
Analysis of BitTorrent-like Protocols for
On-Demand Stored Media Streaming

N. Parvez C. Williamson
University of Calgary

parvez,carey@cpsc.ucalgary.ca

Anirban Mahanti
IIT Delhi

mahanti@cse.iitd.ernet.in

Niklas Carlsson
University of Saskatchewan
carlsson@cs.usask.ca

ABSTRACT
This paper develops analytic models that characterize the
behavior of on-demand stored media content delivery using
BitTorrent-like protocols. The models capture the effects
of different piece selection policies, including Rarest-First
and two variants of In-Order. Our models provide insight
into transient and steady-state system behavior, and help
explain the sluggishness of the system with strict In-Order
streaming. We use the models to compare different retrieval
policies across a wide range of system parameters, includ-
ing peer arrival rate, upload/download bandwidth, and seed
residence time. We also provide quantitative results on the
startup delays and retrieval times for streaming media de-
livery. Our results provide insights into the optimal design
of peer-to-peer networks for on-demand media streaming.

Categories and Subject Descriptors
C.2.2 [Computer-Communications Networks]: Network
Protocols; C.4 [Computer Systems Organization]: Per-
formance of Systems

General Terms
Performance Analysis, Modeling, Simulation

Keywords
Peer-to-Peer Systems, BitTorrent, On-Demand Streaming

1. INTRODUCTION
Peer-to-peer (P2P) networks offer a promising approach

for Internet-based media streaming. P2P networks are au-
tonomous systems with the advantages of self-organization
and self-adaptation. P2P solutions can enable efficient and
scalable media streaming, as long as they can meet the se-
quential playback demands of media streaming applications,
which differ from those of file downloading, for which P2P
networks were originally created.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Recently, P2P networks have been used successfully for
live media streaming, but the P2P paradigm is also applica-
ble for the more difficult case of (near) on-demand stream-
ing of stored media, which has received little attention. The
two scenarios share several common challenges, including
the sequential playback demands of large media objects, the
geographic diversity of heterogeneous receivers, and the dy-
namic churn of the media streaming population.

On-demand streaming of stored media files differs in sub-
tle but important ways from live media streaming. First, live
streaming typically involves only a single streaming source,
whereas stored media streaming can involve many providers
of content. Second, the live streaming case allows peers to
join at any time (i.e., mid-stream), without retrieving earlier
portions of the stream. The stored media case involves re-
trieving the entire media object. Thus the notion of “startup
delay” differs in the two scenarios (i.e., joining an existing
stream versus starting a new stream). Third, the peers in
a live streaming scenario have a shared temporal content fo-

cus, while the stored media case has greater temporal di-

versity of requests. The peer dynamics resemble those of
file downloading, while still requiring low startup delays for
the sequential playback of large media objects. Finally, live
streaming implicitly involves sustained content delivery at
the intrinsic media playback rate, while the stored media
case is general: the retrieval rate could vary (e.g., slower
than, faster than, or the same as the media playback rate).

These characteristics can challenge the performance of ex-
isting P2P protocols. For example, BitTorrent improves the
efficiency of file downloads by using a “Rarest-First” piece
selection policy to increase the diversity of pieces available
in the network. However, streaming protocols require in-
order playback of media content, which naturally implies
that in-order retrieval of pieces is desirable (but not strictly
required). In-order collection of pieces may reduce the spa-
tial and temporal diversity of pieces in a P2P network, re-
sulting in poor system performance.

In this paper, we analytically characterize the performance
of BitTorrent-like protocols for on-demand streaming of stored
media files. The research questions motivating our work are:

• Can BitTorrent-like protocols provide scalable and ef-
ficient on-demand streaming for stored media files?

• How sensitive is performance to the configuration de-
tails (e.g., piece selection policies, upload bandwidth)
of the P2P application?

• What is the user-perceived performance (e.g., startup
delay, playback quality) in such a P2P network?

These questions span network, application, and user-level
performance issues.

The main contributions in our paper are the following:

• We show that the analysis of P2P media streaming
is decomposable into download progress and sequential

progress, which can be analyzed separately. Further-
more, improving one component can be done without
compromising the other.

• We develop detailed analytical models that explicitly
consider piece selection policies. The models accu-
rately predict the transition rate of downloaders to
seeds, and hence the steady-state swarm population
and population mix. The models also provide impor-
tant insights into the efficiency of a P2P network for
on-demand media streaming.

• The models explicitly consider the number of upload
and download connections, rather than just the total
network bandwidth [21, 24]. This formulation pro-
vides the flexibility to model concurrent connections
and consider the effects of network asymmetries on the
system performance.

• The models provide estimates of the expected retrieval
time as well as the variability of the retrieval time for
stored media objects. With these models, we can de-
termine suitable tradeoffs between startup delay and
the probability of uninterrupted streaming.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a brief description of the BitTorrent system
and a summary of relevant related work. Section 3 explains
the derivation of basic models for simple piece selection poli-
cies. Section 4 derives detailed models for other piece selec-
tion policies, and analyzes the startup delay and retrieval
time variability. Section 5 presents simulation results to
validate the models. Section 6 summarizes our observations,
and Section 7 concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 BitTorrent
BitTorrent [7] is a popular peer-to-peer file sharing sys-

tem used to facilitate efficient downloads. BitTorrent splits
files into pieces, which can be downloaded in parallel from
different peers. BitTorrent distinguishes between peers that
have the entire file (called seeds), and peers that only have
parts of the file (called leechers or downloaders) and are still
downloading the rest of it. The set of peers collaborating to
distribute a particular file is known as a BitTorrent swarm.

A tracker maintains information about the peers partici-
pating in a swarm. New peers wanting to download a file
are directed (typically using information provided in a meta-
file available at an ordinary Web server) to a tracker, which
provides each new peer with the identity of a random set
of participating peers. Each peer typically establishes per-
sistent connections with a large set of peers, consisting of
peers identified by the tracker as well as by other peers to
which the peer is connected. The peer maintains detailed
information about which pieces the other peers have.

While peers typically request pieces from all connected
peers that have useful pieces, each peer only uploads to a

limited number of peers at any given time. Most peers are
choked, while the peers that it is currently willing to serve
are unchoked. To encourage peers to upload pieces, Bit-
Torrent uses a rate-based tit-for-tat policy, in which down-
loaders give upload preference to peers that provide high
download rates. To probe for better pairings (or in the case
of seeds, to allow a new peer to download pieces), each peer
periodically unchokes a randomly chosen peer.

To ensure high piece diversity, unchoked peers use a Rarest-
First policy to determine which piece to request from the up-
loading peer [7]. This policy gives strict preference to pieces
that are the rarest among the set of pieces owned by all the
peers from which a peer is downloading (with ties broken
randomly). This approach is very efficient for file download-

ing [15, 16, 21]. In this paper, we consider the efficiency of
this and other approaches for on-demand streaming.

2.2 Related Work
Prior work on peer-to-peer (or peer-assisted) streaming

can be classified into either live streaming or on-demand

streaming. These systems typically use either a tree-based

or a data-driven approach. Tree-based approaches are typ-
ically based on application-level multicast architectures, in
which the data is propagated through one or more relatively
static spanning trees. Such application-level solutions have
mainly been used for live streaming [4, 12]. Related tree-
based approaches using cache-and-relay [2, 8, 19, 22] have
also been proposed for on-demand streaming. In cache-and-
relay systems, each peer receives content from one or more
parents and stores it in a local cache, from which it can later
be forwarded to clients that are at an earlier playback point
of the file. The tree-based approaches work best when peer
connections are relatively stable.

