
Log Linear Models for
Text Classification

Mausam

(Slides by Michael Collins, Emily Fox, Alexander Ihler, Dan Jurafsky, Dan

Klein, Chris Manning, Ray Mooney, Mark Schmidt, Dan Weld, Alex

Yates, Luke Zettlemoyer)

Introduction
• So far we’ve looked at “generative models”

– Naive Bayes

• But there is now much use of conditional or
discriminative probabilistic models in NLP,
Speech, IR (and ML generally)

• Because:
– They give high accuracy performance

– They make it easy to incorporate lots of linguistically
important features

– They allow automatic building of language independent,
retargetable NLP modules

Joint vs. Conditional Models

• We have some data {(d, c)} of paired
observations d and hidden classes c.

• Joint (generative) models place probabilities
over both observed data and the hidden stuff
(generate the observed data from hidden
stuff):

– All the classic Stat-NLP models:

• n-gram models, Naive Bayes classifiers, hidden Markov
models, probabilistic context-free grammars, IBM
machine translation alignment models

Joint vs. Conditional Models

• Discriminative (conditional) models take the
data as given, and put a probability over
hidden structure given the data:

• Logistic regression, conditional loglinear or maximum
entropy models, conditional random fields

• Also, SVMs, (averaged) perceptron, etc. are
discriminative classifiers (but not directly probabilistic)

Bayes Net/Graphical Models

• Bayes net diagrams draw circles for random variables, and lines for direct
dependencies

• Some variables are observed; some are hidden

• Each node is a little classifier (conditional probability table) based on
incoming arcs

c

d1 d 2 d 3

Naive Bayes

c

d1 d2 d3

Generative

Logistic Regression

Discriminative

Conditional vs. Joint Likelihood

• A joint model gives probabilities P(d,c) and
tries to maximize this joint likelihood.

– It turns out to be trivial to choose weights: just
relative frequencies.

• A conditional model gives probabilities P(c|d).
It takes the data as given and models only the
conditional probability of the class.

– We seek to maximize conditional likelihood.

– Harder to do (as we’ll see…)

– More closely related to classification error.

Text Categorization with Word Features

BUSINESS: Stocks

hit a yearly low …

Data

Features

{…, stocks, hit, a,

yearly, low, …}

Label: BUSINESS

(Zhang and Oles 2001)

• Features are presence of each word in a
document and the document class (they do
feature selection to use reliable indicator words)

• Tests on classic Reuters data set (and others)

– Naïve Bayes: 77.0% F1

– Logistic regression: 86.4%

– Support vector machine: 86.5%

Case Study: Word Senses

 Words have multiple distinct meanings, or senses:

 Plant: living plant, manufacturing plant, …

 Title: name of a work, ownership document, form of address,
material at the start of a film, …

 Many levels of sense distinctions

 Homonymy: totally unrelated meanings (river bank, money bank)

 Polysemy: related meanings (star in sky, star on tv)

 Systematic polysemy: productive meaning extensions
(metonymy such as organizations to their buildings) or metaphor

 Sense distinctions can be extremely subtle (or not)

 Granularity of senses needed depends a lot on the task

 Why is it important to model word senses?

 Translation, parsing, information retrieval?

Word Sense Disambiguation

 Example: living plant vs. manufacturing plant

 How do we tell these senses apart?
 “context”

 Maybe it’s just text categorization

 Each word sense represents a class

 Run a naive-bayes classifier?

 Bag-of-words classification works OK for noun senses
 90% on classic, shockingly easy examples (line, interest, star)

 80% on senseval-1 nouns

 70% on senseval-1 verbs

The manufacturing plant which had previously sustained the

town’s economy shut down after an extended labor strike.

Verb WSD

 Why are verbs harder?

