
Design and Implementation of High Performance
Architectures with Partially Reconfigurable CGRAs

Mansureh Shahraki Moghaddam, Kolin Paul and M Balakrishnan
Department of Computer Science and Engineering, IIT Delhi, India

ABSTRACT
Programmable hardware built on a regular architecture can
be used to address the challenges associated with using many
fixed core architectures for applications which have varying
compute power requirements during the lifetime of execu-
tion. The fine granularity of FPGAs is however unsuitable
for effectively exploiting runtime reconfiguration because of
the high overheads involved. Effective use of a dynamically
reconfigurable fabric across a range of applications remains
a challenge. In this work, we use a model coarse grain recon-
figurable fabric to explore the potential of such a fabric for a
range of key reconfiguration parameters. This coarse grain
reconfigurable array with malleable communication links is
used for design space exploration of two compute intensive
kernel implementations which exploit dynamically reconfigu-
ration. The semi-systolic near neighbour communication in-
terconnect can be dynamically reconfigured for each “epoch”
of computation. Different blocks of the application program
reuse the compute grain in different epochs. Some of the
links between the compute tiles are changed during the re-
configuration phase and because the architecture is partially
reconfigured, the reconfiguration in some tiles can be com-
pletely overlapped with computation in other tiles. The pa-
per proposes a methodology to exploit this design paradigm to
drastically reduce the context switch overhead for rebalanc-
ing the pipeline to build high performance/area applications
on this fabric.

Keywords
Dynamic Reconfiguration,CGRA, FFT, JPEG encoder

1. INTRODUCTION
The continuous scaling of feature sizes has led to massive

integration densities which has resulted in many “IP’s” be-
ing present in the same die/chip. To take advantage of the
large number of such ip cores, programmability, available
post device fabrication is of crucial importance. Apart from
the ability to potentially improve yield in the sub 22nm era,
the ability to make the device processor architecture cus-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

tomizable post fabrication can also help improve the perfor-
mance/watt figure of merit.

Programmable hardware, often synonymous with FPGAs,
has been around for the last three decades. FPGAs are
however, too fine grained in nature and hence are difficult to
program. Because of limited routing capabilities and the fine
grain nature of the FPGA fabric, it often becomes difficult
to meet performance constraints of power, area and time. It
is not a coincidence that FPGAs are primarily looked upon
by the industry for implementing low volume “ASICs” that
are not too power sensitive.

Effective use of the available silicon real estate at cur-
rent technology node points and below would require the
designer to exploit regularity. The fabric should be based on
coarse grained programmable logic. Coarse grain reconfig-
urable architectures(CGRA) have been well studied in liter-
ature principally in the context of accelerators for compute
intensive streaming signal processing applications because
of their near ASIC/hardware like computational efficiency
and software like engineering efficiency. More importantly,
many applications can be temporally partitioned by exploit-
ing temporal locality in the code apart from data. This
temporal partitioning allows significant area advantages by
allowing effective reuse of the CGRA via runtime program-
ming to do temporally distinct tasks. An application can be
represented as a set of sequential communicating processes
which can then be placed/mapped onto an array of coarse
grain compute tiles. Depending on the required performance
(throughput), each process can be (trivially) mapped onto
a tile. If however, area (and power) is a constraint, then
tiles may be reused to temporally pipeline the processes.
Significantly, using active partial reconfiguration allows the
dynamic balancing of the compute pipeline on the basis of
ambient conditions.

The major contribution of this paper is to advance un-
derstanding of the potential of dynamic reconfiguration in
the context of CGRAs. This has been studied by imple-
menting two well documented compute intensive applica-
tions and analysing the performance metrics under various
area and reconfiguration cost constraints. Recently, a new
CGRA called reMORPH [1] has been proposed where the
authors have effectively used the dynamic reconfiguration
capabilities of Xilinx FPGAs to build a high performance
coarse grain fabric. In the next section, we briefly review re-
MORPH which is an architecture that is dynamically recon-
figurable and can instantiate compute elements on demand
to meet performance/area requirements to set the context
for this paper.

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.121

202

2. A COARSE GRAINED PROGRAMMABLE
FABRIC
A typical reconfigurable multiprocessor framework con-

sists of compute tiles with a programmable interconnect.
It has been reported that if the reconfiguration is limited

to changing the connectivity at runtime, the overheads are
typically very low [1]. This allows fairly large circuits to be
implemented modularly in a time multiplexed manner which
makes the implementation area and power efficient. This is
because most applications go through “phases” defined by
the communication patterns among the Coarse Grain Recon-
figurable Modules (CGRM) in their lifetime. These phases,
for many applications (notably streaming ones), can be de-
rived statically. The connectivity between the tiles changes
in each of the phases and can be statically derived. This
temporal partitioning of the application is used to generate
the configuration information necessary for each “epoch” of
execution. It may be noted that the change in the intercon-
nection network could also be accompanied by a change in
the configuration data for each of the processing elements.