In the data-driven approach, distribution paths are dy-
namically determined based on data availability. By split-
ting the file into smaller parts, each of which may take a
completely different path, data-driven protocols can func-
tion effectively in dynamic environments (e.g., where peers
may join and/or leave the system frequently, and peer con-
nections are heterogeneous, with highly time-varying band-
widths). While most such protocols have been designed for
live streaming [17, 25, 26], recently protocols and policies
for on-demand streaming have also been proposed [1, 3].

With most peers at similar playback points, peers in live
streaming can typically exchange pieces effectively using a
relatively small window of pieces. In contrast, with on-
demand streaming systems, peers may be at very different
playback points. While download systems benefit from high
piece diversity (as achieved by the Rarest-First policy), in
the streaming context it is more natural to download pieces
in sequential order. To achieve a compromise between these
two objectives, Annapureddy et al. [1] propose splitting each
file into sub-files, with each encoded using distributed net-
work coding [10], and downloaded using a BitTorrent-like
approach. By downloading sub-files sequentially, playback
can begin after the first sub-file has been retrieved.

Rather than statically splitting each file into sequentially
retrieved sub-files, Carlsson and Eager [3] propose a proba-
bilistic piece selection policy that gives bias to earlier pieces.
Using simulations, the authors’ show that a Zipf-based selec-
tion policy achieves a good compromise between high piece
diversity and sequential progress. Alternative probabilistic
approaches have been proposed [5]. In this paper, we pro-

Table 1: Model Notation
Parameter Definition
M Number of pieces of the target file
U Maximum number of simultaneous upload connections by a peer
D Maximum number of simultaneous download connections by a peer
C Throughput per connection
λ Arrival rate of new downloading peers into the system
1/µ Seed residence time in the system
η System efficiency (file sharing effectiveness)
x(t) Number of downloaders (leechers) in the system at time t
y(t) Number of seeds in the system at time t
T Download latency for retrieving the complete media file
r Media playback rate of the file
τ User-perceived startup delay before playback commences

vide an analytic framework to capture the streaming per-
formance of piece selection policies, including probabilistic
approaches.

Many analytic fluid models have been developed to cap-
ture the average and transient performance of BitTorrent-
like download systems [6, 11, 21]. Assuming that the upload
bandwidth is evenly shared among all downloading peers
(of a particular class), these models typically consider the
steady-state performance, or use differential equations to
capture the evolution of the peers (and their performance),
given some set of initial conditions or boundary constraints.
Other analytic models have captured the interaction of peers
at different stages of their download progress [23], character-
istics related to the user behavior and peer selection strate-
gies [18, 20], and the minimum time it takes to distribute the
file from a server to a set of leechers [14]. Designed for the
download context, these models do not capture the order in
which pieces are retrieved and therefore cannot be used to
compare different piece selection policies.

Closely related to the analysis in this paper are a stochas-
tic fluid model [13] and a probabilistic model [27] used to
capture the performance of live streaming systems. By cap-
turing the buffer requirements of the average peer, these
models can be used to determine how long a newly-arrived
client must buffer data before commencing playback. In
contrast to the aforementioned, we characterize the system
behavior of peer-to-peer on-demand streaming systems. Our
models consider both the file sharing effectiveness (which is
typically improved by increased piece diversity [15, 18]) and
the sequential-order requirements of the streaming media
player. Our analysis focuses on the startup delay that can be
achieved when using policies in which pieces are retrieved in
order. Our models also predict the average download times
and the steady-state and transient system population.

3. BASIC SYSTEM MODELS
This section derives simple models to characterize the

properties of P2P media streaming in BitTorrent-like net-
works. Detailed models for different piece selection policies
follow in Section 4.

3.1 Model Assumptions
We consider a single swarm (file) in a BitTorrent-like sys-

tem with seeds and downloaders. Without loss of generality,
we assume that this file is of size 1. Table 1 summarizes the

parameters used in our system model.
The target download file is divided into M pieces, and

is encoded for playback at rate r. Each peer is allowed U
concurrent upload connections and D concurrent download
connections. Each connection achieves mean throughput C.
We assume that D > U .

We use x(t) to denote the number of downloaders in the
system at any time t, and y(t) for the number of seeds [21].
For simplicity of notation, we will use x instead of x(t) and
y instead of y(t) when the context is clear. The download-
ers download as well as upload data. Seeds (by definition)
have all M pieces of the target file, and only upload, with a
maximum of U simultaneous uploads. We assume that M
is large so that we can ignore the “end game” effects [18] for
downloaders with more than M − D pieces.

One objective of our models is to assess the overall ef-
fectiveness of different piece selection strategies for media
streaming. For mathematical tractability, we introduce a
number of simplifying assumptions. We ignore detailed ef-
fects of BitTorrent’s unchoking and “tit-for-tat” policies. In
fact, tit-for-tat is not applicable in systems in which pieces
are downloaded strictly in-order (see Section 4.1 for details).
We also assume that peers are cooperative; they upload to
their best ability, and do not try to cheat the system. They
also download the entire file. While we make these sim-
plifying assumptions, we do, however, consider the system

efficiency η (called file sharing effectiveness in [21]). Specifi-
cally, η represents the probability that available upload con-
nections are effectively utilized.

New downloaders enter the system at a rate λ, and take
time T to complete the download of all M pieces of the file.
The latency to begin playback is τ . Note that downloaders
become seeds at a rate x/T . Seeds reside in the system for
time 1/µ, and then leave the system at a rate µy.

We refer to the swarm system as demand-driven, since
the total demand for download connections exceeds the sup-
ply of upload connections; that is, xD > (x + y)U . This
assumption is appropriate for the default configuration of
BitTorrent, and for most network environments, including
asymmetric network access technologies such as ADSL.

3.2 Baseline Model: Rarest-First
In this section, we characterize the system behavior when

downloaders use the Rarest-First piece selection policy (the
default in BitTorrent). The derivation here follows the fluid

modeling approach of Qiu and Srikant [21], laying the foun-
dation for our detailed models later in the paper.

A downloader can have D concurrent download connec-
tions and U simultaneous upload connections. Each down-
loader sends requests to seeds and to other downloaders.
At any given time, the downloading demand of each down-
loader is D. However, due to the finite supply of upload
connections, a downloader might only acquire n download
connections (0 ≤ n ≤ D). We assume that all U upload
connections are fully utilized for all peers. In other words,
η is 1 in this scenario. In the next section, we show that η
is close to 1 for most practical cases.

The downloaders enter the swarm system at a rate λ, and
get converted to seeds at a rate (x + y)UC. Seeds serve
the system for the duration 1/µ and depart at a rate µy.
Therefore, the change of population can be expressed as:

dx

dt
= λ − (x + y)UC, (1)

dy

dt
= (x + y)UC − µy. (2)

Solving the above differential equations for dx
dt

= dy

dt
= 0,

we can obtain the average number of downloaders x and
seeds y in steady-state. Specifically, we obtain:

x = λ

»

1

UC
−

1

µ

–

y =
λ

µ
(3)

The steady-state results show that:

- The number of downloaders and seeds in the system is
linearly dependent on the peer arrival rate.

- The number of seeds in the system is linearly dependent

on the seed residence time (1
µ
). As the residence time

increases, the number of seeds also increases.

- The total swarm population (x + y = λ
UC

) is indepen-

dent of the seed residence time; it depends only on the
peer arrival rate and the upload capacity of the peers.

