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Abstract

Identifying and categorizing network traffic by application type is challenging be-

cause of the continued evolution of applications, especially of those with a desire

to be undetectable. The diminished effectiveness of port-based identification and

the overheads of deep packet inspection approaches motivate us to classify traffic by

exploiting distinctive flow characteristics of applications when they communicate on

a network.

This thesis proposes a new machine learning approach for the classification of

network flows using only flow statistics. Specifically, a semi-supervised classification

method that allows classifiers to be designed from training data consisting of only a

few labelled and many unlabelled flows. This thesis considers pragmatic classifica-

tion issues such as longevity of classifiers and the need for retraining of classifiers.

At the network core, only unidirectional flow records are available due to routing

asymmetries. This thesis develops and validates an algorithm that can estimate the

missing statistics from a unidirectional packet trace. The offline and realtime clas-

sifiers developed can achieve high flow and byte classification accuracy (i.e., greater

than 90%).
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Chapter 1

Introduction

The demand for bandwidth management tools that optimize network performance

and provide quality-of-service (QoS) guarantees has increased substantially in recent

years, in part, due to the phenomenal growth of bandwidth-hungry Peer-to-Peer

(P2P) applications. Going by recent measurement studies in the literature and

estimates by industry pundits, P2P now accounts for 50 − 70% of the Internet traf-

fic [9,68]. It is, therefore, not surprising that many network operators are interested

in tools to manage traffic, such that traffic critical to business or traffic with realtime

constraints is given higher priority service on their network. Critical for the success

of any such tool is its ability to accurately, and in realtime, identify and categorize

network flow by the application responsible for the flow. This task of mapping flows

to the network applications that generate the traffic is called traffic classification.

1.1 Motivation

Identifying network traffic using port numbers was the norm in the recent past. This

approach was successful because many traditional applications use port numbers as-

signed by or registered with the Internet Assigned Numbers Authority. The accuracy

of this approach, however, has been seriously dented because of the evolution of ap-

plications that do not communicate on standardized ports [9, 41, 67]. Many current

generation P2P applications use ephemeral ports, and in some cases, use ports of

well-known services such as Web and FTP to make them indistinguishable to the

port-based classifier. For example, KaZaA is known to use port 80 which is reserved

for Web traffic.

1



Introduction 2

Techniques that rely on inspection of packet contents [12, 35, 42, 49, 52, 67, 78]

have been proposed to address the diminished effectiveness of port-based classifi-

cation. These approaches attempt to determine whether or not a flow contains a

characteristic signature of a known application. Studies show that these approaches

work very well for today’s Internet traffic, including P2P flows [35, 67]. In fact,

some commercial bandwidth management tools use application signature matching

to enhance robustness of classification [9, 58].

Nevertheless, packet inspection approaches pose several limitations. First, these

techniques only identify traffic for which signatures are available. Maintaining an

up-to-date list of signatures is a daunting task. Recent work on automatic detec-

tion of application signatures partially addresses this concern [35,49]. Second, these

techniques typically employ “deep” packet inspection because solutions such as cap-

turing only a few payload bytes are insufficient or easily defeated (See Section 3.6

for empirical evidence of this.). Deep packet inspection places significant processing

and/or memory constraints on the bandwidth management tool. On our network,

for example, we have observed that during peak hours, effective bandwidth is often

limited by the ability of the deployed commercial packet shaping tool to process

network flows. Finally, packet inspection techniques fail if the application uses en-

cryption. Many BitTorrent clients such as Azureus, µtorrent, and BitComet allow

use of encryption.

The diminished effectiveness of the port-based and payload-based techniques mo-

tivates use of flow statistics for traffic classification [41, 51, 53, 65, 75]. These classi-

fication techniques rely on the fact that different applications typically have dis-

tinct behaviour patterns when communicating on a network. For instance, a large

file transfer using FTP would have a smaller interarrival time between packets and

larger average packet size than an instant messaging client sending short occasional

messages to other clients. Similarly, some P2P applications such as BitTorrent [8]
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can be distinguished from FTP data transfers because these P2P connections typ-

ically are persistent and send data bidirectionally; FTP data transfer connections

are non-persistent and send data only unidirectionally. Although obfuscation of

flow statistics is also possible, they are generally much harder to implement. There

has been much work on scalable techniques for flow sampling and estimation (e.g.,

see [24, 25, 32, 43]), and furthermore, the logistics for collecting flow statistics is al-

ready available in many commercial routers (e.g., Cisco’s NetFlow [13] solution).

1.2 Thesis Objectives

The three primary objectives of this thesis are:

• To propose a methodology that classifies network flows by application using

only flow statistics.

• To apply this methodology to both offline and realtime classification, and eval-

uate the effectiveness of these classification approaches.

• To facilitate “rich” traffic classification at the network edge and at ingress/egress

points of the network core and enable support for QoS provisioning of applica-

tion specific guarantees.

The specific contributions of this thesis [27, 29–31] are elaborated upon in the

following section.

1.3 Thesis Contributions

This thesis proposes a methodology that classifies (or equivalently, identifies) net-

work flows by application using only flow statistics. Based on machine learning
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principles, this methodology consists of two key components: a learner and a classi-

fier. The goal of the learner is to discern a mapping between flows and applications

from a training data set. Subsequently, this learned mapping is used to obtain a

classifier. Traditionally, learning is accomplished using a fully labelled training data

set, as has been previously considered in the traffic classification context [53, 65].

Obtaining a large, representative, training data set that is fully labelled is difficult,

time consuming, and expensive. On the contrary, obtaining unlabelled training flows

is inexpensive.

In this thesis, we develop a technique that enables us to build a traffic classifier us-

ing flow statistics from both labelled and unlabelled flows. This semi-supervised [10]

approach to learning a network traffic classifier is one key contribution of this the-

sis. To the best of our knowledge, this is the first work to propose and explore

semi-supervised classification for the network traffic classification problem. There

are three main advantages to the proposed semi-supervised approach:

• Fast and accurate classifiers can be obtained by training with a small number

of labelled flows mixed with a large number of unlabelled flows.

• This approach is robust and can handle both previously unseen applications

and changed behaviour of existing applications. Furthermore, this approach

allows iterative development of the classifier by allowing network operators the

flexibility of adding unlabelled flows to enhance the classifier’s performance.

• This approach can be integrated with solutions that collect flow statistics,

such as Cisco’s NetFlow [13] and Bro [59] (as done in this work). Furthermore,

this approach can leverage recent work on techniques for flow sampling and

estimation (e.g., [25, 32,43]).

As a proof of concept, an implementation of prototype offline and realtime classifi-

cation systems was done. A distinguishing aspect of this thesis is the implementation
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of a realtime classifier in the Bro [59] Intrusion Detection System (IDS). Note that

determining the application type while a flow is in progress is harder than offline iden-

tification because only partial information is available. This problem is addressed by

designing a layered classifier that classifies flows at specific packet milestones using

flow statistics that are available then.

Recent traffic classification efforts, including those that leverage flow statistics,

are developed and evaluated assuming that the point-of-observation is the network

edge where packet transmissions along both directions of a flow can possibly be

observed. At egress/ingress points of a network core, observing both directions of a

flow may not be possible because of routing asymmetries. This poses two challenges.

First, statistics necessary for the satisfactory classification of a flow may not be

available. Second, classification can only use per-flow information and cannot rely

on additional information such as communication patterns between hosts.

To address these challenges, we study the influence directionality has on the pre-

dictive capability of different unidirectional flow statistics (e.g., packets originating

only from the client, server, and combinations of both). Our observations lead us

to develop and verify an algorithm capable of estimating the flow statistics for the

unseen portion of a flow such as the number of bytes, and the number of packets.

We also consider the longevity of classifiers (i.e., how long they remain accurate in

an operational network). To facilitate retraining, we present a heuristic for detecting

retraining points. We expect this retraining detection heuristic to be used with

the realtime classifier such that once retraining is deemed necessary, collection of

additional flows for use as training data can be automatically initiated.
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1.4 Overview of Results

Our evaluation of the classification accuracy of our approach is facilitated by recent

full-payload packet traces from the University of Calgary’s Internet link. We col-

lected approximately one terabyte of traces during a 6-month period. Using a multi-

pronged, semi-automated approach that consisted of payload-based identification,

heuristics, and manual classification, the applications corresponding to individual

flows were identified. These pre-classified traces were used as base truth to evaluate

the accuracy of the classifier.