The partially reconfigurable nearest neighbor mesh con-
nected array of coarse grain reconfigurable tiles reMORPH
[1] is illustrated in Figure 1. Modern FPGAs have hard DSP
macros and lots of embedded memory which have been used
to design the processing element(PE)/tile/grain of this ar-
chitecture to operate at 400 MHz with a very low footprint
of 200 slice LUTs

Figure 1: reMORPH [1]

Each tile is connected to its neighbour in one of the four
principal directions at any instant in time. The links can
change over the application’s lifetime. Each tile reads data
from its local memory but can write to either its own mem-
ory or the neighbour’s memory. The data generated at non
neighbour tiles is brought to the tile’s memory using explicit
copy instructions and changing connectivity if required. All
the grains can in principle execute different instructions at
every clock cycle which gives it a MIMD flavor. Two 512×48
sized dual port block RAMs with two parallel reads and one
write capability is used to store the data (data memory).
One 512× 72 sized dual port BRAM is used as the instruc-
tion register. Semi-systolic near-neighbour shared memory
communication involves least amount of resources used for
routing enabling the array to be clocked at 300-400 MHz
(depending on the speed grade of the device). Each PE can
implement arithmetic and logic operations along with direct
and indirect addressing. This enables complete ‘C’ style

loops to be executed by the PE which supports these opera-
tions on a 48 bit word. Memory locations are reused to store
the intermediate results. In each iteration, the same set of
instructions are executed by updating the base addresses of
the registers to read new data using register indirect ad-
dressing. All the grains can in principle execute different
instructions at every clock cycle which gives it a MIMD fla-
vor.

This streaming multi-processor architecture is targeted to
exploit runtime reconfiguration available in commercial FP-
GAs to enable building of high performance/area architec-
tures. The reconfiguration is achieved either by

• Changing Instructions in Memory

• Changing connectivity between grains using a “Fast
Programmable Interconnect”

The high level block diagram of the prototype system is il-
lustrated in Figure 2. The application code implemented

Figure 2: System Diagram

as an accelerator is mapped to the reconfigurable partition
which is attached as a peripheral attached to the PLB bus.
The bus master is a soft processor — MicroBlaze — which
acts at the overall Runtime Management System Controller
and helps in performing IO with the external world via the
UART and other available interfaces. The ICAP interface is
used to load the partial bit streams from the Compact Flash
(using the Systems ACE controller) necessary to reconfigure
the connectivity at runtime according to the algorithm run-
ning on MicroBlaze and can achieve data transfer rates in
excess of 180MB/s [2].

We model the application as a set of interacting sequen-
tial processes {p} = {p1, p2, . . . , pk}. The pattern of inter-
action among the processes changes over time. The applica-
tion’s communication patterns can be analyzed at compile
time and phases of the application which have a common
communication pattern can be identified either by static
data flow analysis or by profiling. This set of processes
{p} is mapped onto the set of compute elements (grains)
{P} = {P1, P2, . . . Pk} for each phase or epoch.

A configuration Ci remains active for time period τa
i be-

fore a configuration change happens. A configuration change
Ci to Cj incurs a cost τij which is proportional to the change
in the number of communication links lij . The runtime of
the application is given by

Runtime =
∑
Ci

τa
i

︸ ︷︷ ︸
A

+
∑

Ci,Cj

τij

︸ ︷︷ ︸
B

+
∑

Ci,Cj

τ copy
ij

︸ ︷︷ ︸
C

(1)

203

The first term is the sum of all the run times in each epoch
while the second term reflects the reconfiguration cost of all
the context switches. Under the assumption that all the τ ′is
are known, the term A in Equation 1 is statically known.
The term B is dependent on the interconnection network
between the grains as also the programs executing on the
grains. The third term C takes care of copying data across
tiles in the case where the producer and consumer tiles are
not neighbours. Therefore careful placement of the p′is to
the Pk compute elements can help in reducing the overall
runtime. Each of the C′is corresponds to the communication
amongst the different processes in an epoch. The p′is need to
be mapped to the P ′ks (which are the compute elements) in
a manner such that the change from Ci to Cj is minimized.
In general, different assignments of pi −→ Pk for a Ci will
result in different τa

i which would affect the overall runtime.
This is because data produced by process pi in processor Pk

(i �= k) in epoch i will have to be copied to processor Pj for
process pi to execute in the next epoch. This is taken care
of in term C of Equation 1.

We measure the effectiveness of mapping algorithms and
the dynamically reconfigurable CGRA architecture by im-
plementing two well documented application kernels. Algo-
rithms from the image processing domain can be effectively
modelled using a process network framework. For exam-
ple, the JPEG encoder can be described as a combination
of the processes { Blocking/shift, DCT, Quantization, Zig
Zag, Huffman} operating in a pipelined manner as shown in
Figure 3.

Figure 3: JPEG Encoder

Each of these blocks can be implemented in one reMORPH
tile. However, the architecture allows for the rebalancing of
the spatial pipeline using a temporal one by (re-)using a tile
for performing different blocks at different times. One such
grouping using 3 tiles is shown on the right side of Figure 3.

Similarly, in the signal processing domain, transform ker-
nels are the the key computational kernels. For example,
the FFT kernel is used in a myriad of applications and can
be described as a collection of butterfly processes (BF) as
shown in Figure 4.