The average download latency T can be directly computed
using Little’s law. Specifically:

T =
x

λ
=

1

UC
−

1

µ
. (4)

This expression shows that the expected download time in
steady-state is independent of the peer arrival rate. This
result demonstrates why BitTorrent-like systems are inher-
ently scalable [21]. As expected, we find that peers ben-
efit when the upload capacity increases. We also find, as
expected, that the download latency decreases as the seed
residence time (and thus the number of seeds in the system)
increases. However, we do not allow the seed residence time
to become arbitrarily large, because our derivation assumes
a demand-driven system.

3.3 System Efficiency
This section derives the system efficiency η (also called

file sharing effectiveness [21]) for the Rarest-First piece se-
lection policy. The following derivation assumes that each
peer knows which pieces are available at other peers in the
system, and peers try to download the pieces they need. We
are interested in determining what fraction of the available

upload connections are used.1 We will show that for most
scenarios η is close to 1.

The Rarest-First piece selection policy attempts to make
each file piece equally prevalent amongst the peers. When a
peer connects with other peers, it tries to download a needed
piece that is rarest among the pool of pieces available from
its neighboring peers. The aforementioned strategy asymp-
totically results in a uniform and identical distribution of
file pieces at the peers. Neophyte peers have 0 pieces, while
the most senior peers have almost M pieces. Therefore, the
probability of finding a particular piece at a (downloader)
peer is 1/2.

Consider a single piece of the file. Since the aggregate
demand in the system at any time is xD, the average demand
for any single piece is xD

M
. This piece is available from all y

seeds and, on average, from only x/2 downloaders. Hence,
the demand on the potential providers for each piece is:

ds =
2xD

(x + 2y)M
. (5)

Downloaders with only one piece receive demand ds from
other peers. Downloaders with two pieces receive demand
2ds, and so on. Thus, the number of idle connections at
downloaders with i pieces is U − ids, where 0 ≤ i ≤ k and
k = ⌊ U

ds
⌋.

Due to the uniform distribution of pieces among the down-
loaders, it follows that the number of downloaders with i
pieces is x/M , where 0 ≤ i ≤ M . Therefore, the number of
idle connections across all downloaders is:

nidle =
x

M

k
X

i=0

(U − ids) ≈
x

M

»

kU −
k2ds

2

–

=
U2

4D
(x + 2y)

(6)
The system efficiency (file sharing effectiveness) is:

η = 1 −
nidle

(x + y)U
= 1 −

U

4D

(x + 2y)

(x + y)
(7)

From the demand-driven system assumption, the number of
uploads U per peer is less than the number of downloads D
per peer. Also, the number of seeds in the system is typically
a (small) fraction of the system population. Thus, for most
scenarios of interest, (x+2y)U ≪ (x+y)4D, which makes η
close to 1. (Simulation experiments are consistent with this
claim, typically yielding η values of 0.92 or higher.)

3.4 Sequential Progress and Startup Delay
This section introduces the concept of sequential progress,

which refers to the ability of a piece selection policy to ac-
quire the initial pieces from the beginning of a file, as re-
quired for streaming media playback. Note that sequential
progress (the sequentiality of the pieces obtained) is inde-
pendent of the download progress (the rate at which the
pieces are obtained).

We consider two simple policies in this section, namely
strict In-Order retrieval and Random piece selection. An
example of sequential progress for each is shown in Figure 1.

1Our analysis of system efficiency is connection-centric. Qiu
and Srikant [21] use a piece-centric analysis, focusing on the
probability of a peer finding a useful piece at another peer,
given a connection between these peers. Their analysis ig-
nores the effects of upload/download constraints on system
efficiency. Asymptotically, both derivations provide similar
results.

 0

 5

 10

 15

 20

 0 5 10 15 20

E
[C

on
se

cu
tiv

e
P

ie
ce

s
fr

om
 B

eg
in

ni
ng

 o
f F

ile
]

Number of Pieces Retrieved So Far

Sequential Progress for Different Piece Selection Policies (M = 20)

In-Order

Random

Figure 1: Sequential Progress Example for M = 20

By definition, the strict in-order policy is ideal in terms
of sequential progress. Each peer simply retrieves the file
pieces in numerical order from 1 to M . However, the overall
performance of this policy in a P2P network can be sluggish,
as will be seen in Section 4.1.

The Random piece selection policy provides poor sequen-
tial progress, as shown in Figure 1. While not the worst
case2 for sequential progress, the Random policy provides a
useful bound, since no practical piece selection policy would
perform worse than Random. Also, we conjecture that Rarest-
First performs similarly to Random for sequential progress,
since it ignores the numerical ordering of the pieces. (Our
simulation results are consistent with this hypothesis.)

The analysis of sequential progress for the Random piece
selection policy proceeds as follows. Assume that the file of
interest has M pieces, numbered from 1 to M . The down-
loader retrieves one piece per unit time using a BitTorrent-
like protocol, with the pieces chosen uniformly at random.

The question of interest is: “After having downloaded k
pieces, what is the probability that a peer has retrieved
pieces 1 through j inclusive?” (i.e., j consecutive pieces from
the start of the file, useful for streaming). This is called the
“sequential progress”.

The answer is:

Prob(M, k, j) =

`

M−j

k−j

´

`

M

k

´ 1 ≤ j ≤ k ≤ M. (8)

The denominator represents the number of distinct ways to
choose the k pieces equiprobably at random. The numerator
represents the number of ways to choose these pieces such
that j are useful pieces (at the start of the file) and k − j
are “useless” pieces3 (not at the start of the file).

The expected value of j can then be computed as:

E[j] =
k

M − k + 1
. (9)

This is the expression plotted for the Random piece selection

2The worst case would be retrieving the pieces in reverse
numerical order, from M to 1.
3Technically, this expression gives the probability of having
at least the first j useful pieces, since it is possible that piece
j + 1 is among the useless pieces (and thus useful). Simple
subtraction of the corresponding expressions for j and j + 1
gives the probability of having exactly j useful pieces.

policy in Figure 1. Note that after retrieving 1 piece, the
probability of having the initial piece of the file is E[j] =
1/M , as expected. Similarly, after M pieces are retrieved,
the sequential progress from 1 to M is complete (E[j] = M).

Further analysis shows that:

V ar[j] =
k(M + 1)(M − k)

(M − k + 2)(M − k + 1)2
. (10)

The variance is a monotonically increasing function of k,
though it degenerates to 0 when all M pieces are retrieved.

This analysis provides several insights for the Random
piece selection policy:

- About half of the file ((M + 1)/2 pieces) must be re-
trieved before E[j] ≥ 1. Even after retrieving M −
1 pieces, the (expected) sequential progress (E[j] =
(M − 1)/2) is at most half the file. This is bad news
for on-demand streaming, but makes sense intuitively,
since the sole missing piece is equally likely to be in
either half of the file, and in the middle on average.

- The sequential progress rate is a monotonically in-

creasing function of k. Progress is slow initially, but
improves with time as missing holes are filled and large
portions of the file become ready for playback.

- Startup delay can be directly calculated from the se-
quential progress. If the media playback rate is r
pieces per unit time, then a tangent line of slope r
touches the (continuous) sequential progress curve at

k = M + 1 −
p

(M + 1)/r. The sequential progress

rate at this point is
p

(M + 1)r − 1 and the absolute

startup delay τ is (M + 1)r − 2
p

(M + 1)r + 1. For
example, if r = 1, then the startup delay (relative to
M) is:

1 −
2(

p

(M + 1) − 1)

M
. (11)

- Startup delay gets worse as M increases. For M = 1,
the relative startup delay above is effectively zero. For
M = 20, the delay would be about 60% (see Figure 1).
For M = 100, it is 80%. As M approaches infinity, the
relative startup delay approaches 1.

