
reMORPH – A Runtime Reconfigurable Architecture

Kolin Paul, Chinmaya Dash and Mansureh Shahraki Moghaddam
Department of Computer Science and Engineering

Indian Institute of Technology Delhi, India

Abstract—Programmable hardware built on a regular archi-
tecture can partially alleviate the problem of increased de-
fect densities associated with transistor scaling by dynamically
wiring around the defects [1]. The fine granularity of FPGAs
is however unsuitable for effectively exploiting runtime recon-
figuration because of the high overheads involved. A coarse
grain reconfigurable array with malleable communication links
– reMORPH – is proposed in this paper. The compute tile
uses DSP48E and BRAM embedded blocks in a Xilinx FPGA
and has a very low footprint of about 200 slice LUTs. The
semi-systolic near neighbour communication interconnect can be
dynamically reconfigured for each “epoch” of computation. The
“epoch” or phases of the application are obtained via profiling
or static data flow analysis. Some of the links between the
compute tiles are changed during the reconfiguration phase which
drastically reduces the context switch overhead enabling high
performance/area applications to be built on this fabric.

Keywords-Partial reconfiguration, FPGAs, programmable
hardware

I. INTRODUCTION

The continuous scaling of feature sizes has led to massive

integration densities which now is in the order of a billion
transistors per cm2. This massive silicon real estate has

enabled designers to implement huge on-chip caches, on-chip

codecs and accelerators and many core architectures. However,

this has come at a cost. The decreased feature sizes have led to

increased power densities. One way to mitigate the increased

power density levels is to operate the chip at low frequencies

which essentially implies a sub optimal performance. Another

major negative impact is with respect to increased defect

densities and lower yields. The increase in complexity of

modern chips gives rise to “irregular” circuits which increase

defect probabilities. Regularity is a successful design paradigm

in VLSI which results in lower number of defects. In most

cases, the first devices manufactured at a new technology node

point are very regular circuits like memories. The regularity

in VLSI chips requires that the device be made customizable

post fabrication giving rise to programmable circuits ranging

from PLAs/PALs to FPGAs.

Programmable hardware, often synonymous with FPGAs,

has been around for the last three decades. However, FPGAs

are difficult to program and often do not meet performance

constraints of power, area and time. In fact they have really

been used as surrogate ASICs. The inherent programmability

of FPGAs has never really been exploited despite the fact

that partial runtime reconfiguration has been commercially

available for at least a decade. Modern complex chips as

found in many embedded applications, are large and often

incorporate many “large” cores with hundreds of global lines.

They often present a single interface to the external world

via a common bus. Implementing such designs on an FPGA

becomes very difficult and often “routing kills the imple-

mentation”. The fragmentation of market and short time to

market makes extreme demands on engineering efficiency.

Industry and academia have realized the potential of increasing

the granularity of the such regular blocks in the device to

effectively meet the requirements of performance and time to

market.

Therefore the key to effective use the available silicon

real estate is to exploit regularity with coarse grained pro-

grammable logic. Coarse grain reconfigurable architectures

have been researched for last 20 years and have been prin-

cipally used as accelerators for compute intensive streaming

signal processing applications. The key attraction of CGRAs

is their near ASIC/hardware like computational efficiency

and software like engineering efficiency. More importantly,

many applications can be temporally partitioned by exploiting

temporal locality in the code apart from data. This temporal

partitioning allows significant area advantages by allowing

effective reuse of the CGRA via runtime programming to do

temporally distinct tasks. The regularity available in CGRAs

also implies a certain degree of post fab programmability

which can be exploited to wire around the defects[1]. Further-

more, once such a fabric is available, compilers can do very

efficient application mapping. This makes it also possible for

improved system level performance predictions.

The granularity of reusable objects has kept pace with

Hemani’s prediction of increasing 100x every decade [2].

The level of integration of hard and soft IPs in FPGAs has

similarly increased over the years along with the intrinsic

fabric switching speeds. The amount of configurable embed-

ded block memory has enabled building of memory intensive

accelerators. Fast carry chains and hard multipliers have also

been used along with gigabit transceivers for implementing

high performance digital processing systems. The Virtex 5 and

6 series (as also Spartan) FPGAs from Xilinx have lots of

ALU-like DSP48E IP which operates nominally at 600MHz.