Different mappings of the processes to the tiles gives us
different performance metrics.

In the next section, we describe the design space that can
be explored to obtain an optimal implementation on such
an architecture.

3. DESIGN SPACE EXPLORATION
The mapping of processes to tiles is a hard problem when

we consider that the connectivity between the tiles can be
changed at runtime. The design space that needs to be
looked at increases substantially. We look at two applica-
tions — FFT which is data and compute intensive and JPEG
which is computationally very costly.

3.1 Radix 2 FFT Decomposition

Figure 4: FFT Processes

Radix2 FFT has a flat two-dimensional computational
structure, which makes it easy to break the structure hori-
zontally or vertically to smaller processes which are the same
but work on different parts of overal computation. The 16-
point Radix2 FFT example depicted in Figure 5 shows that
the structure of FFT lends itself easily to a pipelined im-
plementation on an array of processing tiles. The process-
ing element in reMORPH has 512 words for instruction and
data separately. which has to be used for complex inputs
and for storing twiddle factors. The outputs typically reuse
the input memory locations.

Figure 5: 16-point R2FF

A tile can in general, do M complex operations on M com-
plex inputs; we will later compute exact amount of M for our
specific tile. Therefore the N point Radix2 FFT structure
has to be broken into N

M
horizontal partitions (rows), each

mapped to atleast one tile. Also for an N-point Radix2 FFT
there are logN2 stages which the inputs go through. These
two parameters, M and N, are key parameters in deciding
number of tiles used in a circuit and task allotted to each
one of them.

We do a design space exploration for a 16 point Radix2
FFT to identify the key issues that need to be taken care of
in using a CGRA for implementing the kernel. Rearranging
the inputs of 16-point Radix2 FFT of Figure 5 will give the
partitioned structure of Figure 6. In this figure M and N are

204

4 and 16 respectively. So the structure is broken into four
rows or partitions, each with four stages. Depending on
the performance-area criteria specified by designer, atleast
one and atmost four tiles can be used to execute operations
allotted to these four stages. For this case, the partition
size is four, which indicates that the partition input length
is four complex values.

Figure 6: 16-point R2FFT partitions

Figure 7 proposes four different mappings of the above
example into tiles of partition size M = 4. We use rectangles
to denote tile and circles in them indicate stage. The four
cases show

a) four tiles are used each doing all four stages of a row

b) 16 tiles are used; one tile for each stage in each row

c) 8 tiles are used in 4 rows and 2 columns with equal
distribution of stages in each row

d) 8 tiles are used in 4 rows and 2 columns with unequal
distribution of stages in each row

Clearly the decomposition proposed in the last case (d)is
not good for pipelined implementation. Mapping each par-
tition to a tile in all models except the one in bottom-right
corner, are good candidates for a pipelined implementation,
because the complexity of R2FFT structure is decomposed
into partitions uniformly. The decision of selecting one of
the possible mappings depends the optimization objective
which can either be area or throughput. Clearly, Figure 7,
indicates that while higher performance is expected if the
number of tiles is increased, arbitrarily increasing the num-
ber of tiles can lead to a greater number of links which must
be reconfigured on-the-fly. Therefore, the final performance
metric becomes a function of both the number of tiles and
link reconfiguration cost.

In general, to implement an N-point Radix2 FFT using
tiles of size M, computational structure of FFT has to be
broken into N

M
rows. In each row there is log2N stages

each doing M complex operations on M complex inputs to
produce M complex outputs. Irrespective of the number of
columns, tiles in each column transfer the computed com-
plex outputs to the next column. When N is greater than
M, before transferring results to next column, the generated
outputs must be reordered. It may be noted that each tile
transfers only half of its output to another tile. While pro-
cess BFi does the computation part of stage i, vcp and hcp
processes are used to exchange data vertically with another
tile in the same column or send data horizontally to next
tile of the right-side column. For example, in the 1024-point

Figure 7: Different Mappings for16-point Radix2 FFT

Radix2 FFT, the runtime of the butterflies executing in the
processing elements or tiles in different stages is not exactly
the same (Table 1), even though the same number of com-
plex operations are executed in them. The main reason for
this minor difference is different structures used in our im-
plementation for the M-point butterfly in different stages.

Table 1: 1024-point Radix2 FFT processes

process runtime(ns) Twiddle insts dmem
BF0 2672 128 101 128*2+41

+twiddles
BF1 2672 128
BF2 2672 128
BF3 4112 64
BF4 3434 32
BF5 3134 16
BF6 3062 8
BF7 3182 4
BF8 3554 2
BF9 4364 1
vcp 789 0 16 11
hcp 1557 0

For an N-point R2FFT using tiles of size M, we need at
least one and at most log2N columns, each of size N

M
tiles.

BFi process needs 2M locations for M inputs and at most
M locations for M

2
twiddle factors and 41 locations for tem-

porary locations. Depending on whether we reuse the input
data locations to store the outputs or not, we need 3×M+41
or 5×M +41 locations in data memory of each tile. There-
fore M = 2x where x = �DM−41

3
�for a tile with data mem-

ory of size DM. For the specific case of reMORPH where
DM=512, M turns out to be 128. Therefore a 1024-point
Radix2 FFT implementations needs atleast 8 and at most
80 tiles. Of course we could consider more than one copy of
this structure to increase throughput while sacrificing area.