Another important observation is the large gap between
the sequential progress curves for the Random and In-Order
policies. There could be many piece selection policies4 that
can provide lower startup delay than Random (or Rarest-
First), without requiring strict In-Order retrieval.

4. DETAILED SYSTEM MODELS
This section presents detailed fluid flow models for two

variants of the In-Order piece selection policy. We charac-
terize the steady-state system behavior, and discuss startup
delay and the variability of download latency.

4.1 Strict In-Order Piece Selection
In this section, we model a BitTorrent-like system for

streaming media where downloaders obtain pieces of the me-
dia file in strictly sequential order. Downloaders use their

4For example, the sequential progress for the Zipf piece se-
lection policy recommended in [3] lies approximately half-
way between In-Order and Random.

local knowledge to request pieces in (global) numerical order
from their connected peers.

The downloading process proceeds in rounds. In each time
step, a downloader can issue D concurrent requests (for the
next D pieces required). A subset of these requests may be
satisfied in a given round.

For this analysis, we make use of peer relationships in the
time domain. Each peer arrives at some arbitrary time t and
completes download at time t + T , on average. We assume
that all peers progress through the system in a statistically
similar fashion. From the viewpoint of any given peer, there
are “younger” peers who arrived later, and there are “older”
peers who arrived earlier.

One consequence of strict in-order download is that it
breaks the “tit-for-tat” reciprocity of BitTorrent (at least
within a single swarm). That is, peer relationships are asym-
metric, and a downloader never uploads to its provider peer.
The asymmetry happens because a given peer can only down-
load from older peers (with more pieces of the file), and can
only provide content to younger peers (with fewer pieces of
the file).

Since all downloading requests have the same priority, an
uploader that receives more than U requests simply chooses
at random U recipients for service. To prevent an infinite
backlog from building up in the system, the remaining unsat-
isfied requests are purged from the system, and issued anew
in the next round. (Section 4.2 considers the case where the
unsatisfied requests are queued.)

For simplicity, we consider the average behavior of the sys-
tem in steady-state, and disregard details of the end game.
Without loss of generality, consider a specific peer that has
been in the system for time tm, where 0 ≤ tm ≤ T . We
want to know the probability that such a peer is success-
ful in obtaining a download connection for its next desired
piece. That is, we want to compute:

p(tm) =
Ũ(tm)

D̃(tm)
, (12)

where Ũ(tm) and D̃(tm) are the connection supply and de-
mand, respectively, at time tm.

The peer of age tm requests download connections from
older peers (age t > tm), and from seeds. The total supply
of upload connections available for this peer is:

Ũ(tm) = (x + y − λtm)U. (13)

We need to determine the total demand D̃(tm) for these

connections to evaluate p(tm). The computation of D̃(tm)
relies on two observations. First, the total number of down-
load requests in the system is xD. Second, downloading
requests are unevenly distributed amongst the peers. In
particular, peers with more pieces (including seeds) receive
higher demand.

D̃(tm) can be calculated indirectly by determining the to-
tal number of download requests handled by peers younger

than tm. Consider a small set of λdt peers at an infinitesimal
time interval dt at offset t < tm (i.e., they have been in the
system for t time units). These λdt peers generate λDdt re-
quests, and these requests are spread across x+y−λt peers
(downloaders and seeds) in the system. Therefore, the re-
quest load on peers younger than tm (i.e., peers with age in

the interval [t, tm]) from the λdt peers is:

λD dt

x + y − λt
(tm − t) λ. (14)

The first factor represents the demand per peer, while the
second factor represents the number of peers in the region of
interest (tm − t). Therefore, the total request load handled
by peers younger than tm is:

Z tm

0

λ2 D (tm − t)

x + y − λt
dt (15)

= λDtm − (x + y − λtm)D ln
x + y

x + y − λtm

. (16)

This is the portion of the total demand xD that can be
ignored, since it does not compete for the supply Ũ(tm) of
upload connections for the reference peer at time tm. Thus:

p(t) =
(x + y − λt)U

xD − λDt + (x + y − λt)D ln x+y

x+y−λt

. (17)

For ease of presentation, we introduce into the numerator
a factor α ≥ 1 to approximate5 the pro-rated load effect
in the denominator of Equation 17. With this notational
convenience, the probability that a downloader of age t gets
a download connection is:

p(t) =
Ũ(t)

D̃(t)
= α

(x + y − λt)U

xD
. (18)

When the total download time for M pieces is T , the
average downloading rate for a downloader is:

γ =
1

T

Z T

0

Dp(t)Cdt

=
1

T

Z T

0

α

„

“x + y

x

”

UC −
λtUC

x

«

dt

= α
“x + y

x

”

UC − α
λTUC

2x

= αUC

»

“

1 +
y

x

”

−
λT

2x

–

.

Due to Little’s Law, x = λT . Hence,

γ = αUC

„

y

x
+

1

2

«

. (19)

Therefore, the change of the number of downloaders and
seeds in steady-state can be expressed as follows,

dx

dt
= λ − γx = λ − α

`

1
2
x + y

´

UC, (20)

dy

dt
= γx − µy = α

`

1
2
x + y

´

UC − µy. (21)

Solving these differential equations for dx
dt

= dy

dt
= 0, we

can obtain the steady-state results for downloaders and seeds
in the swarm. Specifically, we obtain:

x = 2λ

»

1

αUC
−

1

µ

–

y =
λ

µ
(22)

5Numerical experiments in Maple show that α is in the range
[1.09,1.25] for typical scenarios.

The average download time T can be obtained as follows:

T =
x

λ
= 2

»

1

αUC
−

1

µ

–

(23)

Multiple insights emerge from this analysis:

- This strict In-Order piece selection policy is sluggish

compared to Rarest-First. This is evident by com-
paring Equation 20 to Equation 1; one term in the
conversion rate differs by approximately 1

2
x.

- The average download latency almost doubles com-
pared to Rarest-First (assuming α ≈ 1.1). This is a
large price to pay for the benefit of In-Order retrieval.
Similar to the baseline model, latency improves when
upload bandwidth and seed residence time are increased.

- The number of downloaders in steady-state almost dou-

bles compared to Rarest-First. However, the number
of seeds remains the same as in Rarest-First.

- Unlike the Rarest-First policy, the total swarm popula-

tion depends on the seed residence time. In particular,
increasing the seed residence time increases the num-
ber of seeds in steady-state, while the overall swarm
population decreases.

Intuitively, the sluggishness of the In-Order policy arises
for two reasons. First, the request load is unevenly dis-
tributed throughout the network. Older peers with many
pieces receive requests from many younger peers, but can
only serve U of them; the remaining requests are unful-
filled, and could be re-issued many times before they are
served. Young peers with few pieces receive few requests
from younger peers; their idle upload connections are wasted,
and system efficiency suffers. Second, the purging model al-
lows all peers to compete equally for service at providers
(including seeds), since D requests are issued in each time
slot and recipients are chosen randomly. As a result, young
peers can consume scarce upload connections at seeds and
senior peers, impeding the progress of middle-aged peers.

As an aside, the notion of “steady-state” for the strict In-
Order policy is debatable. Analysis shows that the number
of successful downloads per round by a peer depends on the
age of the downloader. Young peers have many providers
to choose from, and progress quickly. However, progress
becomes slower as peers get older, since there are fewer
providers available. (In their simulation results, the authors
of [3] note that the swarm population exhibits sawtooth be-
havior, with highly synchronized conversions of downloaders
to seeds. Our analysis helps explain this phenomenon.)

The next section studies a variant of In-Order(Random)
that overcomes these problems.