These characteristics have been used to propose a low

context switch overhead run time reconfigurable architecture

–reMORPH –composed of coarse grained modules (CGRM)

connected together using malleable communication links. The

semi systolic near neighbour shared memory communication

architecture has been built to exploit partial runtime recon-

figurability present in Xilinx FPGAs to achieve significant

performance/area advantage while at the same time working

with very low reconfiguration overheads. The basic compute

element in reMORPH has a 5 stage pipeline using the DSP48E

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.111

55

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.111

26

2012 15th Euromicro Conference on Digital System Design

978-0-7695-4798-5/12 $26.00 © 2012 IEEE

DOI 10.1109/DSD.2012.111

26

as the ALU and has 512 addressable data registers along with

512 instruction registers. The micro-sequencer works on an ex-

plicit instruction format enabling the processor to be built with

a very low foot print of about 200 slice LUTs. Any application

(re-)uses as many tiles as required for meeting performance

constraints — the code executing in the processors as well

as the interconnection network between the tiles is changed

at application runtime according to a statically determined

schedule. The main contributions of this work are

• A highly optimized processor core using DSP48E which

can be programmed very easily using “instructions”

rather than HDL

• A coarse grain reconfigurable array consisting of the

cores mentioned above

• A malleable interconnection network which can be re-

configured at runtime

• A runtime reconfigurable multiprocessor which exploits

partial dynamic reconfiguration

The paper is organized as follows. In the next section we

review prior work in this area. In Section III the Coarse Grain

Reconfigurable Architecture is described in detail. The next

section briefly describes the compute model used in deriving

the architecture as well in programming the same. Section V

details some implementation aspects of the architecture. The

last section summarizes the contributions of this work and

provides pointers to future extensions.

II. REVIEW

Most programmable systems of the recent past have been

based on programmable memory like SRAM or flash memory.

The contents of this memory determine the functionality as

well as the connectivity of the circuit being implemented in

the fabric. The process of populating boolean values 1,0 into

the memory locations is know as reconfiguration. In some

cases, the reconfigurable fabric allows portions of the system

to alter its functionality at runtime by loading a different

partial configuration into that region. This is termed as Partial
runtime reconfiguration (RTR). Lysaght et. al. developed an

early system for partial reconfiguration using CPLDs for

exploiting RTR [3]. The authors developed a generic hardware

interface to exploit RTR available in Atmel AT6005 class

of FPGAs. The overhead of serial programming of single

context FPGAs is very high and hence time multiplexed

configuration data using additional storage was developed.

An early fine grained dynamically reconfigurable fabric called

GARP [4] was developed at Berkeley. Many multi context

devices and architectures have been proposed in the last fifteen

years. Dehon et al [5] introduced DPGA which stored 4

contexts simultaneously. Early attempts at using multi context

include Dharma [6] and Morphosys [7] among many others.

Obviously the disadvantage of using multi context is the

increased area overhead. The overhead of programming fine

grained reconfigurable hardware is very heavy and hence there

has been many attempts at building coarse grained architec-

tures [8]. Piperench [9] is an architecture based on ALUs

and is very well suited for stream based computations. The

RAW architecture on the other hand uses a complex 8 stage

single issue MIPS processor in each of the 16 programmable

tiles connected by on chip network [10]. A similar architec-

ture which uses 64 programmable logic blocks called nano

processors was developed as a multimedia coprocessor [11].

A complete programming environment called SCORE based

on the dataflow model was developed for stream oriented

computing which supported phased reconfiguration and dy-

namic rate dataflow [12]. Many recent architectures developed

in academia include Morpheus [13], Montium/Chameleon

system from University of Twente [14], Adres [15] from

IMEC in Belgium, Imagine [16] from Univ. of Stanford and

REDEFINE from Morphing Machines [17]. A comprehensive

survey of academic CGRAs has been done recently by Max

Baron [18] for largely commercial CGRAs. Configuration

management is an important issue in dynamically reconfig-

urable systems. Compton et. al. have investigated many issues

in depth including caching, relocation and fragmentation [19].

