
Regular Expressions and
Finite State Automata

Mausam

(Based on slides by Jurafsky & Martin,
Julia Hirschberg)

1/29/2018 Speech and Language Processing - Jurafsky and Martin 2

Regular Expressions and Text
Searching

• Everybody does it

 Emacs, vi, perl, grep, etc..

• Regular expressions are a compact textual
representation of a set of strings
representing a language.

Regular Expressions

Regular Expressions

Regular Expressions

Regular Expressions: ? * + .

Stephen C Kleene

Pattern Matches

colou?r Optional
previous
char

color colour

oo*h! 0 or more of
previous
char

oh! ooh! oooh! ooooh!

o+h! 1 or more of
previous
char

oh! ooh! oooh! ooooh!

baa+ baa baaa baaaa baaaaa

beg.n begin begun begun beg3n

Kleene *, Kleene +

Regular Expressions: Anchors
^ $

Pattern Matches

^[A-Z] Palo Alto

^[^A-Za-z] 1 “Hello”

\.$ The end.

.$ The end? The end!

Regular Expressions

Regular Expressions

1/29/2018 Speech and Language Processing - Jurafsky and Martin 15

Example

• Find all the instances of the word “the” in
a text.
 /the/

 /[tT]he/

 /\b[tT]he\b/

 [^a-zA-Z][tT]he[^a-zA-Z]

 (^|[^a-zA-Z])[tT]he($|[^a-zA-Z])

1/29/2018 Speech and Language Processing - Jurafsky and Martin 16

Errors

• The process we just went through was
based on two fixing kinds of errors

Matching strings that we should not have
matched (there, then, other)

 False positives (Type I)

 Not matching things that we should have
matched (The)

 False negatives (Type II)

1/29/2018 Speech and Language Processing - Jurafsky and Martin 17

Errors

• We’ll be telling the same story for many
tasks, all semester. Reducing the error rate
for an application often involves two
antagonistic efforts:

 Increasing accuracy, or precision, (minimizing
false positives)

 Increasing coverage, or recall, (minimizing
false negatives).

1/29/2018 Speech and Language Processing - Jurafsky and Martin 18

Finite State Automata

• Regular expressions can be viewed as a
textual way of specifying the structure of
finite-state automata.

• FSAs capture significant aspects of what
linguists say we need for morphology and
parts of syntax.

1/29/2018 Speech and Language Processing - Jurafsky and Martin 19

FSAs as Graphs

• Let’s start with the sheep language from
Chapter 2
 /baa+!/

1/29/2018 Speech and Language Processing - Jurafsky and Martin 20

Sheep FSA

• We can say the following things about this
machine
 It has 5 states

 b, a, and ! are in its alphabet

 q0 is the start state

 q4 is an accept state

 It has 5 transitions

1/29/2018 Speech and Language Processing - Jurafsky and Martin 21

But Note

• There are other machines that
correspond to this same language

1/29/2018 Speech and Language Processing - Jurafsky and Martin 22

More Formally

• You can specify an FSA by enumerating
the following things.

 The set of states: Q

 A finite alphabet: Σ

 A start state

 A set of accept/final states

 A transition function that maps QxΣ to Q

Dollars and Cents

1/29/2018 Speech and Language Processing - Jurafsky and Martin 24

1/29/2018 Speech and Language Processing - Jurafsky and Martin 25

Dollars and Cents

1/29/2018 Speech and Language Processing - Jurafsky and Martin 26

Yet Another View

• The guts of FSAs
can ultimately be
represented as
tables

b a ! e

0 1

1 2

2 2,3

3 4

4

If you’re in state 1
and you’re looking at
an a, go to state 2

1/29/2018 Speech and Language Processing - Jurafsky and Martin 27

Recognition

• Recognition is the process of determining if
a string should be accepted by a machine

• Or… it’s the process of determining if a
string is in the language we’re defining with
the machine

• Or… it’s the process of determining if a
regular expression matches a string

• Those all amount the same thing in the end

1/29/2018 Speech and Language Processing - Jurafsky and Martin 28

Recognition

• Traditionally, (Turing’s notion) this process is
depicted with a tape.

1/29/2018 Speech and Language Processing - Jurafsky and Martin 29

Recognition

• Simply a process of starting in the start
state

• Examining the current input

• Consulting the table

• Going to a new state and updating the
tape pointer.

• Until you run out of tape.

1/29/2018 Speech and Language Processing - Jurafsky and Martin 30

D-Recognize

1/29/2018 Speech and Language Processing - Jurafsky and Martin 31

Key Points

• Deterministic means that at each point in
processing there is always one unique
thing to do (no choices).

• D-recognize is a simple table-driven
interpreter

• The algorithm is universal for all
unambiguous regular languages.

 To change the machine, you simply change
the table.