4.2 Strict In-Order Piece Selection (FCFS)
In this section, we consider a variant of the foregoing In-

Order piece selection model. Specifically, the model pre-
sented here assumes that the uploading peers do not purge
the unfulfilled requests after each round. Rather, the pend-
ing requests at a providing peer are queued until they are
serviced. The request queues are serviced using First-Come-
First-Serve (FCFS).

Unlike the previous model, where peers were serviced ran-
domly, here a peer is guaranteed to obtain service after
a finite waiting period (because the request maintains its

position in the request queue). Another difference is the
intensity with which requests are generated by peers. In
the purging model, each downloader issues D requests per
round; in the queue-based model, downloaders operate in a
closed-loop fashion, with at most D outstanding requests at
any time.

If we observe this BitTorrent-like system at any given
time, we will find peers with differing degrees of progress.
Peers that arrived earlier will have obtained more pieces.
The more pieces that a peer has, the more younger peers
it can serve. Consequently, we expect to see longer request
queues at older peers (and seeds) than at younger peers.
Younger peers will provide faster response to requests, al-
though they have fewer pieces available to provide.

Both the finite queue and the FCFS service model6 are
crucial aspects of this system. With these mechanisms, there
is conservation of the (finite) request load in the system, as
well as bounded delay and fair progress for all downloaders,
without any starvation. Furthermore, young peers that in-
discriminately send many requests to seeds will experience
slow response time for these requests; the closed-loop pol-
icy provides a built-in self-regulation mechanism to protect
other peers.

In such a P2P network, an emergent phenomenon that we
call the “daisy-chain effect” is possible. Imagine a system
in which peers of age t download their needed pieces from
peers of age t + ∆, and those peers in turn download their
needed pieces from peers of age t + 2∆, and so on. Such a
system is still demand-driven, but highly efficient, since all
upload connections can potentially be used. This clustering
of peers based on their download preferences has been stud-
ied in recent work by Gai et al. [9], where this phenomenon
is called “stratification”; the reader may refer to their paper
for detailed analytic characterization of this effect.

Our model does not mandate this structure, but we be-
lieve that it is a natural outcome for a self-organizing P2P
system. There are at least three ways that such a config-
uration could arise. One approach (not recommended) is
to have peers send duplicate copies of each piece download
request to multiple peers. When the first successful upload
is received, the other outstanding requests can be canceled.
Clearly, the response received must have come from an older
peer (since it had the piece) with a short queue of requests
(since it responded quickly); this is a good candidate for fu-
ture requests. The second approach is simply to measure
the responsiveness of peers that provide pieces, similar to
how the existing tit-for-tat mechanism works. Over time, a
peer can preferentially send requests to peers that provide
fast response, and avoid sending requests to peers that pro-
vide slow response (unless there are only a few peers that
can provide the required piece). A third approach is to use
finite caches, allowing a peer to discard a piece of the media
file after it has been played locally. This approach provides
a temporal bound on useful peer relationships.

Regardless of the actual peer relationships formed, we ex-
pect all peers to be busy uploading, and therefore, the sys-
tem efficiency η is close to 1. Since η is 1, we can assume
that peers entering the swarm get converted to seeds at rate
(x + y)UC, similar to the Rarest-First model. Since seeds
serve the system for the duration 1/µ and depart at rate µy,

6For example, experiments with a “highest numbered piece”
service model also show poor system performance, since the
progress of young downloaders is impeded.

the change of population is identical to that for the Rarest-
First Model (cf. Equations 1 and 2). Consequently, the
steady-state swarm population and the average download
latency of this In-Order model match those of the Rarest-
First model (cf. Equations 3 and 4).

x = λ

»

1

UC
−

1

µ

–

y =
λ

µ
T =

1

UC
−

1

µ
. (24)

The primary difference with respect to the Rarest-First model
is the near-ideal sequential progress achieved during the
download. This strict In-Order policy can achieve low startup
delay for streaming media playback, without being sluggish.

Finally, we conjecture that the Rarest-First model is near
optimal for download progress, since this piece selection pol-
icy ensures high utilization of the available upload band-
width of the swarm. Our foregoing discussion established
that In-Order(FCFS) piece selection policy may achieve near
optimal system efficiency and achieve download latency iden-
tical to that of the Rarest-First policy. The key difference,
however, is that In-Order downloads provide ideal sequential
progress at the peers. This leads us to conjecture that the
In-Order(FCFS) policy is optimal for on-demand streaming.
(Our simulation results are consistent with this claim, but
we do not have a formal proof at this time.)

4.3 Startup Delay Characterization
In this section, we characterize the startup delay: the time

since the arrival of a peer into the swarm until it begins
playback. Once playback begins, uninterrupted operation is
desired. However, many streaming applications can tolerate
a small fraction of the pieces arriving too late for playback.

Consider a peer that has been in the system for time t.
The expected amount of data downloaded by this peer is
R t

0
DCp(g)dg, where p(g) is the probability that a peer suc-

cessfully obtains a download connection at time g ≤ t. With
startup delay τ and playback rate r, the amount of data that
must be available at the peer by time t is (t− τ)r. If a tun-
able fraction, ε, of the total data is allowed to arrive late,
the downloading rate should obey the following inequality:

Z t

0

DCp(g)dg ≥ (1 − ε)(t − τ)r. (25)

Let us first consider the case of strict In-Order download
with random peer selection. Substituting p(g) from Equa-
tion 18 provides:

αUC

»

(1 +
y

x
)t −

λ

2x
t2

–

≥ (1 − ε)(t − τ)r. (26)

Note that the time to download the first piece of the media
file places a lower bound on the achievable startup delay.
Therefore, the startup delay τ must satisfy the following
inequality for strict In-Order downloading:

τ ≥ max
∀t

"

1

MC
, t −

αUC((1 + y

x
)t − λ

2x
t2)

(1 − ε)r

#

. (27)

The amount of data downloaded by time t is αUC((1 +
y

x
)t − λ

2x
t2), which is a concave monotonically increasing

function of t for 0 ≤ t ≤ T . Setting t = T , we obtain:

τmin = max

»

1

MC
, 2

„

1

αUC
−

1

µ

«

−
1

(1 − ε)r

–

. (28)

For the In-Order(Random) policy, we have the following
observations:

- As in other media streaming systems, startup delay is

determined by the download latency and the playback

duration of the file. For cases where the expected time
to download the file exceeds the playback duration of
the media, the startup delay equals the maximum of
the difference between the aforementioned times, and
the time to download the first piece of the media file.

- Startup delay decreases with increases in the upload
capacity of the peers and the seed residence time. Note
that as the expected time to download the file de-
creases, the startup delay is bounded by the time to
download the first piece of the media file.

- Startup delay is independent of the peer arrival rate.
This demonstrates that on-demand streaming scales
well in this type of P2P environment.

We now extend the above analysis to the In-Order(FCFS)
policy. In this case, the probability, p(t), that a peer will ob-
tain a download connection at time t is roughly independent

of t and can be approximated by (x+y)U
xD

. Thus, the startup
latency τ must satisfy:

τ ≥ max
∀t

»

1

MC
, t −

UC(1 + y

x
)t

(1 − ε)r

–

. (29)

Because the amount of data downloaded, UC(1 + y

x
)t, by

time t is a linearly increasing function of t, we can simplify
the above by substituting t = T to obtain the following:

τmin = max

»

1

MC
,

„

1

UC
−

1

µ

«

−
1

(1 − ε)r

–

. (30)

From the above analysis for In-Order(FCFS) piece selec-
tion, we draw the following conclusions:

- The In-Order(FCFS) policy achieves the lowest startup

delay among the policies considered, because of its low
download latency and excellent sequential progress. As
with the In-Order(Random) policy, startup delay is
dependent on the expected time to download the file
and the media playback duration.