The code part for an M-point complex operation in each
stage of a Radix2 FFT is small enough to be saved perma-
nently in the instruction memory of a tile. Tiles in the first
column receive their input in external (preprocessing) col-
umn and the tiles in other columns receive input from the

205

tiles in previous column. But N
2

twiddle factors which are
complex numbers can not be completely loaded into the data
memory of the tiles during preprocessing phase. Therefore
they have to be loaded partially during runtime. Table 1
states the exact number of twiddle factors needed for each
stage. Before each tile starts executing the next stage BF
process, the required twiddle factors must be loaded into
tiles’ data memories. This overhead is reduced by effectively
overlapping computation with communication. Figure 8 il-
lustrates the twiddle factors used in each stage of each row
for 64-point Radix2 FFT when M=8.

Figure 8: Butterfly for 16-point R2FFT

To reduce the overhead of loading twiddle factors in to
the data memory before each stage’s execution, we run the
following algorithm:

• Twiddle factors for first column (Red ones), can be
loaded in preprocessing phase

• Twiddle factors for next three column are of two types;
Green and Yellow. As w2i = w2

i , a green tile during ex-
ecution stage k can generates twiddle factors for stage
k+1. Therefore while we need to reload data memory
with yellow twiddle factors, green twiddles are gener-
ated automatically. According to runtime frequency
of our circuit and the reconfiguration data transfer
rates, while reloading one location in data memory
takes 33.33 ns, executing an instruction takes 2.5 ns.
Therefore it is great help in generating new twiddle
factors from previous twiddle factors instead of load-
ing memory with new twiddles

• Twiddle factors for last two column (Blue ones) are
already in data memory, only index to go through them
is changed from column to column

So instead of reloading N × log2N we just need to reload
(log2N−log2M)× N

2
twiddle factors (for yellow tiles), which

is a considerable reduction in data memory loading cost.
The same reasoning (described for green tiles) is used in

our implementation to reduce cost of reloading data memory
for copy process variables. Copy process vcp will be executed
many times during an application’s lifetime, and each time
we need new source and destination variables to copy data
from a source tile to a destination tile. So instead of reload-
ing data memory with new values for these two variables, it

is more beneficial to update these two variables using current
vcp process, Table 2.

Table 2: Optimized Copy Processes

cols prev. cost(ns) new cost(ns) improvement
1 1066.6ns 15.0ns 1051.6ns
2 1066.6ns 15.0ns 1051.6ns
5 533.3ns 10.0ns 523.3ns
10 0.0ns 0.0ns 0.0ns

A link is a set of nets connecting two tiles in our circuit,
and it is of size 48 lines for a word size of 48-bits. As illus-
trated in Figure 6, each partition may send its output to
a different tile on to the column on its right. Tile p0 sends
to p4 and p6, and p2 also sends to p6 and p4. Therefore
two link reconfigurations are required in each column. To
optimize link reconfiguration, we can first exchange half of
the output among each pair of tiles in a column (Figure 9)
and then each tile can transfer the final output to the tile in
the next column. While in this case also we need two link
reconfigurations, but the vertical link reconfiguration will
overlap BF process execution time. Even if many columns
are used in our circuit we do not need to do data exchange
vertically for all columns. It is sufficient to do vertical link
reconfiguration and vertical data exchange only for the first
log2N − log2M columns. Because after that exchange must
happen inside a tile and instead of reordering data in a tile
data memory, we can just adjust the BFi process loop index
in tile i.

Figure 9: Vertical links in a column

3.2 Empirical Performance Equation
In an N-point Radix2 FFT implementation total execu-

tion time (τ) consists of time to receive data from input
circuit (τ0), time that the ButterFly BF (τ1) process ex-
ecutes including reconfiguration times if required, vcp (τ3)
and hcp (τ6) processes, time to stablish links (τ2 and τ5) and
finally time to execute the mentioned processes (τ2 and τ4).
Following equations give the cost of mentioned tasks.

τ =
7∑

i=0

τi (2)

Si which is used in calculation τ2 is one only for logN2 −
logM2 first columns. trcp and trBFi

are runtime for vcp, hcp
and BFi processes respectively, as stated in Table 3. regcp is
number of copy process variables which need to be reloaded.

Si =

{
1 , if i < 3

0 , otherwise
(3)

tl is time to configure links for a column whether inside
the column or from the column to the next column. L is
cost of reconfiguring of size 48 wires.

206

tl =
N

M
× L (4)

td is time to reload data memories of one column tiles with
new values for cp process source and destination variables.

td = regcp × N

M
× 33.33 (5)

τ0 is runtime for hcp process.

τ0 = trcp (6)
τ1 is time to reload twiddle factors to yellow tiles.