 Verbal senses less topical

 More sensitive to structure, argument choice

 Verb Example: “Serve”
 [function] The tree stump serves as a table

 [enable] The scandal served to increase his popularity

 [dish] We serve meals for the homeless

 [enlist] She served her country

 [jail] He served six years for embezzlement

 [tennis] It was Agassi's turn to serve

 [legal] He was served by the sheriff

Better Features

 There are smarter features:

 Argument selectional preference:

 serve NP[meals] vs. serve NP[papers] vs. serve NP[country]

 Subcategorization:

 [function] serve PP[as]

 [enable] serve VP[to]

 [tennis] serve <intransitive>

 [food] serve NP {PP[to]}

 Other constraints (Yarowsky 95)
 One-sense-per-discourse (only true for broad topical distinctions)

 One-sense-per-collocation (pretty reliable when it kicks in:
manufacturing plant, flowering plant)

Complex Features with NB?

 Example:

 So we have a decision to make based on a set of cues:

 context:jail, context:county, context:feeding, context:meals, …

 subcat:NP, direct-object-head:meals

 Not clear how build a generative derivation for these:

 Choose topic, then decide on having a transitive usage, then
pick “meals” to be the object’s head, then generate other words?

 Hard to make this work (though maybe possible)

 No real reason to try

Washington County jail served 11,166 meals last

month - a figure that translates to feeding some

120 people three times daily for 31 days.

A Discriminative Approach

 View WSD as a discrimination task, directly estimate:

 Have to estimate multinomial (over senses) where there
are a huge number of things to condition on

 Many feature-based classification techniques out there

 Log-linear models extremely popular in 2nd gen NLP
community!

P(sense | context:jail, context:county,

context:feeding, context:meals, …

subcat:NP, direct-object-head:meals, ….)

Feature Representations

 Features are indicator functions
which count the occurrences of
certain patterns in the input

 We will have different feature values
for every pair of input x and class y

Washington County jail served

11,166 meals last month - a

figure that translates to feeding

some 120 people three times

daily for 31 days.

context:jail = 1

context:county = 1

context:feeding = 1

context:game = 0

…

local-context:jail = 1

local-context:meals = 1

…

subcat:NP = 1

subcat:PP = 0

…

object-head:meals = 1

object-head:ball = 0

Features

 In NLP uses, usually a feature specifies

1. an indicator function – a yes/no boolean matching function – of
properties of the input and

2. a particular class

ϕi(x,y) [Φ(x) y = yj] [Value is 0 or 1]

 Each feature picks out a data subset and suggests a
label for it

Example of Features

 context:jail & served:functional

 context:jail & served:dish

 …

 subcat:NP & served:functional

 subcat:NP & served:dish

 …

Feature-Based Linear Classifiers

 Linear classifiers at classification time:

 Linear function from feature sets {ϕi} to classes{y}.

 Assign a weight wi to each feature ϕi.

 We consider each class for an observed datum x

 For a pair (x,y), features vote with their weights:

 vote(y) = wiϕi(x,y)

 Choose the class y which maximizes wiϕi(x,y)

 We need probabilistic semantics to this method.

 Log linear classifiers

Exponential Models
(log-linear, maxent, Logistic, Gibbs)

 Model: use the scores as probabilities:

 Learning: maximize the (log) conditional likelihood of training
data

 Prediction: output argmaxy p(y|x;w)

Make positive

Normalize

Feature-Based Linear Classifiers

 Exponential (log-linear, maxent, logistic, Gibbs) models:

 Given this model form, we will choose parameters {wi}
that maximize the conditional likelihood of the data
according to this model.

 We construct not only classifications, but probability
distributions over classifications.

 There are other (good!) ways of discriminating classes – SVMs,
boosting, even perceptrons – but these methods are not as trivial to
interpret as distributions over classes.