- Similar to other policies, startup delay is independent
of the peer arrival rate. Startup delay decreases when
upload bandwidth or seed sojourn time are increased.

4.4 Variability of Downloads
In previous sections, we derived the expected download

latency based on the steady-state system population for dif-
ferent policies. All formulations are based on expected val-
ues, not distributions. However, the number of download
connections achieved over time is not fixed; it varies with
the system population, efficiency, and seed residence time.

In this section, we analyze the variability of the download
latency, since high variability can disrupt media playback.
Recall from the previous section that download latency can
effectively determine the required startup delay when the
rate at which the file can be downloaded is less than (or
close to) the media playback rate.

There are two possible approaches to this analysis. One
approach is to study the probability of obtaining N ≤ M
pieces within some time t. The other approach is to study
the time required to obtain all M pieces.

We start with the first approach, and determine the prob-
ability of completing the file retrieval within the expected

download latency T . The following analysis assumes that
the download process for an individual peer proceeds in
rounds. As in previous sections, the probability of getting
a single download connection is p(t), and the total demand
by a peer for download connections is D. The number of
download connections achieved at time t is a Binomial ran-
dom variable Nt with parameter p(t) and D. The expected
number of connections obtained is:

E[Nt] = Dp(t),

and the corresponding variance is:

V ar(Nt) = Dp(t)(1 − p(t)).

By summing over many rounds, we can obtain the result-
ing distribution. That is, the number of downloads in the
first round is described by the random variable N0. Simi-
larly, the downloads during the second round is character-
ized by N1 and the third round by N2 and so on. Assum-
ing independence of the random variables Ni and applying
the Central Limit Theorem, the total number of downloads
achieved by round (or time) t is a random variable Ωt with
expected value

Pt−1
i=0 E[Ni] and variance

Pt−1
i=0 V ar(Nt).

Now consider the specific case when p(t) is independent
of t. This is the case for both In-Order(FCFS) and Rarest-

First. For these policies p = (x+y)U
xD

, and the mean amount
of data downloaded by time t can be computed as follows:

E[Ωt] =

t−1
X

i=0

DCp(i) = DCp

t−1
X

i=0

1 = DCpt. (31)

Consequently, the variance of Ωt is,

V AR(Ωt) =
t−1
X

i=0

DCp(i)(1 − p(i)) = DCp(1 − p)t. (32)

Note that Ωt is the summation of multiple discrete random
variables. As t increases above 30, F (Ωt) is a staircase func-
tion approaching a normal distribution. The probability of
n downloads at time t can be computed from Ωt where n
ranges from 0 to Dt. At time t = T (where T is the expected
download time), we get the mean7 E[ΩT] = DCpT = 1 and
the variance V AR(ΩT) = 1 − DCp2T = (1 − p).

The following inferences can be observed from the distri-
bution of Ωt:

- Since ΩT is discrete normal with mean 1, the probabil-
ity of downloading the entire file within the expected
completion time is 0.50. That is, half of the download-

ers complete within the expected time, while the other
half does not.

- The variance increases with the number of download

connections. That is, more demand D for the scarce
supply U leads to greater variability in the download
progress achieved.

- The variance decreases as the number of upload con-

nections is increased. Increasing the number of upload

7This distribution of ΩT should be interpreted carefully,
since it covers the range [0, DCT], where the total amount
of data downloaded could theoretically exceed the file size
(assumed to be one). Clearly, a peer never downloads more
than the file size, but this formulation is still mathematically
correct. The cumulative probability in the range [1, DCT]
denotes the probability of download completion.

connections will tighten the distribution of download
latency observed.

- Arrival rate does not affect the variability, but higher
seed residence time reduces the variability slightly.

Using a similar approach, we can derive the mean and
variance of number of downloads for the In-Order(Random)
policy. Approximating the sum of probabilities with an in-
tegral and substituting p(g) from Equation 18 provides:

E[Ωt] =
t−1
X

i=0

DCp(i) ≈

Z t

0

DCp(g)dg (33)

≈ αUC

„

(1 +
y

x
)t −

λ

2x
t2

«

(34)

V AR(Ωt) ≈ E[Ωt] −
α2U2C

x2D

„

(x + y)2t − λ(x + y)t2 +
λ2

3
t3

«

(35)

However, the derivation of Equation 33 and 35 holds only
when download progresses in very regular fashion and all
Nt’s are mutually independent (e.g., with many seeds). For
the In-Order(Random) policy, the Nt’s tend to be mutually
dependent, at least in a demand-driven system. With more
seeds, this dependency reduces. For Rarest-First and In-
Order(FCFS), the Nt’s are always mutually independent,
regardless of the degree of demand in the system.

We now turn to the second approach, and characterize the
total download time for M pieces. Let T̃ denote the random
variable for the download time. Since Ωt denotes the amount
of data collected by time t, the probability of completing the
entire download at exactly time slot t of duration ǫ8 can be
obtained by summing the probability mass function Ωt in
the region from 1− DCpǫ

2
to 1 + DCpǫ

2
, where DCpǫ denotes

the expected amount of data collected in each time slot.
Therefore, the probability f(t) = Pr(T̃ = t) of completing
the download at time t is approximately9:

Z 1− DCpǫ
2

1+ DCpǫ
2

1
p

2πDCp(1 − p)t)
e
−

(g−DCpt)2

2(DCp(1−p)t) dg (36)

(Figure 3(c) later in the paper shows a sample plot of this
density function for parameter values M = 200, U = 4,
D = 16, λ = 1

2
, 1

µ
= 8 and C = 1

200
.)

Several insights can be drawn from this analysis:

- The density function for download latency resembles a

normal distribution, with a slight skew to the right.

- Approximately half of the distribution lies on each side
of the mean T = 1

DCp
.

- The variance term DCp(1 − p)t changes with time,
unlike the normal distribution.

Understanding variability is important because it affects
the probability of interrupted playback due to late (missing)
pieces. It also helps determine online rules for startup delay.

8We note that ǫ = 1
MC

corresponds to the case when an
active connection can upload exactly one piece per round.
9We assume a large value of M when using this continuous
density function approach.

5. MODEL VALIDATION
In this section, we present ns-2 fluid simulation experi-

ments to validate the analytical models developed in Sec-
tions 3 and 4. In these experiments, we assume a homoge-
neous swarm, in which all peers have identical configuration
parameters. Peers arrive to the system continuously, per-
form a complete download, and remain for a short duration
before leaving the system. The peer inter-arrival times are
exponential, while the seed residence times are drawn from
a normal distribution. The default peer arrival rate is 50
per media playback duration.

The parameter settings in the simulation experiments are
as follows. The media file has M = 100 pieces, each 128 KB
in size. The media playback rate is 2000 Kbps. The peer
upload bandwidth ranges from 600 Kbps to 2000 Kbps, while
the number of upload connections U ranges from 3 to 15,
with a default of 4. Unless stated otherwise, the download
bandwidth is 3200 Kbps for D = 16 connections (i.e., each
connection gets 200 Kbps). The default seed residence time
is 20 seconds. All simulation results are normalized to the
media playback duration in the default configuration.

Figure 2 presents the results from our simulation exper-
iments. The top row of graphs shows swarm population,
while the other two rows show results for download latency
and startup delay, respectively.