Applications where dynamic reconfiguration has a promi-

nent role to play have been developed for Phased Array Radar

Processing System [20] and adaptive image filtering [21]

among others. Lockwood et. al. used the idea of dynamic

hardware plug-ins to develop efficient network routers [22].

III. A COARSE GRAINED PROGRAMMABLE FABRIC

The proposed architecture – reMORPH shown in Figure 1,

is a mesh of CGRMs connected in a nearest neighbor config-

uration.

Figure 1. reMORPH

Clearly choosing the right granularity for the modules is of

critical importance. All or some of the communication links

can be reprogrammed at runtime. The choice of the appropriate

processing element (CGRM) and the interconnection network

plays an important role in reducing the reconfiguration over-

head. We illustrate this with a small motivating example.

Figure 2, illustrates a circuit which has a number of DSP48

blocks and BRAM blocks. The circuit topology evolves with

time via only changes in the communication links – the

colored(dotted) lines indicate the lines which change in each

configuration. Table I shows the size of the difference bit

stream when 1,2,3 and 4 links are changed in the example

562727

Figure 2. Example Circuit

circuit. The cost is also parameterized on the bus width. The

size of the circuit is about 0.5 MB. Clearly if we only change

the interconnection network during (partial) reconfiguration,

the context switch overhead can be dramatically reduced.

TABLE I
COST OF RECONFIGURATION (BITS)

Link Width
4 8 12 16 20 24 28 32

Changing One Link (Red)
326 864 1094 1560 1608 2330 2888 3342

Changing Two Links (Red and Green)
502 746 1176 1722 2172 2534 3038 3368

Changing Three Links(Red and Green and Blue)
704 1188 1384 2050 2452 2980 3426 3388

Changing Four Links(all colored lines)
696 1312 1738 2108 2422 3048 3472 3878

All applications go through “phases” defined by the com-

munication patterns among the CGRMs in their lifetime.

These phases, can for many applications (notably streaming

ones) can be derived statically. Techniques to exploit runtime

information to generate phase information have also been

described in literature. The current architecture assumes that

the application can be statically analyzed to generate all

possible communication patterns. This temporal partitioning

of the application is used to generate the configuration infor-

mation necessary for each “epoch” of execution. The model of

computation borrows from the ATM mode of communication

where route discovery is done via packet switching and

actual data transfer is done via circuit switched links. The

architecture assumes that the routes are predetermined via an

offline analysis method. This is a major advantage over an

NoC implementation of communication as the architecture is

capable of providing latency guarantees when compared to

an NoC. The area overhead for implementing an NoC is also

not encountered in this case. It may be noted that the change

in interconnection network could also be accompanied by a

change in the configuration data for each of the processing

elements. The design of the processing element (CGRM) has

also been done with the objective of ensuring that bit stream

changes because of change in functionality is also minimized.

A. CGRM

The design of the processing element has been done keeping

in view that the system would take advantage of the features

available in modern FPGAs. The million plus logic cell chips

(Figure 3) integrate a lot of memory which allows the building

of small Harward style processors. The Xilinx chips also

Figure 3. Xilinx FPGAs [23]

have a very high performance DSP48 element (Figure 4

which allows the building of a fast ALU. The DSP48E

slice provides improved flexibility and utilization, improved

efficiency of applications, reduced overall power consumption

and increased maximum frequency. The high performance

allows designers to implement multiple slower operations in

a single DSP48E slice using time-multiplexing methods. The

Figure 4. DSP48 [23]