Using our offline and realtime classification systems, we find that flow statistics

can indeed be leveraged to identify, with high accuracy, a variety of different appli-

cations, including Web, P2P file sharing, email, and FTP. In our evaluations, flow

accuracies as high as 98% and byte accuracies as high as 93% were achieved.

We find that larger training data sets consistently achieve higher classification

accuracies. While larger training data sets may appear to make the task of labelling

the training data set time-consuming and difficult, we find that, in practice, a priori

labelling of only a fraction of the training data is sufficient.

Our experiments with long-term Internet packet traces suggest that classifiers

are generally applicable over reasonably long periods of time (e.g., on the order of

weeks) with retraining necessary when there are significant changes in the network

usage patterns including introduction of new applications.

In our evaluation of the influence of directionality of flow statistics in classifying

traffic, we find that flow statistics along the server-to-client path of TCP connections

achieve, on average, significantly higher byte accuracies compared to flow statistics

along the client-to-server path; directionality appears to not have any significant

impact on flow accuracy, with both directionalities attaining high flow accuracy.

Based on our results, we hypothesize that statistics along the server-to-client path
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have a greater ability to discriminate between flows than statistics along the client-

to-server path. We believe this to be the case because for many common network

applications the flow of application payload data is greater in the server-to-client

path.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background

on the Internet’s TCP/IP architecture. It also reviews prior work on Internet traffic

classification problem that is most relevant to this work. Chapter 3 describes the

data sets used in this work. Chapter 4 presents the proposed semi-supervised classi-

fication framework. Chapter 5 describes and analyzes different clustering algorithms

that could be used in this framework. Chapter 6 discusses our offline and realtime

classification results. In addition, it discusses the history of the traffic classification

problem, longevity, and retraining point detection. Chapter 7 provides our classifi-

cation results for unidirectional statistics. It describes our flow statistics estimation

algorithm, its validation, and the classification results obtained with estimated sta-

tistics. Chapter 8 presents conclusions and directions for future work.



Chapter 2

Background and Related Work

This chapter provides background on the Internet protocol suite and describes dif-

ferent traffic classification techniques in the literature. Section 2.1 describes the

TCP/IP architecture, which is the protocol suite used to transfer data on the Inter-

net. Sections 2.2-2.5 describe different approaches to traffic classification. Section

2.6 presents other related research of interest to this thesis. Section 2.7 contrasts

previous traffic classification approaches to the classification approach proposed in

this thesis.

2.1 TCP/IP Architecture

The TCP/IP Architecture of the Internet is explained in this section to give the

reader an understanding of how network traffic is transmitted across the Internet.

This understanding is fundamental to the work in this thesis because most prior

classification approaches including the approach advocated in this thesis rely on

information obtained from the protocols that are used to transmit the messages for

the user’s applications.

The Internet is based upon the concept of packet switching [45]. Instead of

transmitting a message between two hosts as a single large message, the message

is broken up into smaller pieces called packets. These packets are then separately

delivered to the other host. This allows the message to be transmitted and not require

all the communication links along the sender-to-receiver path to be reserved during

message transmission. The use of packet switching has several advantages including:

increasing the throughput of the communication links, increasing the robustness of

8
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Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 2.1: TCP/IP Layered Network Model

the communication, and reducing the latency.

Protocols can be defined as a set of rules that govern the transfer of data be-

tween two hosts. The protocols used in the Internet form a “protocol suite”. In

this protocol suite, the two most important protocols are the Transmission Control

Protocol (TCP) and the Internet Protocol (IP). These two protocols together ensure

that when data is transfered it is delivered to the correct end host reliably and in the

order it was sent. This is to overcome the fact that the communication links that the

data is traveling over are unreliable due to losses, delays, and communication errors

that occur.

The protocols used for the Internet are organized into a layered network model.

The lower layers of the network model provide services to the higher layers. This

abstraction allows the individual layers to be developed concurrently and reduces

the complexity of transferring data. The TCP/IP Architecture can be divided into

five logical layers as presented in Figure 2.1 [45].

The bottom two layers of the protocol stack, the physical layer and the data

link layer, deal with preparing the packet and transmitting the actual bits across

the physical medium to between two hosts. Most relevant to the work in this thesis
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are the top three layers of the network protocol stack, namely, the network layer,

the transport layer, and the application layer. These layers determine how packets

are routed through the network, how data can be transferred reliably, and how

applications or protocols transfer data.

These will be explained in more detail in the following subsections.

2.1.1 Network Layer

The network layer is responsible for sending individual packets between hosts. The

protocol that is responsible for this is called the Internet Protocol (IP). In IP, each

packet is independent, and thus, requires full addressing information to be included

in each packet header. IP provides a “best effort” delivery service, which means that

it does not guarantee that a packet reaches its end destination.

One main service that IP provides is 32-bit addressing in IP version 4 [62]. This

will be upgraded to 128-bit addressing when IP version 6 [20] is fully deployed. When

a packet is sent using IP, the addressing in the packet header is used by intermediate

routers to determine which path to send the packet. All IP packets are assigned a

“Time-To-Live” value. If a packet does not get delivered and circles through too

many routers it is eventually dropped when its Time-To-Live expires. This ensures

that undelivered packets do not travel the network indefinitely. Other services that

IP provides are fragmentation, type of service, and optional fields [45].

2.1.2 Transport Layer

As the network layer handles each packet individually, the logical communication

between two end hosts is provided by the transport layer to the application layer.

This transparency can include ensuring all data is delivered, providing error recovery,

flow control, and congestion control.

The most common transport layer protocol used is the Transmission Control
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Protocol (TCP) [63]. This protocol provides reliable transfer of data for applications.

Another transport layer protocol is the User Datagram Protocol (UDP) [61], which

provides more limited services.

In the following subsections, the multiplexing/demultiplexing of flows provided

by the transport layer will be discussed. In addition, the functionality of TCP and

UDP will be further elaborated upon.

Multiplexing and Demultiplexing Flows

The transport layer allows hosts to have multiple simultaneous data transfers to

other hosts (or even the same host). This is facilitated by the transport layer using

special fields called port numbers. In TCP and UDP, there is a source port number

field and a destination port number field that tracks the port numbers used by each

host for a flow. The port numbers are used at the host to determine which flow an

arriving packet should be assigned to. Flows can be uniquely identified using the

5-tuple of source and destination IP addresses, source and destination port numbers,

and the transport layer protocol.

The port number fields in TCP and UDP are 16 bits, which allows the port

numbers to range from 0 to 65535. The port numbers from 0 to 1023 are typically

reserved for well-known applications or protocols. These well-known port numbers

are generally used by the host to receive incoming connections from other hosts. For

example, a Web server normally uses port 80 for incoming HTTP connections.

The ephemeral port numbers range from 1024 to 65535. Generally, these are

dynamically assigned. Ephemeral port numbers are used when the host does not care

what the assigned port number is such as when the host is establishing a connection

to a remote service. In continuing with the above example, a host (the client) would

use an ephemeral port number such as 1024 to establish a HTTP connection to the

Web server running on port 80.
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The well-known port numbers used by a server have in the past been a strong

indicator of the application type of a flow; however, recently they are increasingly

becoming ineffective. We discuss port-based classification further in Section 2.2.

Overview of TCP

The TCP is connection-oriented and provides reliable transparent transfer of data

to the application layer [45, 63]. In addition, TCP is full-duplex, which means that

both end hosts can send data. The reliable data transfer TCP provides ensures

that data is delivered to the application in-order, that data has minimal errors, that

duplicate data is discarded, and that lost/discarded packets are resent. TCP includes

congestion control mechanisms that modulate a sender’s transmission rate such that

network resources along the path from the sender to the receiver are shared fairly

with other competing flows.

TCP header data is attached to each packet to provide these services. Unlike

IP, the TCP header data is not used by any of the intermediate routers along the

network path and is instead only used by the end hosts running TCP. The TCP

header is depicted in Figure 2.2 [45].

The congestion window field in the TCP header is used to specify the maximum

receive buffer size of a host. This is used to provide flow control so that a host’s

receive buffer is not overwhelmed by arriving data.

There are special bit flags in the TCP header that can be set to signal infor-

mation to the other host. For example, the SYN flag is used for the establishment

of connections, the FIN and RST flags are used for the termination of connections,

and the ACK flag is used to provide reliability. These are further described in the

following paragraphs. The TCP header also has URG and PSH flags but these are

seldom used.