τ1 =
N

2
× 33.33×

⎧⎨
⎩
3 , ifcols = 1 or 2

2 , ifcols = 5

0 , ifcols = 10

(7)

A =

9∑
i=0

Max(trBFi
, Si × tl)

B =
4∑

i=0

Max(trBFi
, trBFi+5

, Si × tl)

C =
1∑

i=0

Max(trBFi
, trBFi+2

, trBFi+4
, trBFi+6

, trBFi+8
, Si×tl×(2−i))

D = Max9
i=0(

{
trBFi

|i = 0, 1, ..., 9

}
, 3× tl)

τ2 is maximum cost of BF process execution time and ver-
tical link reconfiguration.

τ2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
A , if col = 1

B , if cols = 2

C , if cols = 5

D , if cols = 10

(8)

(9)
τ3 is the time to reload data memory for vcp processes

running in current column of tiles. The same logic used for
τ6 can reduce τ3 to zero which we have not considered.

τ3 = td ×
⎧⎨
⎩
2 , if cols = 1 or 2

1 , if cols = 5

0 , if cols = 10

(10)

τ4 is the time to run all vertical copy processes during ap-
plication lifetime.

τ4 = trcp ×
⎧⎨
⎩
3 , if cols = 1 or 2

2 , if cols = 5

1 , if cols = 10

(11)

τ5 is the time to configure horizontal links from each col-
umn to the next column.

τ5 = tl × cols (12)
τ6 is the time to reconfigure data memory for hcp process.

τ6 = 0 (13)
τ7 is the time to send results from current column to next

column or to the output.

τ7 = trcp (14)

3.3 Performance versus Area and reLink cost
To evaluate our 1024-point Radix2 FFT implementation

on a matrix of tiles, we implemented FFT in different num-
ber of columns subject to the fact that that there are 8 tiles
in each column. Figure 10 and 11 illustrate the relation
between number of tiles used in a design and link reconfig-
uration cost with throughput. As depicted in Figure 10,

Figure 10: Execution Time for 1024-point Radix2 FFT

using more columns gives a better performance when link
reconfiguration cost is small. For example using 10 columns
to implement 1024-point Radix2 FFT, in best case gives
throughput of around 45000 1024-point Radix2 FFTs per
second, while throughput in a high end PC computer is
roughly 1000.

Figure 11: Interesting Part of Figure 10

Figure 11, which is a zoom on the interesting part of
Figure 10, illustrates that circuits with more columns are
more sensitive to link reconfiguration cost. Throughput is
defined as number of 1024-point Radix2 FFTs computed in
one second. In Figure 12 the effect of increasing number of
columns (number of tiles) on throughput, for different link
reconfiguration costs, is depicted. According to the results
shown above, while link reconfiguration cost is small, in-
creasing number of columns will increase the performance.
However when the link reconfiguration cost exceeds 700ns,
increasing the number of columns does not giving notice-
able performance. And link reconfiguration cost more than
1100ns has opposite effect on throughput. It may also be
noted that effect of link reconfiguration cost is more visible
in a design with smaller partition size, also in a design with
more number of tiles.

207

Figure 12: Link cost influence on Radix2 FFT implementa-
tion

In the next subsection, we do a design space exploration
for the second compute intensive kernel. The JPEG encoder
throws up a different challenge because the processes are
very compute intensive and we can partition the processes at
runtime to obtain the desired performance metrics without
encountering too much of the interconnect reconfiguration
overhead.

3.4 JPEG Encoder
In this section a brief description of the JPEG Encoder

processes is given. Then a manual mapping of these pro-
cesses to some specific number of tiles is presented. The
rebalancing strategies discussed in detail in the next subsec-
tion are then applied to this application. The JPEG Encoder
consists of five main processes; shift, DCT, quantize, zigzag
and huffman. There are some other helper processes which
essentially help to perform the mapping efficiently and re-
duce the execution time. For example, dct is a process which
does a blocked computation of the DCT by dividing the orig-
inal process into four sub blocks.

DCT =

{
dct00 dct04

dct40 dct44

}
As DCT is the heaviest process of this application, dct is
used in some of the implementations to reduce total execu-
tion time by about four. CP64, CP32 and CP16 are pro-
cesses used to copy 64, 32 or 16 elements from a tile to the
adjacent tile.

Huffman is the most code intensive process which does not
fit in a tile and hence, it is broken into 5 smaller processes:
hman1, ..., hman5. As illustrated in Table 3, there are three
columns for data memory usage of each tile; data1 states
number of registers used to save fixed data which will be
loaded into memory only once, data2 states number of tem-
porary registers and data3 states number of registers which
need to be reinitialized each time the related process needs
to be executed.

3.4.1 Manual Mapping
JPEG Encoder is implemented on a circuit consisting of 1,

2, 5, 10 or 13 tiles. In Table 4, Ti is used for ith tile. For long
running processes with a small number of instructions, it is
advantageous to permamently“pin”the instructions to a tile.