The simulation results for swarm population show good
agreement with the analytical models. Figure 2(a) shows
that the total swarm population is linearly dependent on the
peer arrival rate, as expected. The three analytical models
are presented using lines, as labeled in the graph key. The
corresponding simulation results appear as points on the
graph, with ‘+’ for Rarest-First, circles for In-Order(Random),
and squares for In-Order(FCFS). In-Order(FCFS) behaves
similarly to Rarest-First, while In-Order(Random) is slug-
gish: its swarm population increases at twice the rate of
the others. Figure 2(b) shows the swarm population ver-
sus the seed residence time. The In-Order(Random) policy
has a higher swarm population, but the swarm population
decreases (as predicted) when the seed residence time in-
creases. For large seed residence times, the swarm popula-
tion increases for all three models as seeds become plentiful
(i.e., the system is no longer demand-driven). Figure 2(c)
shows that the swarm population decreases as the upload
bandwidth is increased. Beyond a certain upload band-
width, the population remains constant, since the download
bandwidth becomes the system bottleneck.

The second row of graphs in Figure 2 shows the results
for download latency. The analytical models predict that
the download time is independent of the peer arrival rate.
The simulation results in Figure 2(d) show a similar trend,
though the In-Order(Random) policy deviates somewhat from
the model prediction. Figure 2(e) considers the effect of
seed residence time. For all three models, more seeds in the
system means faster downloads. The effect of upload band-
width is illustrated in Figure 2(f). As expected, increasing
the upload bandwidth reduces the download time, until the
download bandwidth becomes the bottleneck.

The third row of graphs in Figure 2 shows the startup de-
lay for media playback. The analytical models predict that
the startup delay is independent of the peer arrival rate.
The simulation results in Figure 2(g) confirm this. Also,
the startup delay of In-Order(FCFS) is lower than that of
Rarest-First, while In-Order(Random) is much worse. The

impact of seed residence time is shown in Figure 2(h). In
general, increasing the seed residence time reduces the startup
delay. In-Order(FCFS) has the lowest startup delays among
the policies evaluated. For both In-Order policies, the startup
delay is lower bounded by the piece retrieval time, once
the seed residence time is large enough. Rarest-First never
reaches this point, because of its poor sequential progress,
and the download bandwidth bottleneck in this scenario.
Figure 2(i) shows similar trends for the effect of upload band-
width. In general, increasing the upload bandwidth reduces
the startup delay. For both In-Order policies, the startup
delay equals the piece retrieval time once the upload band-
width is high enough.

Figure 3 shows validation results for the variability anal-
ysis. In these experiments, we use M = 200 pieces. Fig-
ure 3(a) shows the distribution for the number of pieces
downloaded within the expected download time T , for the
Rarest-First policy. The simulation results match the ana-
lytical model well. Figure 3(b) shows the simulation results
for the distribution of download time. The shape of the
distribution matches well with the analytical distribution in
Figure 3(c), though the simulation results are about 15-20%
higher. We attribute the difference to “end game” effects in
the ns-2 fluid simulation model.

6. DISCUSSION
Our analytic and simulation results show that the in-

Order(FCFS) policy is well-suited for use in BitTorrent-like
on-demand media streaming systems. At the same time, our
results also show that this policy achieves the same down-
load latency as the Rarest-First policy.

Our analysis was made possible by the fundamental in-
sight that media streaming progress (i.e., the rate at which
useful pieces are obtained by a peer for media playback) is
essentially the product of download progress (i.e., the rate
at which pieces are successfully obtained from the P2P net-
work) and sequential progress (i.e., the usefulness of the ob-
tained pieces for media playback).

Our characterization of download latency captures the
download progress concept. Our analytical models and sim-
ulation results show that download progress is primarily in-
fluenced by peer population, upload bandwidth, download
bandwidth, and piece selection policy.

The sequential progress concept is captured by our startup
delay characterization. We find that sequential progress is
primarily influenced by piece selection policy and the num-
ber of pieces in the media.

While both download progress and sequential progress are
influenced to some extent by the piece selection policy, and
thus are not independent, we believe that these concepts are
nonetheless separable. Specifically, we show that sequential
progress can be optimized without compromising the down-
load progress of the media file.

7. CONCLUSIONS
In this paper, we developed detailed analytical models to

characterize the behavior of BitTorrent-like protocols for on-
demand stored media streaming. Our models explicitly cap-
ture the effects of different piece selection policies, including
Rarest-First and two variants of In-Order.

Our models provide insight into the transient and steady-
state behavior of a P2P network used for on-demand stream-

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

T
ot

al
 S

w
ar

m
 P

op
ul

at
io

n

Normalized Peer Arrival Rate

In-Order(Random)
Rarest-First

In-Order(FCFS)

 0

 50

 100

 150

 200

 250

 300

 0 0.5 1 1.5 2 2.5 3

T
ot

al
 S

w
ar

m
 P

op
ul

at
io

n

Normalized Seed Residence Time

In-Order(Random)
Rarest-First

In-Order(FCFS)

 0

 50

 100

 150

 200

 250

 300

 0 0.5 1 1.5 2

T
ot

al
 S

w
ar

m
 P

op
ul

at
io

n

Normalized Upload Bandwidth

Sim In-Order(Random)
In-Order(Random)

Sim Rarest-First
Rarest-First

Sim In-Order(FCFS)
In-Order(FCFS)

(a) Effect of Arrival Rate (b) Effect of Seed Residence Time (c) Effect of Upload Bandwidth

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

N
or

m
al

iz
ed

 D
ow

nl
oa

d
T

im
e

Normalized Peer Arrival Rate

In-Order(Random)
Rarest-First

In-Order(FCFS)

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3

N
or

m
al

iz
ed

 D
ow

nl
oa

d
T

im
e

Normalized Seed Residence Time

In-Order(Random)
Rarest-First

In-Order(FCFS)

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2

N
or

m
al

iz
ed

 D
ow

nl
oa

d
T

im
e

Normalized Upload Bandwidth

Sim In-Order(Random)
In-Order(Random)

Sim Rarest-First
Rarest-First

Sim In-Order(FCFS)
In-Order(FCFS)

(d) Effect of Arrival Rate (e) Effect of Seed Residence Time (f) Effect of Upload Bandwidth

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

N
or

m
al

iz
ed

 S
ta

rt
up

 D
el

ay

Normalized Peer Arrival Rate

In-Order(Random)
Rarest-First

In-Order(FCFS)

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3

N
or

m
al

iz
ed

 S
ta

rt
up

 D
el

ay

Normalized Seed Residence Time

In-Order(Random)
Rarest-First

In-Order(FCFS)

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2

N
or

m
al

iz
ed

 S
ta

rt
up

 D
el

ay

Normalized Upload Bandwidth

Sim In-Order(Random)
In-Order(Random)

Sim Rarest-First
Rarest-First

Sim In-Order(FCFS)
In-Order(FCFS)

(g) Effect of Arrival Rate (h) Effect of Seed Residence Time (i) Effect of Upload Bandwidth

Figure 2: Model Validation Results (analytic results use lines; simulation results use points, with ‘+’ for
Rarest-First; circles for In-Order(Random); and squares for In-Order(FCFS)). Top row: Swarm Population.
Middle row: Download Latency. Bottom row: Startup Delay.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200

P
ro

ba
bi

lit
y

Number of Pieces

Rarest-First Model
Rarest-First Simulation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

Download Latency

Rarest-First Simulation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

Download Latency

(a) Pieces Downloaded (b) Download Latency (simulation) (c) Download Latency (analytical)

Figure 3: Validation of Variability Results for Rarest-First

ing. We demonstrate the poor sequential progress charac-
teristics of Random (and Rarest-First) piece selection poli-
cies, and motivate the need for In-Order piece selection. We
use our model to explain the sluggishness of naive In-Order
streaming. In particular, we identify the reduced system ef-
ficiency in the purging model with random peer selection,
and use these insights to explore the In-Order(FCFS) pol-
icy. The latter policy provides the same download latency
as Rarest-First, with substantially lower startup delay for
media streaming. We conjecture that this policy is optimal
for startup delay.