The TCP connection is established using a three-way handshake. This is a special



Background and Related Work 13

Source Port Destination Port

Sequence Number

Acknowledgement Number

Window

Checksum Urgent Pointer

Options

Data

FlagsRsvdHlen

16 bits 16 bits

Figure 2.2: TCP Header

sequence of packets that are sent to ensure both hosts have established the connec-

tion. The host establishing the connection first sends a packet with the SYN flag set.

The other host responds with a packet with the SYN and ACK flags set. Concluding

when the original host acknowledges that it received the SYN/ACK packet sent by

sending a packet with the ACK flag set. To terminate a connection, packets with

FIN or RST flags set are used. We used these flags (e.g., SYN, FIN, ACK) to help

differentiate the start and end of flows when the 5-tuple (source address, source port,

destination address, destination port, transport protocol) is identical between flows.

Reliable transfer functionality in TCP is provided most importantly by using

the sequence and acknowledgment number fields in the TCP header. The sequence

numbers allow the payload data in the TCP packets to be reassembled in-order.

The assigned sequence number of a packet corresponds to the Nth byte of the data

stream and not the packet number. The acknowledgment numbers are used to cumu-

latively acknowledge that up to the Nth byte has been successfully received. Packets
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acknowledging received data have the ACK flag set as well. If an acknowledgment

is not received for a packet within a set period of time (e.g., a timeout occurs) or

if multiple duplicate ACK’s are received, then it is assumed that a packet has been

lost and the packet assumed to be lost is resent by the sender.

The sequence and acknowledgment numbers in TCP are extensively used in Chap-

ter 7 to develop our algorithm to estimate flow statistics from unidirectional flows at

the network core. Different variants of TCP exist like TCP Reno, TCP New Reno,

and TCP Vegas, and have varying acknowledgment policies such as for when to sent

acknowledgment packets and how many unacknowledged packets can be outstanding.

These policies allow TCP to have functionality like fast recovery of packet losses. We

further elaborate on these differences in Chapter 7 when discussing our estimation

algorithm.

Overview of UDP

UDP [61] is an alternative to the aforementioned TCP protocol. Compared to TCP,

UDP provides limited services for messages that are exchanged using it [45].

UDP is a connectionless protocol that provides “best effort” delivery much like

IP. UDP is lightweight compared to TCP because it does not have any connection

setup (e.g., three way handshake) or tear down costs, and does not incorporate any

mechanisms for reliable data delivery. This is advantageous to applications that are

more sensitive to the timely delivery of data than reliability or to applications wishing

to send small messages where the overhead of TCP would be significant. Examples

of applications that typically use UDP are streaming media and DNS, respectively.

UDP does provide port numbers for the multiplexing and demultiplexing of mul-

tiple user requests. In addition, UDP provides basic error detection through an

optional checksum that can be used.

For applications that require some reliability and error-correction, these features
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may be built into the application layer of the applications using UDP.

In this thesis, UDP is not considered in the evaluation of our classification tech-

nique for three reasons. First, due to the stateless nature of UDP, clear identifica-

tion of flows is not possible as is with TCP. Second, UDP accounts for a negligible

amount of traffic in the traces used in this work. Third, there is a low-level of di-

versity amongst applications using UDP in our traces making classification in some

cases trivial. However, while each UDP packet is independent, many UDP-based

applications conceptually behave much like flows. For example, streaming media

applications sent a continual flow of UDP datagrams between hosts. In another

example, query-based applications send requests and receive responses in several

datagrams in short succession. We further elaborate in Section 3.3 on how the mes-

sage exchanges of these applications could be identified as flows and we discuss how

the classification technique in this thesis could be applied to these UDP “flows”.

2.1.3 Application Layer

The application layer allows the user’s applications to communicate on the network.

Many common applications communicate on the Internet with standard protocols

that are used to provide compatibility amongst all applications of that type. For

example, web browsers all communicate with an application-layer protocol called

HTTP.

In the early days of the Internet, only a few applications were prevalent. These

included electronic mail and simple file transfers. However, as the Internet has

continued to evolve, the number of applications prevalent has grown substantially.

Table 2.1 non-exhaustively lists some of the major application types available and

the common application-layer protocols associated with them. The identification

of these applications and application-layer protocols communicating on a particular

flow is the main focus and goal of the approach proposed in this thesis.
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Table 2.1: Internet Applications
Application Types Application-Layer Protocols

Web HTTP, HTTPS
Bulk File Transfer FTP

Chat MSN Messenger, AOL, IRC
Email SMTP, POP3, IMAP

Remote Computing Telnet, SSH
Peer-to-Peer (P2P) BitTorrent, KaZaA, Gnutella, eDonkey

In the following sections, different approaches to identify the applications or their

application-layer protocols will be discussed. These include approaches that use port

numbers of well-known applications in Section 2.2, approaches that look for payload

signatures inside packets in Section 2.3, and finally, approaches that are behavourial

and machine learning based in Sections 2.4 and 2.5, respectively.

2.2 Port-based Classification

Historically, traffic classification techniques used well-known port numbers to iden-

tify Internet traffic. This was successful because many traditional applications use

fixed port numbers assigned by or registered with the Internet Assigned Numbers

Authority (IANA) [38]. Table 2.2 shows a partial list of the IANA port assignments

for some selected applications and protocols. For example, email applications com-

monly use the Simple Mail Transfer Protocol (SMTP) on port 25 to send email and

the Post Office Protocol version 3 (POP3) on port 110 to receive email.

Port-based classification has been shown to be ineffective because many recently

developed applications do not communicate on standardized ports [9, 41, 67]. The

current generation of P2P applications, many of which intentionally try to obfuscate

their traffic, use ephemeral ports or use the port numbers of well-known applications

to make the traffic indistinguishable to port-based classification and filtering. For
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Table 2.2: IANA Assigned Port Numbers for Selected Applications and Protocols
Application Port Numbers

FTP Data Channel 20
FTP Control Channel 21

SSH 22
Telnet 23
SMTP 25
DNS 53

HTTP 80
POP3 110
IRC 113

NNTP 119
SOCKS 1080

example, Madhukar et al. conducted a longitudinal study over a 2-year period on the

effectiveness of port-based classification using empirical Internet traces taken from

the University of Calgary [50]. The authors compared port-based classification with

a classification technique that relies on a set of transport layer heuristics (discussed

in Section 2.4). Their trace only had SYN, FIN, and RST packets due to the longi-

tudinal nature of their trace, and thus, validation of their classification results using

payload-based techniques (discussed in Section 2.3), for example, was not feasible.

They found that 30% to 70% of the traffic is classified as unknown with port-based

analysis. In addition, they found that the amount of unknown traffic was typically

from 10% to 30% in the September 2003 to April 2004 portion of their trace. It

has since increased from 30% to 70% by the Spring of 2005. They provide strong

circumstantial evidence that this increase in unknown traffic is highly correlated to

the increase in P2P traffic found with their transport-layer heuristic.

The ineffectiveness of port-based classification has spurred researchers and com-

mercial vendors to find more effective methods of identifying network traffic. We

discuss these approaches in the following sections.
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2.3 Payload-based Classification

Another approach to Internet traffic classification that avoids port-based identifi-

cation is analysis of packet payloads and is sometimes referred to as “Deep Packet

Inspection”. In this approach, the packet payloads are analyzed to see whether or not

they contain characteristic signatures of known applications. These approaches have

been shown to work very well for Internet traffic including P2P traffic [35, 52, 67].

However, these techniques also have drawbacks. First, these techniques typically

require increased processing and storage capacity. Second, these approaches are un-

able to cope with encrypted transmissions. Finally, these techniques only identify

traffic for which signatures are available, and are unable to classify previously un-

known traffic. The payload-based approach has been well researched and the work

presented here represents the current state-of-the-art for commercial traffic classifi-

cation products.

One example of a study integrating payload-based analysis into a classification

approach is the work by Moore et al. [52]. They describe a content-based method-

ology to classify network traffic. The first step of their classification methodology

uses IANA assigned port numbers to create an initial classification. Then, using

an iterative procedure, they use increasingly more information at later steps. This

approach allows the traffic to be classified with increased confidence. The last step

concludes the process by relying on manual analysis of the traffic for any remaining

unclassified traffic.