Table 3: Cost of reconfiguration (bits)

9
name inst data1 data2 data3 runtime

(cycles)
Main Processes

p0 shift 11 0 2 9 720
p1 DCT 62 64 14 13 133324
p2 Alpha 12 64 2 7 720
p3 Quantize 35 64 7 7 1576
p4 Zigzag 65 0 0 0 65
p5 Hman1 71 0 10 9 7934
p6 Hman2 56 0 10 6 1587
p7 Hman3 151 0 43 12 1651
p8 Hman4 180 0 17 12 2300
p9 Hman5 109 21 14 17 6823

Auxiliary Processes
p10 dct 62 64 14 13 33372

Type1 of copy processes: Targeting optimal memory usage
p11 CP16 11 0 2 2 196
p12 CP16 11 0 2 2 369
p13 CP16 11 0 2 2 720

Type2 of copy processes: Targeting optimal execution time
p11 CP16 17 0 0 0 17
p12 CP16 33 0 0 0 33
p13 CP16 65 0 0 0 65

Table 4: JPEG Encoder: Manual Mapping

9

Impl1 Impl2 Impl3 Impl4 Impl5
tiles 1 2 10 13 5
p0 T0 T1 T0(f) T0(f) T4

p1 T0 T0 T1(f) −−− −−−
p2 T0 T1 T2(f) T5(f) T4

p3 T0 T1 T3(f) T6(f) T4

p4 T0 T1 T4(f) T7(f) T4

p5 T0(f) T1(f) T5(f) T8(f) T4(f)
p6 T0 T1 T6(f) T9(f) T4

p7 T0(f) T1(f) T7(f) T10(f) T4(f)
p8 T0 T1 T8(f) T11(f) T4

p9 T0(f) T1(f) T9(f) T12(f) T4(f)
p10 − − − T1−4(f) T0−3

p11 − − − T2−3(f) T2−3

p12 − − − T1(f) T1

p13 − T1, T1 T0−9(f) T0−12(f) T0−4

Time(μs) 419 334 334 84 86
Avg. Util. 1 0.62 0.12 0.37 0.98

images 2.98 3.74 3.74 14.88 14.43
reconfig. yes yes no no yes
reLink no no no yes yes

Label (f) is used for such a process. The execution times
have been obtained with a 400 MHz operating clock and a
180 MB/s reconfiguration speed using the ICAP interface
for images of sizes 200× 200 pixels.

According to Table 4 for the first implementation only one
tile is used. In second implementation out of two tiles, one is
considered for DCT. In third implementation 1-1 mapping
is applied to map each process to a separate tile. In fourth
implementation also one-to-one mapping is used except for
DCT which is broken into four dct processes and mapped to
four tiles. And finally in the last implementation four tiles
are used the same way as previous implementation and all
other processes are mapped into only one tile.

The total time taken to compress a sequence of images,
average PE utilization and number of images compressed in

208

one second are given in Table 4. In computing total time,
overhead incurred due to copy operations is also accounted
for. Besides that, in an implementation, whether reconfig-
uration cost or link establishment is needed or not is also
depicted. According to this table, whether we use two tiles
or 10 tiles, throughput is the same, similarly when we use
5 or 13 tiles. The reason is that in these implementations
we do not break DCT to smaller sizes. Therefore whether
number of tiles is 5 or 13 (same for 2 and 10), the tile al-
lotted to do dct operation will dominate in determining the
system throughput. The best processor utilization among
these five implementations is when we use five tiles, which
is about 98 percent.

3.5 Mapping Processes to Tiles
Mapping the process network to an array of tiles present

in a CGRA like reMORPH requires careful balancing of the
pipeline to take care of the compute/communication metric.
In this section we propose two rebalancing methods which
are used to distribute processes of an application among the
tiles of the array efficiently. To apply these algorithms, we
start with the process network of the application annotated
with some parameters for each process, viz., data memory
and instruction memory usage and runtime. In the rebalanc-
ing algorithms, we follow an incremental approach, starting
with one tile and increasing the number of tiles to a maxi-
mum subject to area/power constraints while trying to min-
imize the objective function which could be area or through-
put at each step.

In the first method (reBalanceOne), we start with only
one tile. Then in each step we allocate a new tile to the
the heaviest tile. The heaviest tile is the tile with maximum
execution time which is defined to be the sum of runtime and
reconfiguration time for all the processes executing in that
tile. The steps are explained with reference to Figure 13.

Figure 13: reBalancing

If the heaviest tile consists of more than one process (case
a, b, c in Figure 13), the first process is allocated to Ti and
the rest of the processes go to Tj . We iteratively move one
more process from Tj to Ti if we find a decrease in the total
execution time else the previous allocation is retained. If the
heaviest tile contains only one process (case d in Figure 13),
we create a new tile as an additional instantiation of this
heavy tile. The steps are formally specified in Algorithm 1.

Algorithm 1. reBalanceOne

Require: n : maximum number of tiles
Initially consider one tile: T1

Calculate total execution time: T ime(T1)
�1 = T ime(T1)
while tiles < MaxTilesInDevice do

Insert new tile: T2

if T1 has only one process then
make T2 as a copy of T1 � Total

execution time of T1 is now divided into two for
T1 and T2

else
�2 = Time(T1)
Move all processes from T1 to T2

repeat
�1 = �2
move first process from T2 to T1

Calculate �2 = |T ime(T2)− T ime(T1)|
until �2 < �1
move last process from T1 to T2

end if
end while
return

end

The above algorithm follows a greedy approach which can
now be refined to further rebalance allocation of processes
to tiles to decrease total execution time of the application.
To allocate a new tile, the set “surrounding” the heaviest
tile is computed. This set is bounded from left/right by the
first tile (in leftside/rightside of the heaviest tile) which has
more than one copy (instantiation) or is the first/last tile of
the whole circuit.