DSP48E essentially has

• 25× 18 2s complement multiplier

• 48 bit arithmetic and logic unit

• 48 bit comparator

The ALU-like control in the DSP48E allows for the im-

plementation of many independent functions which include

multiply accumulate, three-input add, barrel shift, wide-bus

multiplexing, magnitude comparator, bit-wise logic functions,

pattern detect, and wide counter. The architecture also sup-

ports cascading multiple DSP48E slices to form wide math

functions, DSP filters, and complex arithmetic without the use

of general FPGA fabric. The block RAM in Virtex-5 and 6

devices can be split into two 18K block RAMs. Each DSP48E

slice aligns horizontally with an 18K block RAM. The opmode

control bits of the DSP48E are used to implement the opcode

of the instructions of this compute element. These two crucial

572828

elements – a fast ALU and lots of BRAM – are the key

enablers to build the CGRM which can operate at frequencies

in the range of 400MHz with a very low footprint. Each

CGRM or grain is connected to its neighbour in one of the

four principal directions at any instant in time. The links can

change over the application’s lifetime. As shown in Figure 5,

the connectivity of the grains changes from a vertical down to

vertical up connectivity over time.

Figure 5. Runtime Configuration Change in Links

The coarse grain reconfigurable module is shown in Fig-

ure 6. Each tile reads data from its local memory but can

Figure 6. reMORPH Tiles

write to either its own memory or the neighbour’s memory.

This ability to write to neighbour’s memory is similar to what

systolic arrays traditionally do. The data generated at non

neighbour grains is brought to the grain’s memory using ex-

plicit copy instructions and changing connectivity if required.

All the grains can in principle execute different instructions

at every clock cycle which gives it a MIMD flavor. The

processing element has explicit memories for instruction and

data. A total of 512 instructions can be used to program the

grain for an epoch. Each instruction can read data from 512

locations present in its Data memory.

B. MicroArchitecture of reMORPH tile

The internals of the grain are shown in Figure 7. This “Com-

pute Element” based on the DSP48E works on 3 operands

A (30 bits), B (18bits) and C (48 bits). The operation to

Figure 7. reMORPH Tile Details

be performed is decided by a 14 bit control word to the

DSP48E1 block. The first positive clock edge to Compute

Element registers all the inputs; the output P is calculated

through the embedded functional blocks and made available

at next clock edge. Effectively there is a two-stage execution

unit. The number of stages for execution is kept at two for

all classes of instruction. The comparator does not take part

in generation of P, but it generates “FLAGS” for the control

path. Those inputs of DSP48E1 which are not controlled by

bits of control word are connected to ‘1’ or ‘0’ depending

on whether they are active-high or active-low. It is the micro-

sequencer logic which puts the control word and the operands

at Compute Engines input-ports every clock cycle. Parallel use

of two read ports of Block RAM enables a 72 bit instruction

each cycle.

The basic compute element or grain uses the instruction

format shown in Table II.

All instructions of reMORPH can be seen as a combination

of following fields

1) The Opcode [14 bits] which denotes the operation to be

performed

• Arithmetic

• Logical

• NOP

2) The Source Operands and Addressing Mode [20 bits].

Both direct and indirect addressing mode are supported.

3) The Destination[21 bits]

• Write result To own register file

• Write result to next grains register or both

• The addressing mode is write back is to the own

register file

4) The address of next instruction [11 bits] along with an

enable bit which can be any one of the following

• Sequentially next

• Jump unconditionally to given address

• Which flag to be checked in case of conditional

jump

• The HALT instruction

It may be noted that all the combinations of above four options

(i.e. fields of instruction) are supported in the architecture.

Some example instructions and the associated coding (omitting

the all zero fields) is shown in Table III.

582929

TABLE II
INSTRUCTION FORMAT

Control Read Addr Read Control Write Control Write Addr Jump
Opcode ALU CinSel C AB Mode A WB Addr Mode Shared JFlag JAddr

7 4 3 9 9 1 1 1 1 1 1 9+9 1 9

TABLE III
INSTRUCTION EXAMPLE

Instn Control Read Addr Read Control Write Control Write Addr Jump
Opcode ALU CinSel C AB Mode A WB Addr Mode Shared JFlag JAddr

r2=r1+r0 011001100000000000000000000000011000100000000100000000000
0xA3 0x0 0x0 0x0 0x1 1 0 0 0 1 0 0x2 0 0x0

The micro-architecture does not use any decoders in the

data path and hence the instruction format explicitly specifies

all the read and write addresses and modes of operation. For

example, the write address is explicitly specified in two places

(using 18 bits) – one is used when the processor writes to its

own data memory (WB mode) and the other when it writes

to that of the neighbouring compute element (shared mode).