Moore et al. compared the effectiveness of port-based classification to this content-

based approach [52]. To facilitate this comparison the authors collected a 24-hour

trace of the traffic generated from approximatley 1,000 users. This comparison found

that approximately 30% of the bytes in the trace are either misclassified or unclassi-

fied when using just the IANA port assignments. However, with the content-based
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approach 99.9% of the traffic was identified confidently.

In the remainder of this section, the research identifying payload signatures will

be described. As well, some research conducted to address the aforementioned con-

cerns such as the automatic detection of signatures and decreasing the processing

requirements of deep packet inspection will also be outlined.

2.3.1 Identifying Payload Signatures

In [67], Sen et al. develop an approach to accurately identify P2P applications. Their

approach is based on application-level payload signatures. The focus of their research

is to identify signatures that are highly accurate, that are scalable for analysis of large

volumes of traffic, and that are robust to variable network dynamics such as packet

loss, asymmetric routing, and packets arriving out of order. Their work focused on

the five most predominant P2P applications: Gnutella, eDonkey, Direct Connect,

BitTorrent, and KaZaA.

The authors [67] implemented their signatures and found that signatures with a

fixed-offset are trivial to implement and have a low computational overhead; while,

variable-offset signatures are much more computationally expensive1. The method is

validated on two full packet traces both collected in November 2003 that contain 120

Gigabytes and 1.8 Terabytes of data, respectively. They found that by examining a

few packets in each flow over 99% of the P2P traffic could be identified. The authors

also analyzed port-based identification and found that 30% to 70% of the traffic for

KaZaA and Gnutella use non-standard port numbers whereas only 1% to 4% of the

traffic for BitTorrent and eDonkey use a non-standard port.

Karagiannis et al. [41] uses a similar payload-based methodology to Sen et al. [67]

for identifing P2P applications. Karagiannis et al. [41] later extends these signatures

1Examples of both fixed-offset and variable-offset signatures are given in Chapter 3 when we
discuss our payload-based approach used to obtain “base truth”.
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to encompass all application types [42]. In both [41] and [42], Karagiannis et al.

use the payload analysis to provide “base truth” to compare new behavioural-based

traffic classification methods that they propose. These behavioural-based methods

are further discussed in Section 2.4.

In earlier work, Dewes et al. look at the network traffic dynamics of Internet Chat

Systems [22]. The authors focus on IRC and web-based chat systems. Their paper

describes a port and payload-based methodology for identifying the chat flows and

filtering out non-chat traffic. Their approach uses well-known port numbers to filter

out traffic that is most likely non-chat such as Gnutella traffic on port 6346. After

this filtering has taken place they use payload signatures to separate the web-based

chat flows from the regular non-chat traffic.

2.3.2 Automated Detection of Payload Signatures

One of the concerns of payload-based analysis of network traffic is the identification

of characteristic signatures for use in deep packet inspection. Haffner et al. address

this problem by attempting to automatically learn the application signatures using

three machine learning algorithms [35]. The algorithms studied include Naive Bayes,

AdaBoost, and Regularized Maximum Entropy. The approach uses a binary feature

vector to train the algorithms, which is obtained from the first n-bytes of a flow’s

payload. The flow’s payload is encoded into binary vectors so that for each of the

n bytes of payload, the binary vector has 256 elements corresponding to this byte.

Each of these elements is initialized to 0 first and then the element whose number

corresponds to the value contained in this byte is set to 1.

The authors validate their approach using training and test data2 collected in

2004 and 2005 [35]. These algorithms are tested upon FTP, SMTP, POP3, IMAP,

2In supervised machine learning training data is used to learn a function that can be used to
predict the class labels of test data. This is discussed in more detail in Chapter 4.
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HTTPS, HTTP, and SSH applications. The “base truth” for these applications is

obtained using port-based analysis. Overall, the algorithms are shown to have a high

accuracy identifying specific applications in the case where only the first 64 to 256

bytes of the payload are used in constructing the feature vectors. However, none of

these applications identified contain signatures that have variable-length offsets such

as the Gnutella P2P application.

Haffner et al. relied on training the classifiers with each specific application it

wanted the classifiers to identify [35]. Recently, Ma et al. extend this work by

proposing an unsupervised approach to the detection of application signatures [49].

This allows similar flows (most likely from the same protocol) to be grouped together.

These groups (clusters) are then labelled in a later step to create a classification of the

current and future flows placed into that group. The authors achieve this by using

a generic classification framework and compare the use of three different methods:

product distributions of byte offsets, Markov models of byte transitions, and common

substring graphs. The authors evaluate methods to determine if flows from the same

protocols are grouped together and that a new protocol is placed into a separate

group when it is introduced. The misclassification rate varied between 2% to 10%

with their various methods.

2.3.3 Speeding up Deep Packet Inspection

Sen et al. [67] found that payload analysis is much more computationally expensive

when the payload signatures use a variable-length offset instead of a signature based

on a fixed-length offset. Kumar et al. address this problem by proposing algorithms

to increase the speed of deep packet inspection of regular expressions [44]. The

authors propose a new method of representing regular expressions that condenses

the transition state space and reduces the previously large memory requirements

for regular expression matching. The method is evaluated using regular expressions
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obtained from several popular Intrusion Detection Systems such as Snort [64] and Bro

[59]. The evaluations show that, with a careful implementation, regular expression

matching of full-packet payloads can be successfully achieved at Gbps link speeds.

2.4 Behavioural-based Classification

Karagiannis et al. in [40, 41] classify P2P traffic and report on trends in the usage

of P2P file sharing. The authors analyze data from a tier 1 ISP; however, they are

limited by having only 16 bytes of payload data available and only 4 bytes in some

of their older traces. This would limit the effectiveness of an analysis and evaluation

using only payload-based classification. Instead, the authors develop a non-payload

based method, specifically two transport layer heuristics to classify P2P.

One of the heuristics looks for IP addresses that are concurrently using both TCP

and UDP. This heuristic works on the basis that most P2P applications typically send

control information by UDP and transfer data by TCP. Flows using port numbers

of well-known UDP applications such as DNS on port 53 are excluded to reduce

false positives. The second heuristic looks at the ratio of the number of unique IP

addresses to unique port numbers to which a host is connected. If this ratio is roughly

equal then the flows from this host are classified as P2P. A higher ratio would tend to

indicate a non-P2P type of flow such as HTTP because multiple concurrent flows are

generally spawned from a web server to decrease the response times when a web page

with multiple objects is requested. Karagiannis et al. validate these heuristics by

creating a “base truth” using well-known port numbers of P2P applications, payload

signatures, and a heuristic where if a IP address and port number pair had previously

been used for a P2P flow in the last five minutes then future unlabelled IP/port pairs

would also be classified as P2P. The transport layer heuristics were shown to be able

to identify 90% of the total P2P bytes and 99% of the P2P flows. In addition,
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the transport layer heuristics were able to identify P2P traffic that was previously

unidentified with the payload analysis method used to establish the “base truth”.

Karagiannis et al. more recently have developed a classification approach based

on the analysis of communication patterns of hosts [42]. This system leverages

information obtained from the social, the functional, and the application layers to

identify the application classes of particular flows from a host. The social level

information is information such as the popularity of a host and the communities

with which the host communicates. The functional level attempts to determine if

the host’s communication paradigm is client/server or collaborative (e.g., P2P). The

application layer uses the communication patterns of application protocols referred

to by the authors as “graphlets” to identify the applications. Constantinou et al.

propose a similar technique that looks at the connection graph of hosts [15].

Concurrent to [42], Xu et al. [74] developed a methodology, based on data mining

and information-theoretic techniques, to discover functional and application behav-

ioural patterns of hosts and the services used by the hosts. They subsequently use

these patterns to build general traffic profiles, for example, “servers or services”,

“heavy hitter hosts”, and “scans or exploits”.

2.5 Machine Learning based Approaches

Another promising approach to traffic classification is the use of machine learning.

This approach relies on the premise that a set of features for objects would be similar

when objects are of the same class. In general, a feature can be any attribute that

is relevant to the prediction of the target set of classes. In the case of traffic classifi-

cation, the objects dealt with are flows and the classes are the different applications

or traffic types the flow is attempted to be classified as.