Figure 14: Allocating more tiles to Case e of Figure 13

For example in case (a) in Figure 14, which is the same as
case (e) in Figure 13, the set surrounding the heaviest tile
(T1), is {T1, T2, T3}.
Then the improved algorithm reBalanceTwo will try to re-
distribute processes among the tiles of this set according to
the logic mentioned in following paragraphs.

In reBalanceTwo algorithm, we calculate the average ex-
ecution time for the set and then distribute processes of the
set among tiles such that total time for each tile is close to
the average execution time. We continue calculating aver-
age execution times and reallocating processes among the
set’s tiles. Case b in Figure 14 uses algorithm reBalance to
redistribute processes among the set and we can see that
the total execution time of the application is reduced from
1400ns into 1200ns. The algorithm is formally stated below.

209

Algorithm 2. reBalanceTwo

Find the heaviest tile: Th

(Set,m′) = Surrounding(Th) � Set is the
set of tiles surrounding Th and m′ is number of
tiles in Set
Calculate total execution time T ime = 0
for all tiles in Set do

T ime += T ime(Ti)
end for
AvgT ime = T ime/m′

i=0 � Index of the first Tile in the Set
j=0 � Index of first process in Set
for Ti in Set do

if (T ime(Ti) + allocate(Ti, pj)) ≈ AvgT ime ± Δ
then

allot pj to Ti

Increase i and j by one
else

break
end if

end for
if Arrangementnew �= Arrangementold then

goto line 1
else

return
end if
return

end

There is also a third approach which is the Optimal ap-
proach where we find all possible distributions of processes
among the tiles of the set, and choose the one which gives
the minimum total execution time for the set.

3.5.1 Automated Mapping
Revisiting the JPEG Encoder, instead of breaking a heavy

process into smaller processes and distributing them among
some tiles as done in the previous implementation, we can
duplicate and instantiate the heavy process into more than
one tile. This allows us to propose “rebalancing” algorithms
which allocate processes to tiles in an efficient/(sub)optimal
manner. In the left half of Figure 15, DCT is the heaviest
process of JPEG Encoder application — so more than one
tile can be used for it and all of them do the same operation,
but in a pipelined manner. Therefore, besides memory re-
configuration, “reLink” establishment should be considered
for links coming/going to/from different DCT tiles at the
proper instances of time.

Figure 15: Instantiating a tile n times for a heavy process

Communication pattern between tiles doing dct in third
and fourth implementations is also illustrated in the right
half of Figure 15.

Table 5, gives implementation details while using first rebal-
ancing algorithm for a circuit of size 24 tiles. In this table,
overhead of copy operation from one tile to the other tile
(cp64) is not considered because it just adds a fixed amount
of time to total time taken to process a block of image.
Number in parenthesis states the number of tiles instanti-

Table 5: Binding processes to 24 tiles

tiles T1 T2 T3 T4 T5 T6 T7

24 p0 p1(17) p2−4 p5(2) p6 p7−8 p9

ated for the mentioned process. p1(17) and p5(2) in column
“T2” and “T4”mean that 17 tiles are instantiated for process
p1, and two tiles for process p5. And p2−4 in column “T3”
means that only one tile is used for processes p2 to p4.
As depicted in Figure 16, applying proposed reBalancing
algorithms gives the same mapping in most cases. The rea-
son is that in most cases the heaviest tile contains only one
process and after breaking it into two tiles, these tiles still
remain the heaviest tiles. As mentioned in “reBalanceTwo”
algorithm the processes will be reallotted to the tiles in a set
which contains the heaviest tile, but this heavy tile contains
only one process and hence no further rebalancing is possible
by these algorithms. Therefore three mentioned algorithms
give the same mapping and hence the same total execu-
tion time and throughput. However, in a few cases, when
the number of tiles is between 16 and 20, the heaviest tile
contains more than one process, Therefore “reBalanceTwo”
and“reBalanceOPT”which is an optimal allocation strategy
show interesting results.

Figure 17 illustrates average tile utilization after reBalanc-
ing for circuits using different number of tiles in the range 1
to 25.

Figure 16: Average PE utilization for JPEG Encoder appli-
cation

4. RELATED WORK
Most programmable systems of the recent past have been

based on programmable memory like SRAM or flash mem-
ory. The contents of this memory determine the function-
ality as well as the connectivity of the circuit being imple-
mented in the fabric. The process of populating boolean
values {1,0} into the memory locations is know as recon-
figuration. In some cases, the reconfigurable fabric allows
portions of the system to alter its functionality at runtime
by loading a different partial configuration into that region.
This is termed as Partial runtime reconfiguration (RTR).