This redundancy was done to optimize the routing and mux

costs which helped in generating smaller partial bit streams.

This is also very useful in the context of using hard macro

to define the CGRM. There are 4 bits which are free for

future extensions. The Program Counter is incremented by

‘2’ in each cycle for non-jump instructions; also the jump

address must be an even number. When an instruction is issued

from Instruction Memory (IM), the address of operand is put

to data memory. Considering indirect addressing mode, the

output of data memory is further used to supply the final

operands to Compute Element. Thus operands are two clock

cycles delayed and hence opcode(i.e. the control word) must

also have two-stage registers in its path. The second stage of

operand fetching is not used in case of direct addressing mode.

However this stage is present and only does the registering

of previous stage’s outputs. When an instruction is issued

from Instruction Memory, the address of operand is put to

data memory. Clearly, the signals WriteBack, Sharing and

Conditional JUMP wait for 4 cycles after issuing control word

from Instruction Memory (so as to accommodate two stages

of operand delay and two stages of execution). Thus there is

a delay slot of 4 instructions to be handled by compiler. Two

codes from the 8 possible jump settings (with the 3 bits) are

reserved for ‘no jump and ‘unconditional jump. The remaining

6 codes are used for conditional jump depending on the flag

Zero, Carry, Sign, Overflow and Underflow.

The micro sequencer controls the execution flow of the ar-

chitecture. It is this block which controls the program counter,

selecting the appropriate instructions and the operands to act

on it. It also has a lot of other capabilities like where to write

the output, unconditional and conditional jumps, selecting

the appropriate addressing mode and control. As shown in

Figure 8, the micro sequencer provides the control signals to

the Instruction Memory, the Data Memory (register file) and

the Program Counter.

The first version of reMORPH has been implemented on

Figure 8. Sequencer

Spartan 6 based Digilent boards. The high level block diagram

of the system is illustrated in Figure 9. All grains of the array

Figure 9. reMORPH System

must be programmed with instructions and initial data prior to

any epoch of execution. The method and technology for filling

memory must be as fast as possible so as to minimize re-

configuration cost. We access the ICAP interface by using the

OPBHWICAP peripheral attached to the On-Chip Peripheral

Bus and the operations of the ICAP are controlled by software

running on a MicroBlaze on the FPGA.

In the simulation model of the current architecture, we

provide at the top level for 72 bit data bus, separate write

enables for data and instruction memory of each grain and

9 bit address bus connected to data memory. When top level

write enables are active, they override grains internal signals.

Instructions are stored sequentially using the PC to update

593030

address while writing. While programming data memory, the

lower 48 bits of data in bus are written.

The architecture will suffer from the IO bottleneck when

it is used to implement applications with large data sets.

However, rapid advances in 3D integration can enable the

building of a vertically stacked memory plane with vias

directly connecting to each of the grains memory as shown

in Figure 10.

Figure 10. A 3D version of reMORPH

The proposed architecture – reMORPH is targeted to ex-

ploit runtime reconfiguration available in commercial FPGAs

to enable building of high performance/area architectures. The

reconfiguration is achieved either by

• Changing Instructions in Memory

• Changing connectivity between grains using a “fast Pro-
grammable Interconnect”

In general, the ability to reprogram the connectivity between

“cores” in a fast and efficient manner is a core research

issue in many core architectures and reMORPH illustrates how

guaranteed latencies could be achieved in such architectures.

In the next section, we describe the programming model used

to develop small applications for this architecture.

IV. COMPUTE MODEL

We model the application as a set of interacting sequential

processes {p} = {p1, p2, . . . pk}. As has been mentioned

above, the set of processes {p} changes the pattern of interac-

tion with each other over time. The application’s communica-

tion patterns can be analyzed at compile time and phases of the

application which have a common communication pattern can

be identified either by static data flow analysis or by profiling.