Generally, in machine learning there are two stages when developing a classifier.
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The first stage “learns” a mapping between the objects and the desired classes. This

mapping is done using a labelled training data set. Subsequently, in the second stage

this learned mapping is used by the classifier to label new objects. This framework

is elaborated upon in Chapter 4.

In the following subsections, Section 2.5.1 presents related research that ana-

lyze different candidate features for use in network traffic classification and evaluate

their ability to separate flows into distinct groups. Section 2.5.2 describes different

approaches that build a machine learning based classifier for network traffic classifi-

cation.

2.5.1 Analysis and Selection of Features

Obtaining a set of relevant features is a difficult problem in machine learning [46].

As such, the focus of much of the prior work using machine learning techniques has

been on demonstrating the ability of algorithms to group together flows according

to application type and not on classifying traffic (e.g., [27, 37, 51, 65, 75, 76]). These

techniques generally use only features obtained from a single flow such as packet

sizes, interarrival times, or aggregate statistics. These approaches do not consider

the application labels of the flows when forming the groups. In the machine learning

literature, this can be characterized as “unsupervised” learning because the labels

are not used [23,39].

Clustering algorithms3 [23, 39] are the most common type of unsupervised ma-

chine learning algorithms used in this research topic. Many of the following studies

use clustering algorithms.

Hernandez-Campos et al. study, using an abstract model, how to represent ap-

plication level communications [37]. Their abstract model represents the communi-

cation patterns of a flow in “epochs” that store the amount of data traveling to both

3Clustering algorithms are further discussed in Chapter 5.
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the sender and receiver, and the idle time between exchanges. The feature vectors

for a flow are extracted from these epochs. Hernandez-Campos et al. then use hier-

archical clustering [23, 39] to group the flows based on similarity. They found when

5,000 flows were clustered that many of the clusters corresponded roughly to a sin-

gle application. For example, one of their clusters contained web flows and another

contained flows from mail protocols.

Roughan et al. [65] classified flows into four predetermined traffic classes (inter-

active, bulk data transfer, streaming, and transactional) using the Nearest Neighbor

and the Linear Discriminate Analysis classification techniques. Roughan et al. show

that it is possible to successfully separate the flows of different traffic classes using

only flow statistics and give explanations to why their chosen flow statistics (aver-

age packet size, and flow duration) would work for the different traffic classes they

studied.

McGregor et al. analyzed packet sizes and interarrival times of different applica-

tion types to determine whether different applications exhibit different packet size

and interarrival characteristics [51]. In analyzing plots of packet sizes and interarrival

times, they found that while there were some distinguishing characteristics between

applications it would be difficult to do rich traffic classification. McGregor et al. then

proposed a methodology to use Expectation Maximization (EM) clustering that will

group flows using flow statistics including byte counts, connection durations, and

packet size statistics. The authors conducted a preliminary analysis using cluster

visualization to examine the clusters and find that many of the clusters correspond

to a single type of traffic class such as bulk data transfers and DNS traffic.

Zander et al. [75, 76] extend the aforementioned work. Specifically, they look

at maximizing intra-cluster homogeneity (or cluster purity) by investigating which

set of features separate the flows from different applications with greatest accuracy.

The traces used in this analysis are from a publicly available archive of traces and
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port-based analysis was used to establish the “base truth”. The authors have con-

tinued this work and recently used the C4.5 supervised machine learning algorithm

to estimate the traffic trends in archival traces [77].

In our own research, we have investigated the ability of clustering algorithms

to group together flows by application type using flow statistics as features [27].

We considered three different clustering algorithms (K-Means, DBSCAN, and Auto-

Class), and showed that these algorithms can form clusters where each cluster largely

consists of applications of a single type. Our investigations are presented in Chapter

5.

We conclude this discussion by noting that two distinct types of features have

been used for traffic classification. The first type of features use “aggregate” flow

statistics such as mean packet sizes, and flow durations. The second type of features

use the “individual” packet sizes and interarrival times. In the following subsection,

we discuss classification approaches based on each of these distinct feature types.

Note, we provide a discussion of the advantages and disadvantages between these

types of features in Section 2.7.

2.5.2 Classification Approaches

In this section, we discuss the classification approaches that use machine learning

to build a classifier. These classifiers predict the application labels of new flows

to accomplish the traffic classification. As previously mentioned, these approaches

consist of two stages: a learning stage and a classification stage. In the learning

stage, labelled training data is used to create the flow to application mappings. This

can generally be considered as “supervised” learning because the training flows must

be labelled before the learning occurs [23, 39]. The approach taken in this thesis is

semi-supervised because we only require a small portion of the flows in the training

data to ever be labelled. This is explained in Chapter 4.
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We first describe classification approaches that use aggregate flow statistics as

their features. The semi-supervised classification technique proposed in this thesis

also utilizes aggregate flow statistics.

Moore et al. extensively study the suitability of a Näıve Bayes classifier for

Internet traffic classification [53,79]. A similar use of Näıve Bayes was first proposed

in [1]. The Näıve Bayes algorithm is one of the simpler supervised machine learning

algorithms available. The algorithm is built on the assumption that features are

independent and identically distributed. The Näıve Bayes method estimates the

Gaussian distribution of the features for each class based on labelled training data. A

new flow is classified based on the conditional probability of the connection belonging

to a class given its attribute values. The probability of belonging to the class is

calculated for each attribute using the Bayes rule:

P (A|B) =
P (B|A)P (A)

P (B)
,

where A is a given class and B is a fixed attribute value. These conditional proba-

bilities are multiplied together to obtain the probability of an object belonging to a

given class A.

Moore et al. [53] use a large hand classified trace to evaluate this approach.

In addition, they outline an exhaustive list of 248 flow features [54] and find that

their classifier’s performance suffers when redundant or irrelevant flow features are

used. To overcome this problem, feature reduction is used to reduce this list to

the 12 most frequently used features. In the evaluation, the feature reduction and

refinements made to the Näıve Bayes algorithm allow the classification accuracy of

flows to increase from 65% to over 95%. This work is further continued in [47] with

the goal of adapting this approach to realtime traffic classification.

Our semi-supervised classification methodology complements prior efforts of Moore

et al. [47,53,79]. Our approach is amenable to introduction of new applications and
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behavioural changes of existing applications. We presented a preliminary comparison

of our approach to Näıve Bayes in [28].

Recently, Williams et al. [72] compared five supervised learning algorithms and

four different methods of feature reduction. Unfortunately, this study has some

drawbacks. First, the evaluations relied on older data sets from 2000 and 2001 and

used port-based analysis to obtain the “base truth”. Second, the traffic classes tested

did not include P2P which is much more elusive and important to classify. We believe

that the results from this preliminary comparison are inconclusive and do not show

any significant advantages of using a more complex supervised machine learning

algorithms over the simpler Näıve Bayes algorithm used in prior work [47,53].

Nguyen et al. continue the work of Williams et al. in [56, 57]. They study

using “sub-flows” for traffic classification. In this work, the sub-flows are a window

of packets from which flow statistics are calculated from. Nguyen et al. test their

approach by attempting to identify from an online game called Wolfenstein Enemy

Territory with a test data set containing interfering traffic. They find that a sub-

flow as small as 25 packets allows for accurate detection of the Wolfenstein Enemy

Territory online game traffic.

The classification approaches we describe in the sequel use per-packet statistics

such as packet sizes of individual packets, and a sequence of packet inter-arrival

times.

Dedinski et al. investigate a technique to identify P2P traffic on a network [19].

The authors collect traces from an isolated network where a P2P application (eDon-

key) and a FTP application are downloading a 600 MB file. The packet size distribu-

tions and interarrival times are analyzed for each type of flow using wavelet analysis.

Overall, the author’s preliminary results found that it was possible to distinguish

between FTP and eDonkey. However, no qualitative results were given.

Bernaille et al. [5,6] further explore traffic classification using the sizes of the first
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P packets of a TCP session. The classifier proposed by Bernaille et al. is the closest

work to our own classification approach presented in Chapter 4. Their proposed

classifier similarly uses the K-Means algorithm and a minimum distance measure to

assign a flow to an application label. Their empirical study shows that flow accuracy

up to 98% can be achieved for some applications. However, they were unsuccessful

in classifying application types with variable-length packets such as Gnutella.

Bernaille et al. further test their classification approach on encrypted traffic [4].

