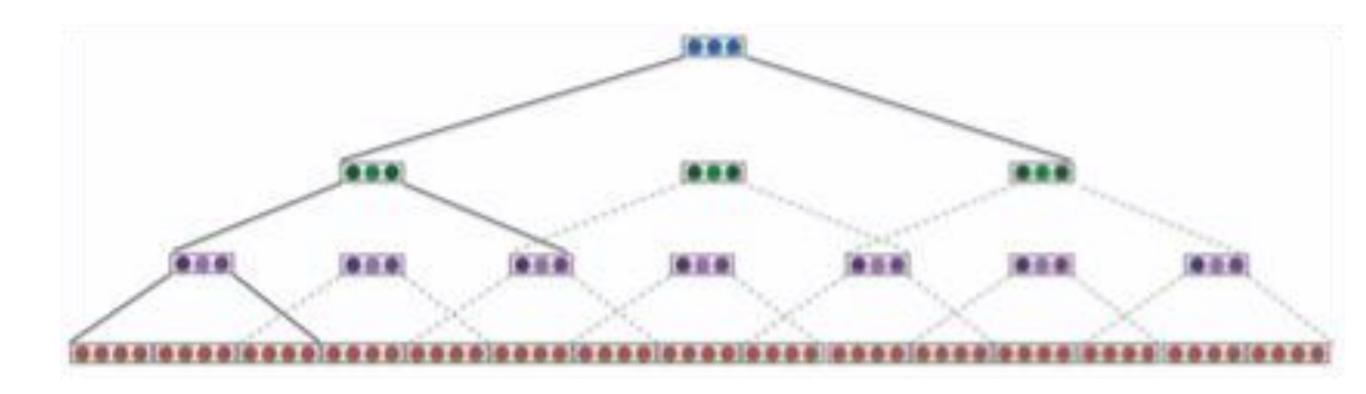
2-layer hierarchical conv with k=2

Dilated Convolutions

we want to cover more of the sequence

idea: strides + hierarchy

Dilated Convolutions



dilated convolution, k=3

idea: strides + hierarchy

ConvNets Summary

- Shared matrix used as feature detector.
- Extracts interesting ngrams.
- Pool ngrams to get fixed length representation.
- Max-pooling works well.
 - Max vs. Average pooling.
- Use hierarchy / dilation to expand coverage.
- Train end-to-end.

Alternative: Hashing Trick

- ConvNet is an architecture for finding good ngrams.
- But if we know ngrams are important, why not just have ngram embeddings (ngram vectors)?
- --> for large vocabulary, not scalable.

Can't represent all ngrams, don't know which are important.

Alternative: Hashing Trick

- Problem: our ngram vocabulary size if 10^9
- Solution: use smaller space via hashing, allow feature clashes.

Hashing Trick

- We have > 10^9 different ngrams.
- We can afford ~10^6 different embeddings.
- Map each ngram to a number in [0, 10^6]
- Use the corresponding embedding vector.
- Clashes will happen, but it will probably be ok.
 - Even safer: map each ngram to two numbers using two different hash functions, sum the vectors.

Hashing Trick vs ConvNets

- What are the benefits of using bag of ngrams?
- What are the benefits of using ConvNet (ngram detector)?
- Does it matter if the vocabulary size is small or large?

(discuss)