Simulation results are used to validate the models. We
compare different retrieval policies across a wide range of
system parameters, including peer arrival rate, seed resi-
dence time, and upload/download bandwidth. We also pro-
vide quantitative results on the startup delays and retrieval
times for streaming media delivery. The simulation results
show close agreement with the analytical models.

In summary, our results provide valuable insights into on-
demand media streaming on P2P networks. Ongoing work
is focusing on proofs of the optimality results.

Acknowledgements
The authors are grateful to the anonymous reviewers and
our assigned shepherd Dan Rubenstein for their construc-
tive suggestions, which helped improve the clarity of the pa-
per. Martin Arlitt, Phillipa Gill, Zongpeng Li, and Aniket
Mahanti provided useful feedback on earlier versions of this
paper. Discussions with Derek Eager have also been bene-
ficial to this work. Financial support for this research was
provided by NSERC (Natural Sciences and Engineering Re-
search Council) in Canada and iCORE (Informatics Circle
of Research Excellence) in the Province of Alberta.

8. REFERENCES
[1] S. Annapureddy, C. Gkantsidis, and P. Rodriguez. Providing

Video-on-Demand using Peer-to-Peer Networks. In Proc.
Workshop on Internet Protocol TV (IPTV) ’06, Edinburgh,
Scotland, May 2006.

[2] A. Bestavros and S. Jin. OSMOSIS: Scalable Delivery of
Real-time Streaming Media in Adhoc Overlay Networks. In
Proc. ICDCS Workshops ’03, pages 214–219, Providence, RI,
May 2003.

[3] N. Carlsson and D. L. Eager. Peer-assisted On-demand
Streaming of Stored Media using BitTorrent-like Protocols. In
Proc. IFIP/TC6 Networking ’07, pages 570–581, Atlanta, GA,
May 2007.

[4] M. Castro, P. Druschel, A. Rowstron, A.-M. Kermarrec,
A. Singh, and A. Nandi. SplitStream: High-Bandwidth
Multicast in Cooperative Environments. In Proc. ACM SOSP
’03, pages 298–313, Bolton Landing, NY, October 2003.

[5] Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai.
Improving VoD Server Efficiency with BitTorrent. In Proc.
ACM MULTIMEDIA ’07, pages 117–126, Augsburg, Germany,
September 2007.

[6] F. Clevenot-Perronnin, P. Nain, and K. Ross. Multiclass P2P
Networks: Static Resource Allocation for Service Differentiation
and Bandwidth Diversity. In Proc. IFIP Performance, pages
32–49, Juan-les-Pins, France, October 2005.

[7] B. Cohen. Incentives Build Robustness in BitTorrent. In Proc.
Workshop on Economics of Peer-to-Peer Systems ’03,
Berkeley, CA, June 2003.

[8] Y. Cui, B. Li, and K. Nahrstedt. ostream: Asynchronous
streaming multicast in application-layer overlay networks.
IEEE Journal on Selected Areas in Communications (Special
Issue on Recent Advances in Service Overlays), 22(1):91–106,
January 2004.

[9] A.-T. Gai, F. Mathieu, F. de Montgolfier, and J. Reynier.
Stratification in P2P Networks: Application to BitTorrent. In
Proc. ICDCS ’07, Toronto, Canada, June 2007.

[10] C. Gkantsidis and P. R. Rodriguez. Network Coding for Large
Scale Content Distribution. In Proc. IEEE INFOCOM ’05,
pages 2235–2245, Miami, FL, March 2005.

[11] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.
Measurement, Analysis, and Modeling of BitTorrent-like
Systems. In Proc. ACM Internet Measurement Conference
(IMC) ’05, pages 35–48, Berkeley, CA, October 2005.

[12] D. Kozic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
High Bandwidth Data Dissemination using an Overlay Mesh. In
Proc. ACM SOSP ’03, pages 282–297, Bolton Landing, NY,
October 2003.

[13] R. Kumar, Y. Liu, and K. Ross. Stochastic Fluid Theory for
P2P Streaming Systems. In Proc. IEEE INFOCOM ’07, pages
919–927, Anchorage, AK, May 2007.

[14] R. Kumar and K. Ross. Peer Assisted File Distribution: The
Minimum Distribution Time. In Proc. IEEE Workshop on Hot
Topics in Web Systems and Technologies ’06, Boston, MA,
November 2006.

[15] A. Legout, N. Liogkas, E. Kohler, and L. Zhang. Clustering and
Sharing Incentives in BitTorrent Systems. In Proc. ACM
SIGMETRICS ’07, pages 301–312, San Diego, CA, June 2007.

[16] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest First and
Choke Algorithms Are Enough. In Proc. ACM Internet
Measurement Conference (IMC) ’06, pages 203–216, Rio de
Janeiro, Brazil, October 2006.

[17] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng. AnySee:
Peer-to-Peer Live Streaming. In Proc. IEEE INFOCOM ’06,
Barcelona, Spain, April 2006.

[18] M. Lin, B. Fan, D. M. Chiu, and J. C. S. Lui. Stochastic
Analysis of File Swarming Systems. In Proc. IFIP Performance
’07, pages 856–875, Cologne, Germany, October 2007.

[19] J.-G. Luo, Y. Tang, and S.-Q. Yang. Chasing: An Efficient
Streaming Mechanism for Scalable and Resilient
Video-on-Demand Service over Peer-to-Peer Networks. In Proc.
IFIP Networking ’06, pages 642–653, Coimbra, Portugal, May
2006.

[20] L. Massoulie and M. Vojnovic. Coupon Replication Systems. In
Proc. ACM SIGMETRICS ’05, pages 2–13, Banff, Canada,
June 2005.

[21] D. Qiu and R. Srikant. Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks. In Proc. ACM
SIGCOMM ’04, pages 367–378, Portland, OR, August 2004.

[22] A. Sharma, A. Bestavros, and I. Matta. dPAM: A Distributed
Prefetching Protocol for Scalable Asynchronous Multicast in
P2P Systems. In Proc. IEEE INFOCOM ’05, pages 1139–1150,
Miami, FL, March 2005.

[23] Y. Tia, D. Wu, and K. W. Ng. Modeling, Analysis and
Improvement for BitTorrent-Like File Sharing Networks. In
Proc. IEEE INFOCOM ’06, Barcelona, Spain, April 2006.

[24] X. Yang and G. Veciana. Service Capacity of Peer to Peer
Networks. In Proc. IEEE INFOCOM ’04, pages 2242–2252,
Hong Kong, China, March 2004.

[25] M. Zhang, L. Zhao, Y. Tang, J.-G. Luo, and S.-Q. Yang.
Large-scale Live Media Streaming over Peer-to-Peer Networks
through Global Internet. In Proc. Workshop on Advances in
Peer-to-Peer Multimedia Streaming ’05, pages 21–28,
Singapore, November 2005.

[26] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum.
CoolStreaming/DONet: A Datadriven Overlay Network for
Peer-to-Peer Live Media Streaming. In Proc. IEEE INFOCOM
’05, pages 2102–2111, Miami, FL, March 2005.

[27] Y. Zhou, D. Chiu, and J. C. S. Lui. A Simple Model for
Analyzing P2P Streaming Protocols. In Proc. ICNP ’07, pages
226–235, Beijing, China, October 2007.