A test data set for their experiments is created by replaying unencrypted flows that

had previously been labelled by payload signatures over a SSH tunnel. The new

trace now contains only encrypted traffic. When the classifier is trained with a

training data set of 500 unencrypted flows for several application types, and tested

on the encrypted trace the flow accuracy is 85%. However, neither of these studies

by Bernaille et al. [4, 6] assess byte accuracy, which makes direct comparison to our

work difficult.

In [17,18], Crotti et al. present an approach to traffic classification that is similar

to Bernaille et al. [6]. This approach uses packet sizes, interarrival times, and arrival

order of the first N packets as features for their classifier. The authors construct

protocol fingerprints, which are histograms of the observed variables for a flow. The

author’s approach, which is noted to be susceptible to noise, incorporates a Gaussian

filter into the anomaly score used to determine the likelihood of a flow belonging to

a traffic class of the protocol fingerprint. The results that have been presented with

this approach are preliminary and focus on only HTTP, POP3, and SMTP. This

precludes direct comparisons to our work, which is more holistic in its evaluation of

all the issues surrounding traffic classification.
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2.6 Other Classification Approaches

While not directly related to traffic classification the following research provides some

insight into the work done in this thesis.

Saddi et al. propose an approach to estimate the amount of mice (short flows)

and elephants (long flows) in a trace [66]. The authors present the idea that larger

packets tend to indicate elephant flows. This is an interesting finding as it indicates

aggregate packet size as a relevant discriminator for application type as elephant and

mice flows are generally associated with different types of applications. We confirm

this in Section 6.1.3 when we find that packet size is good feature to use in our

classification approach.

In [70], Sun et al. use statistical information to identify encrypted web browsing

traffic. A similarity-based Nearest Neighbour algorithm is used. The features used

include the size of the web page and the sizes of the objects the a web page that

are inferred from the TCP connection’s packet exchanges. The authors explore

countermeasures such as padding, mimicking, and morphing, and their associated

cost. These counter measures are the same that could be used to disguise a flow in

the traffic classification problem.

2.7 Discussion

This section discusses our proposed semi-supervised classification technique in com-

parison to the aforementioned traffic classification approaches in the literature. We

believe the approach presented in this thesis offers some distinct advantages that

overcome some of the drawbacks of previous approaches.

The traditional classification techniques such as those based on well-known port

numbers or payload analysis are either no longer effective for all types of network

traffic or otherwise have several drawbacks such as the inability to classify encrypted
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traffic and increased processing overhead. Our proposed classification technique,

as well as the behavioural and machine learning based approaches, overcome these

issues by avoiding the use of port numbers and packet payload information in the

classification process.

The behaviour-based approaches proposed by Karagiannis et al. [42] to classify

network traffic have some limitations and drawbacks. At the heart of their approach

is the use of graphlets to identify the connection patterns of the different traffic types.

However, to add a new graphlet that can uniquely distinguish itself from all other

graphlets would be a difficult task. Another limitation of the graphlets is that some

of the most predominant traffic classes require heuristics (tunable parameters) to

distinguish themselves from each other. The optimum settings for these heuristics,

for instance, to successfully discriminate between HTTP and P2P seem to be network

and application dependent; P2P users can change their application settings and

possibly evade detection. Another drawback is the need to store information across

multiple flows. As Roughan et al. discuss “multi-flow features are more complex and

computationally more expensive to capture than flow or connection data alone” [65].

In contrast, our work relies upon and advocates using aggregate flow statistics that

can easily be computed from a single flow that do not require per-packet information

to be stored, and achieve comparable or better accuracies when classifying traffic,

including traffic originating from P2P applications.

We believe that our semi-supervised approach offers some distinct advantages

over supervised machine learning approaches. One of the main benefits of our semi-

supervised approach over supervised machine learning is that new applications can

be identified by examining the flows that are grouped to form new clusters. The

supervised approach cannot discover new applications and can only classify traffic

for which it has labelled training data.

Another advantage occurs when the flows are being labelled. The labelling of the
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entire data set that is representative of all applications for the supervised approaches

is difficult, time consuming, and expensive. Our semi-supervised approach is accurate

with a training data set that has only a few labelled flows mixed with many easily

obtainable unlabelled flows.

One main difference between the work of Bernaille et al. [5, 6] and Crotti et

al. [17, 18] and the work in this thesis is the choice of features. Bernaille et al.

explore the potential of classifying traffic using the size of the first P packets of a

TCP session. Conceptually, their approach is similar to payload-based approaches

that look for characteristic signatures during protocol handshakes to identify the

application and is unsuccessful in classifying application types with variable-length

packets in their protocol handshakes such as Gnutella. As noted by Bernaille et

al., “the main challenge to traffic classification techniques in general is evasion. For

instance, an ‘attacker’ could easily evade our method by padding packet payloads in

order to modify sizes” [6]. Our approach is much more robust to this type of attack

and as we discuss in Section 6.3.1 would require a crippling amount of overhead for

an attacker to defeat it.

Neither of these studies [5,6,17,18] assesses the byte accuracy of their approaches

which makes direct comparison to our work difficult. Our evaluation suggests that

achieving a high flow accuracy is relatively easy. The more difficult problem is

obtaining a high byte accuracy as well. Our work concentrates on achieving both

high flow and byte accuracy.

Some prior studies focused on traces with a limited number of application: 10

in [6] and only 3 in [17]. In this thesis, we use traces that span several months, and

furthermore, we try to classify all traffic in our traces because we find that some

applications with only a few flows can still contribute substantially to the amount

of bytes transferred in the network. In addition, we address many of the challenges

outlined in their research including selection of training data sets, classifier longevity,
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automatic detection of retraining points, an ability to leverage unlabelled training

data. We have found that realtime classification using a hierarchy of classifiers

substantially improved the classification accuracy.

2.8 Summary

In this chapter, we presented an overview of the TCP/IP protocol suite. In addition,

we described different approaches to network traffic classification. The historical ap-

proach of traffic classification using port-based analysis is ineffective. Payload-based

approaches using characteristic signatures currently provide accurate classifications;

however, they have many challenges including the inability to identify encrypted

traffic. Recent research has focused on overcoming the challenges of traffic classifica-

tion through approaches that are based either on the behaviour of hosts or through

approaches that use machine learning.

The next chapter describes the methodology we used to collect our network traces,

how base truth was established, and presents an overview of the data sets to provide

empirical motivations for our work.



Chapter 3

Methodology

This chapter describes the data sets used in this thesis. Section 3.1 outlines our

trace collection methodology. Section 3.2 presents high-level summary statistics of

the collected traces. Section 3.3 describes the extraction of flow statistics from the

traces. Section 3.4 describes the method used to establish the base truth of the flow

to application mappings for collected traces. An overview of the data sets is pro-

vided in Section 3.5. Section 3.6 provides some empirical observations as additional

motivation for our work.

3.1 Traces and Collection Methodology

To facilitate our work, we collected traces from the Internet link at the University

of Calgary. Depending on the specific subnets traced, the collected traces are cate-

gorized as Campus, Residential, and Wireless LAN (WLAN).

Although our classification approach uses only flow statistics, application-layer in-

formation is helpful for training the classifiers and required for validating the results.

Thus, we needed packet traces that contain relevant application-layer information.

In addition, this work needed traffic traces that span an extended period of time to

facilitate assessment of the longevity of the classifiers. These requirements introduce

several challenges. First, to capture application-layer information necessary for es-

tablishing a base truth of the flow to application mapping, packet traces should have

the relevant application-layer headers. The application-layer header lengths differ

from one application to another. Thus, for simplicity of trace capture, we obtained

full payload traces. Second, full payload packet traces require a substantial amount

34
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of storage space. Two additional issues we had to consider were the limited storage

space on our network monitor, and that we cannot move a trace off of our monitor

quickly enough to sustain continuous full packet tracing.

We have a network monitor deployed on our campus Internet link. Our monitor

is configured with two 1.4 GHz Intel Pentium III processors, 2 GB of memory, and 70

GB of disk space for traces. Traffic from the campus Internet connection (a 100Mb/s

full-duplex Ethernet link) is forwarded via port mirroring to our monitor over a 1

Gb/s half-duplex Ethernet link.

Initially, we planned to use tcpdump to collect the traces, but during testing we

found that it dropped many packets (typically more than 1.5%). We instead used a

tool called lindump, which we found dropped far fewer packets [48].