This set of processes {p} is mapped onto the set of compute

elements (grains) {P} = {P1, P2, . . . Pk} for each phase or

epoch. The given application needs to be placed and routed on

the available grains on the device fabric – this is achieved by

configuring the programmable elements in the device which is

called the “configuration data”. Let Ci denote a configuration

of k compute elements. The configuration is composed of the

BRAM contents (sequence of micro instructions) of each of

the Pk elements as well as the configuration data for the inter-

connects. The coarse grain reconfigurable architecture assumes

a “fast” method of reconfiguring the “switches” responsible for

the changing the interconnection network between the different

compute elements. Figure 11 illustrates the fact that the same

set of processes {p} are mapped to the fabric in configuration

Ci for the ith epoch and then subsequently mapped to the

configuration Cj for the jth epoch and so on.

Figure 11. Epochs

The granularity of the grains allows for the execution of a

large number of instructions before a configuration change is

mandated. This change in configuration could happen because

of

• A new piece of code being scheduled on the grain which

causes a change only in the BRAM contents

• A change in the communication pattern among the dif-

ferent compute elements

Configuration data can in modern FPGAs be loaded in parallel

— nevertheless reducing the size of the partial bitstream is of

immense importance.

We now consider there is no change in code executing in

each of the processes to analyze the cost of adapting to a

new communication pattern. A configuration Ci remains active

for time period τai before a configuration change happens as

shown in Figure 12. A configuration change Ci to Cj incurs

Figure 12. Configuration Ci and Cj

a cost τij which is proportional to the change in the number

of communication links lij .

The runtime of the application is given by

Runtime =
∑
Ci

τai

︸ ︷︷ ︸
A

+
∑
Ci,Cj

τij

︸ ︷︷ ︸
B

(1)

The first term is the sum of all the run times in each epoch

while the second term reflects the reconfiguration cost of all

603131

the context switches. Under the assumption that all the τis are

known the term A in Equation 1 is statically known. The term

B is dependent on the interconnection network between the

grains as also the programs executing on the grains. Therefore

careful placement of the p′is to the Pk compute elements

can help in reducing the overall runtime. We now outline an

algorithm that minimizes the configuration time between the

epochs. Each of the C ′
is corresponds to the communication

amongst the different processes in an epoch. The p′is need to

be mapped to the P ′
ks (which are the compute elements) in a

manner such that the change from Ci to Cj is minimized.

A simulated annealing algorithm is used to determine the

mapping pi −→ Pk such that
∑

∀(ij) τ
c
ij is minimized, the

details of which are omitted for lack of space.

In general, different assignments of pi −→ Pk for a Ci will

result in different τai which would affect the overall runtime.

This is because data produced by process pi in processor Pk

(i �= k) in epoch i will have to be copied to processor Pj for

process pi to execute in the next epoch.

In the next section, we describe the implementation of

reMORPH on a Xilinx FPGA.

V. IMPLEMENTATION DETAILS

The grains are carefully placed and routed using placement

constraints so that they can operate at the peak frequency.

Figure 13 shows the physical placement of one of the

grains where the positions of DSP48E and BRAMs have

been specified. Figure 14 shows 3 grains compactly placed

Figure 13. One Grain

in the fabric. The usage of BRAM and other associated

resources is shown in Table IV. Clearly, the blocking resource

TABLE IV
RESOURCE SUMMARY

Slice Logic Utilization Used Available Utilization
Number of Slice Registers 41 93,120 0%
Number of Slice LUTs 196 46,560 0%
Number of RAMB36E1/FIFO36E1s 3 156 1%
Number of bonded IOBs 167 360 46%
Number of DSP48E1s 1 288 1%

appears to be the amount of block RAM available. About 40

tiles can fit in the relatively small Xilinx Spartan 6 LX45

FPGA. It may be mentioned here that while we reconfigure

links, the partial bit stream is composed only of the changes

Figure 14. Three Grains

where the links change. The width of these links is about

20 for each link. As shown in Table I, the cost incurred

in very small. Practically the achievable data transfer rates

using the ICAP interface is about 180MB/s which ensures

that the reconfiguration overhead is of the order of tens to

hundreds of cycles only. Many small applications have been

implemented in this architecture. Since complete C-style loops

are supported, many (parallelizable) compute kernels have

been ported including summation of N numbers, factorial,

matrix multiplication, 1D FFT etc. The following subsection

illustrates a method of implementing a map reduce type of

application on reMORPH.