Derivative of
Log-linear Model

Total count of feature j

in correct candidates

Expected count of

feature j in predicted

candidates

• Unfortunately, argmaxw L(w) doesn’t have a close formed solution

• We will have to differentiate and use gradient ascent

𝐿 𝑤 =

𝑖=1

𝑛

log 𝑝(𝑦𝑖|𝑥𝑖; 𝑤)

𝐿 𝑤 =

𝑖=1

𝑛

𝑤 ∙ φ(𝑥𝑖 ,𝑦𝑖) − log

𝑦

exp(𝑤 ∙ φ(𝑥𝑖 ,𝑦))

𝜕𝐿(𝑤)

𝜕𝑤𝑗𝑘
=

𝑖=1

𝑛

φ𝑗𝑘 (𝑥𝑖 ,𝑦𝑖) −p(k|𝑥𝑖; w)φ𝑗𝑘(𝑥𝑖 ,k)

Proof
(Conditional Likelihood Derivative)

 Recall

 We can separate this into two components:

 The derivative is the difference between the
derivatives of each component

)(wN)(wD),|(log wXYP -

Dyx

wxypwXYP
),(

),|(),|(

log 𝑃 𝑌 𝑋,𝑤 =

𝑖=1

𝑛

𝑤 ∙ φ(𝑥𝑖 ,𝑦𝑖) −

𝑖=1

𝑛

log

𝑦

exp(𝑤 ∙ φ(𝑥𝑖 ,𝑦))

Proof: Numerator

Derivative of the numerator is:

the empirical count of feature j with class k

Note: φ𝑗𝑘 (𝑥𝑖 ,𝑦𝑖)=0 if y≠ 𝑘

𝜕𝑁(𝑤)

𝜕𝑤𝑗𝑘
=
𝜕 𝑖=1
𝑛 𝑙 𝑤𝑙𝑦𝑖φ𝑙𝑦𝑖(𝑥𝑖 ,𝑦𝑖)

𝜕𝑤𝑗𝑘

=

𝑖=1

𝑛
𝜕 𝑙 𝑤𝑙𝑦𝑖φ𝑙𝑦𝑖(𝑥𝑖 ,𝑦𝑖)

𝜕𝑤𝑗𝑘

=

𝑖=1

𝑛

φ𝑗𝑘 (𝑥𝑖 ,𝑦𝑖)

Proof: Denominator

= expected count of

feature j predicted with class k

𝜕𝐷(𝑤)

𝜕𝑤𝑗𝑘
=
𝜕 𝑖=1
𝑛 log 𝑦 exp(𝑙 𝑤𝑙𝑦φ𝑙𝑦 (𝑥𝑖 ,𝑦)

𝜕𝑤𝑗𝑘

=

𝑖=1

𝑛
1

 𝑦′ exp(𝑙 𝑤𝑙𝑦′φ𝑙𝑦′ (𝑥𝑖 ,𝑦'))

𝜕 𝑦 exp(𝑙 𝑤𝑙𝑦φ𝑙𝑦 (𝑥𝑖 ,𝑦))

𝜕𝑤𝑗𝑘

= 𝑖=1
𝑛 1

 𝑦′ exp(𝑙 𝑤𝑙𝑦′φ𝑙𝑦′ (𝑥𝑖,𝑦 ′))
 𝑦
exp(𝑙 𝑤𝑙𝑦φ𝑙𝑦 (𝑥𝑖,𝑦)

1

𝜕 𝑙 𝑤𝑙𝑦φ𝑙𝑦(𝑥𝑖,𝑦)
𝜕𝑤𝑗𝑘

=

𝑖=1

𝑛

𝑦

exp(𝑙 𝑤𝑙𝑦φ𝑙𝑦 (𝑥𝑖 ,𝑦))

 𝑦′ exp(𝑙 𝑤𝑙𝑦′φ𝑙𝑦′ (𝑥𝑖 ,𝑦′))
φ𝑗𝑘 (𝑥𝑖 ,𝑦)

=

𝑖=1

𝑛

𝑦

𝑃(𝑦|𝑥𝑖; 𝑤) φ𝑗𝑘 (𝑥𝑖 ,𝑦)

=

𝑖=1

𝑛

p(k|𝑥𝑖; w)φ𝑗𝑘(𝑥𝑖 ,k)

Proof (concluded)

 The optimum parameters are the ones for which each feature’s
predicted expectation equals its empirical expectation. The
optimum distribution is:

 Always unique (but parameters may not be unique)

 Always exists (if feature counts are from actual data).