To address the trace issues identified above while still meeting the requirements

of this research, we collected forty-eight 1-hour traces, over a span of six months,

of traffic from the campus to outside the campus network, and vice versa only (i.e.,

traffic to and from the public Internet is captured). Specifically, we collected eight

1-hour traces each week, for five consecutive weeks in the spring of 2006 (April 6

to May 7) and also an additional week in the fall of 2006 (September 28). The

traces were collected Thursdays, Fridays, Saturdays, and Sundays from 9-10 am and

9-10 pm on each of these days. Our reasoning for this collection scheme is as follows.

First, we expected there to be noticeable differences in usage between the morning

and evening hours. Second, we expected there to be noticeable differences in usage

between work days and non-work days. Third, the collection period spanned several

important transitions in the academic year: the busy final week of the semester

(April 6-9), a break before final examinations (April 11-16), the final examination

period (April 17-28), the start of summer break for students (April 29-May 7), and

a week in the fall semester (September 28-October 1).

Based on these observations, we expected that these traces would capture any
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substantial changes that occurred in the traffic during the collection period, while

substantially reducing the volume of data we needed to collect. We call this set of

forty-eight traces the Campus traces; these contain traffic to and from all academic

units on Campus. The network infrastructure uses a signature-based bandwidth

management tool to actively limit all identifiable P2P traffic. In addition, user

accounts are actively policed for the presence of non-academic content.

The Residential trace was collected on October 20, 2006 from midnight to 10 am

from a specific set of subnets corresponding to the student residence network of the

university. The student residence network is of interest because it is not actively

policed. Instead, there is a “soft” limit on the bandwidth available to each user, and

in addition, the total bandwidth usage of this network is limited during work hours.

The Wireless Local Area Network (WLAN) trace is a 1-hour trace, collected from

the campus WLAN from 9 am to 10 am on September 28, 2006. The WLAN covers

many of the buildings on campus, and is open to faculty, staff, and students.

In addition to the above trace, we used data from two other empirical packet

traces to analyze the clustering algorithms discussed. One is a publicly available

packet trace called Auckland IV1 that contains the traffic going through the Univer-

sity of Auckland’s link to the Internet. We used a subset of the Auckland IV trace

from March 16, 2001 at 06:00:00 to March 19, 2001 at 05:59:59. The other trace

is an additional full packet trace that we collected from the campus portion of the

university’s Internet link.

3.2 High-level Statistics of the Traces

Figure 3.1 provides some high-level statistics of the Campus traces. Figures 3.1(a)

and (b) reveal some expected trends. First, both the number of packets and volume

1Available at: http://www.wand.net.nz/wand/wits/auck/
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Figure 3.1: Statistics of the Campus Traces
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of data transferred are higher during the morning than in the evening on work days.

Second, the number of packets and the volume of data are higher in the evening than

in the morning on non-work days. Third, the level of network activity decreased as

classes ended and exams began, and decreased further still as the semester ended

and students left for the summer.

In total, 1.39 billion IP packets containing 909.2 GB of data were collected. Of

this, 89.0% of the packets and 95.1% of the bytes were transferred using TCP and

10.2% of the packets and 4.7% of the bytes were transferred using UDP. Figure 3.1

(c) and (d) show the number of flows and the percentage of bytes in each trace that

correspond to TCP packets, respectively.

Figure 3.1 (e) provides the packet loss statistics lindump reported for each trace.

The reported packet loss was typically below 0.50% with many of the traces being

zero. However, the worst packet loss experienced was 1.11% for the 9-10am trace on

Thursday April 13.

The 10-hour Residential trace contains 97.5 million IP packets and 58.3 GB of

data. Of this, 85.1% of the packets and 83.2% of the bytes are TCP and 14.5% of the

packets and 16.6% of the bytes are UDP. The WLAN trace contains 18.4 million IP

packets and 11.6 GB of data. Of this, 95.7% of the packets and 98.3% of the bytes

are TCP and 1.8% of the packets and 3.6% of the bytes are UDP.

3.3 Flow Characteristics

In this thesis, we focus exclusively on classifying TCP traffic. As discussed above,

our traces also had non-TCP traffic (e.g., UDP and ICMP). There are two main

reasons for our focus on TCP flows. First, TCP traffic accounts for a significant

fraction of the overall traffic. Classifying this traffic accurately allows determination

of the robustness of our approach. Second, if flow characteristics from other protocols
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were collected, it would likely be advantageous to have a separate classifier for the

non-TCP traffic. Classification of UDP traffic is a fruitful avenue for future work.

To collect the statistical characteristics necessary for our classification system,

the flows must be identified within the traces. Bro [59], an open source Network

Intrusion Detection System, was used for extracting the flow statistics.

The start of a TCP flow is determined by SYN/SYNACK packets being sent.

Flows are (typically) terminated when either the FIN or RST packets are received.

In addition, we specified in Bro that a flow be considered terminated if it is idle for

more than 900 seconds. After determining the flows in the traces, we are able to

calculate the required flow statistics. For flows in progress when we started our trace

collection we also calculated flow statistics based on the packets we observed in the

traces.

3.4 Establishing Base Truth

We established base truth for the traces using an automated process that consists

of payload-based signature matching, heuristics, and HTTPS identification. The

details of this process are discussed next.

The payload-based classification step uses Bro [59], which has a signature match-

ing engine that generates a match event when the packet payload matches a regular

expression specified for a particular rule. We used many of the same methods and

signatures described by Sen et al. [67] and Karagiannis et al. [41], but augmented

some of their P2P signatures to account for protocol changes and some new P2P

applications.

For the BitTorrent P2P protocol, Sen et. al [67] propose using the signature:

^19BitTorrent protocol

We found that this signature by itself identified the majority of BitTorrent traffic in
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signature bittorrent_id {

payload /.*(BT_CHOKE|BT_UNCHOKE|BT_UNINTERESTED|BT_INTERESTED

|BT_HAVE| BT_BITFIELD|BT_REQUEST|BT_PIECE|BT_CANCEL

|BT_KEEP_ALIVE|AZ_PEER_EXCHANGE|AZ_HANDSHAKE

|AZ_TORRENT_(SYN|ACK|SESSION_SYN|SESSION_ACK))/

event "BitTorrent"

}

Figure 3.2: BitTorrent Payload Signature

our traces. However, we augmented this signature to find some additional BitTorrent

traffic in our trace which we were missing with the signature used by Sen et al.. Figure

3.2 shows the extra payload signatures we used to identify BitTorrent traffic. The

additional signatures for BitTorrent come from the ten primary types of packets that

are shared between peers [7]. These packets contain a specific term used to represent

the command sent between the peers. These commands are preceded by BT . In

addition, the BitTorrent client Azureus has some of its own specific commands with

the AZ prefix.

Details about the payload-based signatures for all applications we identified can

be found in Appendix A.

For our payload-based classification, if a packet in a flow matches the regular

expression pattern specified for a particular application then the entire flow is labelled

as being this application. This leaves a possibility for more than one label to be given

to a flow in the case where more than one signature was matched. In analyzing

the cases where this did occur we found that this typically only happened with

flows labelled as HTTP. This occurred with HTTP because some applications such

as Gnutella-based P2P applications also use the HTTP protocol. To handle these

possible misclassifications, if a flow had already been labelled as HTTP but another

signature was matched such as one for Gnutella, then the flow was reclassified as



Methodology 41

Gnutella. However, for application labels other than HTTP, once a flow was classified

it was not reclassified even if more than one rule was matched.

Some P2P applications are now using encryption. For example, BitTorrent

is using a technique called Message Stream Encryption and Protocol Encryption

(MSE/PE). The MSE/PE technique uses a Diffie-Hellman exchange that is com-

bined with the infohash of the torrent to establish the key for the connection [8].

After this exchange has occurred, the clients use RC4 to encrypt the data packets.

Some popular BitTorrent clients such as µtorrent and Azureus allow the users to op-

tionally fall back to plaintext if a client does not support or is not using encryption.

To identify some of this encrypted P2P traffic, we used a heuristic. Specifically, we

maintain a lookup table of (IP address, port number) tuples from flows that have

recently (i.e., within 1-hour) been identified as using P2P. If a flow is unlabelled and

there is a match in our P2P lookup table, we label it as possible P2P. This mechanism

works on the basis that some P2P clients use both encryption and plaintext.