1/29/2018 Speech and Language Processing - Jurafsky and Martin 32

Key Points

• Crudely therefore… matching strings with
regular expressions (ala Perl, grep, etc.) is a
matter of

 translating the regular expression into a machine
(a table) and

 passing the table and the string to an interpreter

1/29/2018 Speech and Language Processing - Jurafsky and Martin 34

Generative Formalisms

• Formal Languages are sets of strings
composed of symbols from a finite set of
symbols.

• Finite-state automata define formal
languages (without having to enumerate all
the strings in the language)

• The term Generative is based on the view
that you can run the machine as a
generator to get strings from the language.

1/29/2018 Speech and Language Processing - Jurafsky and Martin 35

Generative Formalisms

• FSAs can be viewed from two
perspectives:

 Acceptors that can tell you if a string is in the
language

 Generators to produce all and only the strings
in the language

1/29/2018 Speech and Language Processing - Jurafsky and Martin 36

Non-Determinism

1/29/2018 Speech and Language Processing - Jurafsky and Martin 38

Equivalence

• Non-deterministic machines can be
converted to deterministic ones with a
fairly simple construction

• That means that they have the same
power; non-deterministic machines are
not more powerful than deterministic
ones in terms of the languages they can
accept

1/29/2018 Speech and Language Processing - Jurafsky and Martin 39

ND Recognition

• Two basic approaches (used in all major
implementations of regular expressions,
see Friedl 2006)

1. Either take a ND machine and convert it to a
D machine and then do recognition with
that.

2. Or explicitly manage the process of
recognition as a state-space search (leaving
the machine as is).

1/29/2018 Speech and Language Processing - Jurafsky and Martin 40

Non-Deterministic
Recognition: Search

• In a ND FSA there exists at least one path
through the machine for a string that is in the
language defined by the machine.

• But not all paths directed through the machine
for an accept string lead to an accept state.

• No paths through the machine lead to an accept
state for a string not in the language.

1/29/2018 Speech and Language Processing - Jurafsky and Martin 41

Non-Deterministic
Recognition

• So success in non-deterministic
recognition occurs when a path is found
through the machine that ends in an
accept.

• Failure occurs when all of the possible
paths for a given string lead to failure.

1/29/2018 Speech and Language Processing - Jurafsky and Martin 42

Example

b a a a ! \

q0 q1 q2 q2 q3 q4

1/29/2018 Speech and Language Processing - Jurafsky and Martin 44

Example

1/29/2018 Speech and Language Processing - Jurafsky and Martin 45

Example

1/29/2018 Speech and Language Processing - Jurafsky and Martin 46

Example

1/29/2018 Speech and Language Processing - Jurafsky and Martin 47

Example

1/29/2018 Speech and Language Processing - Jurafsky and Martin 48

Example

1/29/2018 Speech and Language Processing - Jurafsky and Martin 49

Example

1/29/2018 Speech and Language Processing - Jurafsky and Martin 50

Example

1/29/2018 Speech and Language Processing - Jurafsky and Martin 51

Example

1/29/2018 Speech and Language Processing - Jurafsky and Martin 52

Key Points

• States in the search space are pairings of
tape positions and states in the machine.

• By keeping track of as yet unexplored
states, a recognizer can systematically
explore all the paths through the machine
given an input.

FSTs (Contd)

1/29/2018 Speech and Language Processing - Jurafsky and Martin 54

FST Fragment: Lexical to
Intermediate

• ^ is morpheme boundary; # is word
boundary

Putting Them Together

Practical Uses

• This kind of parsing is normally called
morphological analysis

• Can be

• An important stand-alone component of an
application (spelling correction, information
retrieval, part-of-speech tagging,…)

• Or simply a link in a chain of processing
(machine translation, parsing,…)

FST-based Tokenization

1/29/2018 Speech and Language Processing - Jurafsky and Martin 59

Porter Stemmer (1980)
• Common algorithm for stemming English

• Conventions + 5 phases of reductions

 phases applied sequentially

 each phase consists of a set of commands

 sample convention: Of the rules in a compound
command, select the one that applies to the
longest suffix.

Porter Stemmer (1980)

• Standard, very popular and usable stemmer (IR,
IE) – identify a word’s stem

• Sequence of cascaded rewrite rules, e.g.

 IZE  ε (e.g. unionize  union)

 CY  T (e.g. frequency  frequent)

 ING  ε , if stem contains vowel (motoring 

motor)

• Can be implemented as a lexicon-free FST
(many implementations available on the web)

• http://text-processing.com/demo/stem/

http://text-processing.com/demo/stem/

Eliza

1/29/2018 Speech and Language Processing - Jurafsky and Martin 67

Eliza FST

1/29/2018 Speech and Language Processing - Jurafsky and Martin 68

Summing Up

• Regular expressions and FSAs can represent subsets
of natural language as well as regular languages

Both representations may be difficult for humans to
use for any real subset of a language

But quick, powerful and easy to use for small problems

• Finite state transducers and rules are common
ways to incorporate linguistic ideas in NLP for
small applications

• Particularly useful for no data setting