A. Sum

The addition of 1000 numbers using 4 CGRA tiles can be

done as shown in Figure 15. There are three ways to perform

Figure 15. Addition Example

the addition on reMORPH:

• The grains/tiles and interconnection are configured once

and no change happens in the runtime of the application

• The interconnection network and the code in each tile

changes during different epochs

• The interconnection network is only reconfigured during

context switches in different epochs

As can be seen in Figure 15, when there is a context switch,

different code could execute in the following epoch. This

code can be predicated with the clock cycle in which case

613232

TABLE V
EXAMPLE: SUM OF A 1000 NUMBERS

���������Tasks
Configuration

One Two Three

Cycles
Initialization 110 110 110
Code Download 39 28+3+8 36+42
Data Download 4×264=1056 1056 1056
Reconfig Overhead 0 10 10
Program runtime 1910 8 22
Total Time 3115 3120 3155

no reconfiguration of the instruction memory is mandated.

Further, it may be observed that in general, different processors

could execute different code in different epochs. Hence careful

assignment of processes to processors reduces the data move-

ment/reconfiguration costs. In this case, for example, in the

second epoch, the code executes in processors 2 and 3 because

in the previous epoch, the processes p1 and p2 wrote the sums

to the register file/data memory of processor P2 whereas p3
and p4 wrote to that of processor P3. In the third epoch, the

need for reconfiguration/context switch is trivially decided.

In this case, the number of cycles needed to compute the

sum in the three cases is given in Table V.

VI. CONCLUSION

Partial runtime reconfiguration has not been exploited for

building high performance applications primarily because of

the reconfiguration overhead. This overhead of the context

switch across temporal partitions of the application can be

reduced with coarse grain reconfigurable architectures. In this

paper, we presented a CGRA built using advanced features of

Virtex FPGAs and which effectively exploited partial dynamic

reconfiguration. A small map-reduce type application was

described to demonstrate the working of this architecture.

In the future, a memory hierarchy will be built using 3D

integration to enable processors to work with large data sets.

A process calculus framework is being developed to describe

applications which can be mapped onto to this architecture

“automatically”.

ACKNOWLEDGMENT

The work has been done under the CREST project funded

by DST-VINNOVA. The authors thank the anonymous re-

viewers and M Balakrishnan and Anshul Kumar for valuable

feedback.

REFERENCES

[1] R. Jain, A. Mukherjee, and K. Paul, “Defect-aware design paradigm
for reconfigurable architectures,” in Emerging VLSI Technologies and
Architectures, 2006. IEEE Computer Society Annual Symposium on,
vol. 00, p. 6 pp., march 2006.

[2] A. Hemani, “Charting the eda roadmap,” IEEE Circuits and Devices,
vol. 20, pp. 5–10, 2004. QC 20120202.

[3] Patrick Lysaght, Hugh Dick, Gordon McGregor, David McConnel, and
Jon Stockwood , “Prototyping Environment for Dynamically Reconfig-
urable Logic.,” in Field Progammable Logic , 1995.

[4] T. J. Callahan, John Hauser, and John Wawrzynek, “The Garp Archi-
tecture and C Compiler,” IEEE Trans. on Computers, April 2000.

[5] E. Tau, D. Chen, I. Eslick, J. Brown, and A. DeHon, “A first gener-
ation dpga implementation,” in In Proceedings of the Third Canadian
Workshop on Field-Programmable Devices, pp. 138–143, 1995.

[6] N. Bhat, K. Chaudhary, and E. S. Kuh, “Performance-oriented fully
routable dynamic architecture for a field programmable logic device,”
Tech. Rep. UCB/ERL M93/42, EECS Department, University of Cali-
fornia, Berkeley, 1993.