 These models are also called maximum entropy models
because we find the model has the maximum entropy while
satisfying the constraints:

iEE ipip),()(~

𝜕𝑃(𝑌|𝑋;𝑤)

𝜕𝑤𝑗𝑘
= 𝑎𝑐𝑡𝑢𝑎𝑙𝑐𝑜𝑢𝑛𝑡 𝜑𝑗𝑘 − predictedcount(𝜑𝑗𝑘)

 Basic idea: move uphill from current guess

 Gradient ascent / descent follows the gradient incrementally

 At local optimum, derivative vector is zero

 Will converge if step sizes are small enough, but not efficient

 All we need is to be able to evaluate the function and its derivative

 For convex functions, a local optimum will be global

 Basic gradient ascent isn’t very efficient, but there are
simple enhancements which take into account previous
gradients: conjugate gradient, L-BFGS

 There are special-purpose optimization techniques for
maxent, like iterative scaling, but they aren’t better

What About Overfitting?

 For Naïve Bayes, we were worried about zero counts in
MLE estimates
 Can that happen here?

 Regularization (smoothing) for Log-linear models

 Instead, we worry about large feature weights

 Add a regularization term to the likelihood to push weights
towards zero

Derivative for Regularized Maximum Entropy

Big weights

are bad
Total count of feature j

in correct candidates

Expected count of

feature j in predicted

candidates

• Unfortunately, argmaxw L(w) still doesn’t have a close formed solution

• We will have to differentiate and use gradient ascent

L1 and L2 Regularization

L2 Regularization for Log-linear models

 Instead, we worry about large feature weights

 Add a regularization term to the likelihood to push weights
towards zero

L1 Regularization for Log-linear models

 Instead, we worry about number of active features

 Add a regularization term to the likelihood to push weights
to zero

Regularization Constant

Lp Norms for Regularization

L1 vs L2
 Optimizing L1 harder

 Discontinuous objective function

 Subgradient descent versus gradient descent

How to pick weights?

 Goal: choose “best” vector w given training data
 For now, we mean “best for classification”

 The ideal: the weights which have greatest test set
accuracy / F1 / whatever
 But, don’t have the test set

 Must compute weights from training set

 Maybe we want weights which give best training set
accuracy?
 May not (does not) generalize to test set

 Easy to overfit

 Use devset

Gradient Descent & Large Training Data

repeat

until convergence

)(

1

)()()1(

)()1(

),(),|(),(
1 t

j

N

i y

ij

t

iiij

t

j

t

j

tt

wyxwxypyx
N

ww

w

L
ww

Prohibitive for large datasets

Stochastic Gradient Descent

repeat

until convergence

Use gradient at current point as approx. for avg gradient!

repeat

until convergence

)(

1

)()()1(),(),|(),(
1 t

j

N

i y

ij

t

iiij

t

j

t

j wyxwxypyx
N

ww

)()()()()1(),(),|(),(t

j

y

ij

t

iiij

tt

j

t

j wyxwxypyxww

Reduce learning rate slowly (e.g., as η/t)

SGD vs. GD

Convergence rates

 GD: O(1/t2), SGD: O(1/sqrt(t))

Hybrid Approaches

Hybrid #1: Batch

 Batch Gradient

Hybrid #2: Stochastic Avg Gradient

 [Schmidt 2013]

 Use average gradient over all data points

 Choose a datapt randomly (xi, yi)

 Compute gradient at (xi,yi)

 Recompute a new average gradient

 Replace the prev gradient for (xi, yi) by the new one

 Do the weight updates

 Assumes gradients of non-selected examples don’t
change

 Better theoretical and practical convergence

Stochastic Avg Gradient

Word Sense Disambiguation Results

 With clever features, small variations on simple log-linear models did
very well in an word sense competition:

 The winning system is a famous semi-supervised learning approach
by Yarowsky

 The other systems include many different approaches: Naïve Bayes,
SVMs, etc

[Suarez and Palomar, 2002]

