
Mapping Tasks to a Dynamically Reconfigurable
Coarse-Grained Array

Mansureh S. Moghaddam, Kolin Paul and M. Balakrishnan

Department of Computer Science and Engineering

IIT Delhi, New Delhi, India

{mansureh,kolin,mbala}@cse.iitd.ac.in

Coarse-Grained Reconfigurable Architectures (CGRAs)

have become popular in recent times as the increased transistor

densities have enabled greater integration of increasingly com-

plex “compute cores”. These devices pack massive compute

power and can be effectively used to build efficient solutions

for applications which have a significant degree of parallelism.

In many cases, these CGRAs are also partially reconfigurable.

Clearly to make effective use of these highly “parallel compute

platforms”, a good mapping flow is required to map the

parallelism that is present in a target application.
We propose an optimal mapping flow which also exploits

the partial reconfiguration property of modern CGRAs. Hence

this algorithm is not only suitable for applications which can

be accommodated in the available silicon but also for larger

applications (or a set of applications) which need more area

than that provided by the CGRA platform.

(a) grid of size
3× 3

(b) a sample task graph (c) Mapped onto a
3× 3 grid

Fig. 1. A sample grid and task graph

In this work partitions of the application are mapped par-

tially and dynamically (during the life time of the application)

onto the platform. While in most mapping flows, scheduling,

binding and place & route steps are carried out in sequence,

our proposed mapping flow integrates all three steps in one

mapping step using an Integer Linear Problem formulation.

The objective is to either minimize the total reconfiguration

time or minimize the total execution time.
An effective strategy for mapping this parallelism to the

many compute elements available in the CGRA fabric is

paramount for extracting the required performance from the

chosen platform. There are two main input elements in

each mapping flow (a) the application and (b) the CGRA

platform. In this work we choose a CGRA which is a 2D

array of processing elements (PEs) connected with a mesh-

like interconnect network; each PE is connected to its four

nearest neighbors (4NNs) i.e. top, left, buttom and right. In

most CGRAs, the PEs are optimized processors working with

a high clock frequency, providing high performance, while

consuming very low power. In some CGRAs, local data and

instruction memories are embedded along with the PE, e.g.

tiles in reMorph [1] is an example in this category. Many

CGRAs allow a MIMD style of functioning and hence can

exploit task level parallelism in applications.
Embedded and multimedia applications can be described

as task graphs where the tasks are statically defined with

respect to code size and runtime. The mapping of such tasks

to a 2D mesh of dynamically reconfigurable tiles requires

“partitioning” of the application task graph in cases where the

number of tiles is less than the number of tasks in the graph.

This is shown in Figure 1. The algorithm is implemented using

TOMLAB/Cplex toolbox and we assess its efficacy on a set of

40 synthetic task graphs. The target applications are the ones

for which there is an outer loop of size I , each iteration of this

outer loop will go to process one block/frame/chunk of data.

There are two possibilities to go through these I iterations;

one is going through all the snaphots, and then go through the

same process for next frame. The other possibility is to have

a loop of size J for each task in each snapshot; each task will

process J frames instead of one at each time, and then forward

the frame to next task in order. From the experimental results

we can conclude that if the boundary tiles in each snapshot

are large enough, breaking the outer loop bound to a smaller

value and making an inner loop to each tile for each snapshot,

the total execution time of the application decreases. For real

applications, the algorithm was able to produce a mapping of

JPEG2000 application as shown in Figure 2.

(a) Task Graph (b) mapping

Fig. 2. JPEG2000 Application and Mapping to CGRA

REFERENCES

[1] Kolin Paul, Chinmaya Dash and Mansureh S. Moghaddam, reMORPH –
A Runtime Reconfigurable Architecture, 15th Euromicro Conference on
Digital System Design (DSD2012), September 5-8, 2012, Cesme, Izmir,
Turkey, 2012.

2014 IEEE 22nd International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/.20

33

2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/FCCM.2014.20

33