[7] H. Singh, M. hau Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and
E. M. C. Filho, “Morphosys: an integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE Transac-
tions on Computers, vol. 49, pp. 465–481, 2000.

[8] J. Becker and R. Hartenstein, “Configware and morphware going main-
stream,” J. Syst. Archit., vol. 49, no. 4-6, pp. 127–142, 2003.

[9] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R.
Taylor, “Piperench: A virtualized programmable datapath in 0.18 micron
technology,” in In Proc. Of IEEE Custom Integrated Circuits Conference,
pp. 63–66, 2002.

[10] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
“The raw microprocessor: A computational fabric for software circuits
and general-purpose programs,” IEEE Micro, vol. 22, pp. 25–35, Mar.
2002.

[11] T. Miyamori and K. Olukotun, “Remarc: Reconfigurable multimedia
array coprocessor,” in IEICE Transactions on Information and Systems
E82-D, pp. 389–397, 1998.

[12] E. Caspi, M. Chu, Y. Huang, J. Yeh, Y. Markovskiy, A. Dehon,
and J. Wawrzynek, “Stream computations organized for reconfigurable
execution (score): Introduction and tutorial,” in in Proceedings of the In-
ternational Conference on Field-Programmable Logic and Applications,
pp. 605–614, Springer-Verlag, 2000.

[13] F. Thoma, M. Kuhnle, P. Bonnot, E. Panainte, K. Bertels, S. Goller,
A. Schneider, S. Guyetant, E. Schuler, K. Muller-Glaser, and J. Becker,
“Morpheus: Heterogeneous reconfigurable computing,” in Field Pro-
grammable Logic and Applications, 2007. FPL 2007. International
Conference on, pp. 409 –414, aug. 2007.

[14] G. J. M. Smit, M. Bos, P. J. M. Havinga, S. J. Mullender, and J. Smit,
“Chameleon – reconfigurability in hand-held multimedia computers,”
in Proc. First International Symposium on Handheld and Ubiquuitous
Computing, HUC’99, 1999.

[15] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, “Adres:
An architecture with tightly coupled vliw processor and coarse-grained
reconfigurable matrix.,” in FPL, vol. 2778 of Lecture Notes in Computer
Science, pp. 61–70, Springer, 2003.

[16] J. Owens, S. Rixner, U. Kapasi, P. Mattson, B. Towles, B. Serebrin,
and W. Dally, “Media processing applications on the imagine stream
processor,” in Computer Design: VLSI in Computers and Processors,
2002. Proceedings. 2002 IEEE International Conference on, pp. 295 –
302, 2002.

[17] A. Satrawala, K. Varadarajan, M. Lie, S. Nandy, and R. Narayan,
“Redefine: Architecture of a soc fabric for runtime composition of
computation structures,” in Field Programmable Logic and Applications,
2007. FPL 2007. International Conference on, pp. 558 –561, aug. 2007.

[18] M. Baron, “Trends in the use of re-configurable platforms,” Design
Automation Conference, vol. 0, pp. 415–415, 2004.

[19] Z. Li, K. Compton, and S. Hauck, “Configuration caching management
techniques for reconfigurable computing,” in In IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 22–36, 2000.

[20] E. Seguin, R. Tessier, E. Knapp, and R. W. Jackson, “A dynamically-
reconfigurable phased array radar processing system,” in Proceedings of
the 2011 21st International Conference on Field Programmable Logic
and Applications, FPL ’11, (Washington, DC, USA), pp. 258–263, IEEE
Computer Society, 2011.

[21] Nitin Srivastava, Jerry L. Trahan, Ramachandran Vaidyanathan and
Suresh Rai, “Adaptive Image Filtering using Run-Time Reconfigura-
tion,” in Proceedings of RAW’03, 2003.

[22] E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Parlour, “Dynamic
hardware plugins in an fpga with partial run-time reconfiguration,” in
Proceedings of the 39th annual Design Automation Conference, DAC
’02, (New York, NY, USA), pp. 343–348, ACM, 2002.

[23] “Xilinx Inc ,” Information available at http://www.xilinx.com/.

623333