210

Figure 17: Average PE utilization for JPEG Encoder appli-
cation

Lysaght et. al. [3] developed an early system for partial re-
configuration using CPLDs for exploiting RTR. An early fine
grained dynamically reconfigurable fabric called GARP [4]
was developed at Berkeley. To overcome the overhead of se-
rial programming of single context FPGAs many multi con-
text devices and architectures have been proposed in the last
fifteen years. Dehon et al [5] introduced DPGA which stored
four contexts simultaneously. Early attempts at using multi
context include Dharma [6] and Morphosys [7] among many
others. Obviously the disadvantage of using multi context is
the increased area overhead. The overhead of programming
fine grained reconfigurable hardware is very heavy and hence
there has been many attempts at building coarse grained
architectures including Piperench [8], RAW [9], Montium
/ Chameleon [10], Imagine [11] etc. The FFT class of al-
gorithms has been widely studied in the last half century.
High performance implementations of the FFT use variants
of the Cooley Tukey method [12]. Duhamel et al. present
an excellent survey of Fast Fourier Transforms [13]. A lot
of techniques have been used to design efficient hardware
implementations of 1D and 2D FFT [14, 15].

5. CONCLUSION
Partial runtime reconfiguration has not been exploited for

building high performance applications primarily because of
the reconfiguration overhead. Active partial reconfiguration
can be effectively utilized using a coarse grain architecture to
rebalance the pipeline. A design space exploration method-
ology to build high performance designs by exploiting partial
reconfiguration has been outlined. Two compute intensive
kernels have been mapped into a CGRA and performance
figures for various cost metrics have been presented. In the
future, we will develop a formal process network formula-
tion for performing an automated mapping, placement and
dynamic routing for applications in the signal processing do-
main.

6. REFERENCES
[1] K. Paul, C. Dash, and M. S. Moghaddam,

“reMORPH – A Runtime Reconfigurable
Architecture,” in DSD, 2012.

[2] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time
partial reconfiguration speed investigation and
architectural design space exploration,” in In Proc. of
the International Conference on Field Programmable
Logic and Applications, 2009.

[3] Patrick Lysaght, Hugh Dick, Gordon McGregor,
David McConnel, and Jon Stockwood , “Prototyping
Environment for Dynamically Reconfigurable Logic.,”
in Field Progammable Logic , 1995.

[4] T. J. Callahan, John Hauser, and John Wawrzynek,
“The Garp Architecture and C Compiler,” IEEE
Trans. on Computers, April 2000.

[5] E. Tau, D. Chen, I. Eslick, J. Brown, and A. DeHon,
“A first generation dpga implementation,” in In
Proceedings of the Third Canadian Workshop on
Field-Programmable Devices, pp. 138–143, 1995.

[6] N. Bhat, K. Chaudhary, and E. S. Kuh,
“Performance-oriented fully routable dynamic
architecture for a field programmable logic device,”
Tech. Rep. UCB/ERL M93/42, EECS Department,
University of California, Berkeley, 1993.

[7] H. Singh, M. hau Lee, G. Lu, F. J. Kurdahi,
N. Bagherzadeh, and E. M. C. Filho, “Morphosys: an
integrated reconfigurable system for data-parallel and
computation-intensive applications,” IEEE
Transactions on Computers, vol. 49, pp. 465–481,
2000.

[8] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine,
and R. R. Taylor, “Piperench: A virtualized
programmable datapath in 0.18 micron technology,” in
In Proc. Of IEEE Custom Integrated Circuits
Conference, pp. 63–66, 2002.

[9] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff,
F. Ghodrat, B. Greenwald, H. Hoffman, P. Johnson,
J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, and A. Agarwal, “The raw
microprocessor: A computational fabric for software
circuits and general-purpose programs,” IEEE Micro,
vol. 22, pp. 25–35, Mar. 2002.

[10] G. J. M. Smit, M. Bos, P. J. M. Havinga, S. J.
Mullender, and J. Smit, “Chameleon –
reconfigurability in hand-held multimedia computers,”
in Proc. First International Symposium on Handheld
and Ubiquuitous Computing, HUC’99, 1999.

[11] J. Owens, S. Rixner, U. Kapasi, P. Mattson,
B. Towles, B. Serebrin, and W. Dally, “Media
processing applications on the imagine stream
processor,” in Computer Design: VLSI in Computers
and Processors, 2002. Proceedings. 2002 IEEE
International Conference on, pp. 295 – 302, 2002.

[12] J. W. Cooley and J. W. Tukey, “An algorithm for the
machine computation of the complex fourier series,”
Mathematics of Computation, vol. 19, pp. 297–301,
April 1965.

[13] P. Duhamel and M. Vetterli, “Fast fourier transforms:
a tutorial review and a state of the art,” Signal
Process., vol. 19, pp. 259–299, Apr. 1990.

[14] A. Al Sallab, H. Fahmy, and M. Rashwan, “Optimized
hardware implementation of fft processor,” in Design
and Test Workshop (IDT), 2009 4th International,
pp. 1 –5, nov. 2009.

[15] N. Miyamoto, L. Karnan, K. Maruo, K. Kotani, and
T. Ohmi, “A small-area high performance 512-point
2-dimensional fft single-chip processor,” in Solid-State
Circuits Conference, 2003. ESSCIRC ’03. Proceedings
of the 29th European, pp. 603 –606, sept. 2003.

211