We also analyzed unlabelled traffic on port 443, to establish whether or not this

traffic is indeed HTTPS. This verification was done using an experimental version of

Bro that has this detection capability. In addition, automated random checks were

performed to determine whether or not flows labelled as HTTPS involved at least

one host that was a Web server.

The publicly available Auckland IV traces are anonymized, and thus include no

payload information. Thus, to determine the flow’s “base truth”, port numbers are

used. While port-based identification is becoming increasingly ineffective we feel

this should still provide accurate results for the Auckland IV traces used in this

thesis. This is because the emergence of dynamic port numbers in P2P traffic did

not happen until late 2002 [14]; the Auckland traces were collected in 2001.
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Table 3.1: Application Breakdown (Campus Traces)
Class Flows % Flows Bytes % Bytes
HTTP 9,213,424 39.5% 334.4 GB 38.7%
P2P 620,692 2.7% 310.9 GB 36.0%
EMAIL 1,123,987 4.8% 42.5 GB 4.9%
FTP 23,571 0.1% 20.3 GB 2.3%
P2P Possible 35,620 0.2% 12.3 GB 1.4%
STREAMING 3,396 0.0% 7.4 GB 0.9%
DATABASE 3,057,362 13.1% 3.0 GB 0.3%
CHAT 26,869 0.1% 1.0 GB 0.1%
OTHER 51,298 0.2% 32.1 GB 3.7%
UNKNOWN 990,492 4.2% 70.1 GB 8.1%
UNKNOWN (443) 1,409,707 6.0% 29.7 GB 3.4%
UNKNOWN (NP) 6,765,214 29.0% 1.0 GB 0.1%
Total 23,321,632 100.0% 864.6 GB 100.0%

3.5 Overview of the Data Sets

Table 3.1 summarizes the applications found in the forty-eight 1-hour Campus traces.

Application breakdowns for the 10-hour Residential trace, the 1-hour WLAN trace

and the Auckland IV trace are shown in Table 3.2, Table 3.3, and Table 3.4, respec-

tively.

Over 29 different applications were identified. These applications include: BB,

BitTorrent, DirectConnect, eDonkey, FTP, Gnutella-based P2P programs (e.g., Lime-

Wire, BearShare, Gnucleus, Morpheus, FreeWire), GoToMyPC, HTTP, ICQ, IDENT,

IMAP, IMAP SSL, JetDirect, KaZaA, MySQL, MSSQL, MSN Messenger, MSN Web

Cam, NNTP, POP3, POP3 SSL, RTSP, Samba, SIP, SMTP, SOAP, SpamAssassin,

SSH, SSL, VNC, and Z3950 Client. To simplify the presentation, we group the appli-

cations by category. For example, the P2P category includes all identified P2P traffic

from protocols including BitTorrent, Gnutella, and KaZaA. P2P flows identified us-

ing heuristics are labelled P2P Possible. The OTHER category constitutes various

applications that were identified but did not belong to a larger group and did not
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Table 3.2: Application Breakdown (Residential Trace)
Class Flows % Flows Bytes % Bytes
P2P 297,781 17.6% 38.52 GB 79.3%
HTTP 118,485 7.0% 3.37 GB 6.9%
P2P Possible 39,943 2.4% 0.34 GB 0.7%
EMAIL 1,159 0.1% 0.12 GB 0.2%
STREAMING 29 0.0% 0.07 GB 0.1%
CHAT 1,207 0.1% 0.05 GB 0.1%
OTHER 190 0.0% 0.03 GB 0.1%
UNKNOWN 91,275 5.4% 5.88 GB 12.1%
UNKNOWN (443) 4,833 0.3% 0.06 GB 0.1%
UNKNOWN (NP) 1,135,242 67.2% 0.13 GB 0.3%
Total 1,690,144 100.0% 48.56 GB 100.0%

Table 3.3: Application Breakdown (WLAN Trace)
Class Flows % Flows Bytes % Bytes
P2P 61,603 15.9% 6.90 GB 60.3%
HTTP 145,177 37.5% 2.94 GB 25.7%
P2P Possible 7,842 2.0% 0.13 GB 1.2%
CHAT 2,928 0.8% 0.05 GB 0.5%
EMAIL 695 0.2% 0.02 GB 0.1%
FTP 157 0.0% 0.00 GB 0.0%
STREAMING 13 0.0% 0.00 GB 0.0%
OTHER 374 0.1% 0.01 GB 0.1%
UNKNOWN 16,100 4.2% 1.16 GB 10.1%
UNKNOWN (443) 8,581 2.2% 0.22 GB 2.0%
UNKNOWN (NP) 143,631 37.1% 0.02 GB 0.1%
Total 387,101 100.0% 11.4 GB 100.0%
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Table 3.4: Application Breakdown (Auckland IV Trace)
Class Flows % Flows Bytes % Bytes
HTTP 3,092,009 81.2% 36.24 GB 68.6%
DNS 75,513 2.0% 0.07 GB 0.1%
SOCKS 69,161 1.8% 0.24 GB 0.4%
IRC 53,446 1.4% 0.01 GB 0.0%
FTP (control) 50,474 1.3% 0.03 GB 0.1%
POP3 37,091 1.0% 0.22 GB 0.4%
Gnutella 10,784 0.3% 0.51 GB 1.0%
NNTP 9,442 0.2% 1.25 GB 2.4%
FTP (data) 5,018 0.1% 2.13 GB 4.0%
UNKNOWN 404,501 10.6% 12.14 GB 23.0%
Total 3,807,439 100.0% 52.83 GB 100.0%

account for a significant proportion of flows. The tables also list three categories of

UNKNOWN flows. There are UNKNOWN (NP) flows that have no payloads. Most

of these are failed TCP connections, while some are port scans. The UNKNOWNS

(443) are flows on port 443; these are likely to be HTTPS traffic. The third cate-

gory is simply labelled as UNKNOWN to reflect the fact that we have not identified

the applications that generated this traffic. The unknown flows are not used in our

analysis. General observations from these data sets follow.

Figure 3.3 shows the breakdown of the traffic for different applications in the

Campus traces. For clarity, this figure reports HTTP, P2P, OTHERS, and UN-

KNOWN, wherein the OTHERS category includes all classified traffic that is not

HTTP or P2P. Also we have excluded flows that do not have any payloads. In this

figure the diurnal patterns of the traffic can be seen. During the weekdays there is

more traffic than the weekends and during the mornings there is more traffic than

at night (note April 14 was a holiday). The large increase of UNKNOWNS on May

4 at 9 am is due to a port scan. One IP address made 621,429 connections to one of

the University of Calgary’s subnets scanning every port from 1 to 1024. These were

single packets sent of only 60 bytes and so there is not a similar spike in the bytes
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Figure 3.3: Application Class Breakdown of Campus Trace (M: Morning; E: Evening)

graph for the same trace.

On the campus network (Table 3.1), HTTP, DATABASE, and EMAIL traffic

contribute a significant portion of the total flows. On this network, P2P contributes

only 2.7% of the flows. However, P2P still accounts for a considerable portion,

approximately 36%, of the bytes. In contrast, the traffic from the residential network

(Table 3.2) exhibits comparatively less diversity in the usage of applications, with

HTTP and P2P being the dominant applications. In the 10-hour Residential trace,

P2P has a significant presence, both in terms of number of flows and number of

bytes. We attribute this difference, somewhat speculatively, to the network use

policies in place and the profile of the network users. As mentioned earlier, the

campus network is used by faculty, staff, and students, and is actively regulated for

non-academic content. Furthermore, the network infrastructure uses signature-based
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Table 3.5: P2P Breakdown (Residential Trace)
Application Flows % Flows Bytes % Bytes
BitTorrent 286,794 96.3% 22.00 GB 57.1%
Gnutella-based 10,066 3.4% 16.47 GB 42.7%
eDonkey 921 0.3% 0.05 GB 1.4%
Other 161 0.1% 0.01 GB 0.4%
Total 297,942 100.0% 38.5 GB 100.0%

Table 3.6: P2P Port Usage (Residential Trace)
Application Non-Standard Port Non-Standard Port

(% Flows) (% Bytes)
BitTorrent 91.7% 84.0%
Gnutella-based 82.1% 99.1%
eDonkey/eMule 89.1% 99.0%

identification to severely throttle P2P traffic. In contrast, the residential network is

used exclusively by students, is not actively policed, and only applies a soft limit on

the bandwidth available to each user.

Table 3.5 shows that BitTorrent and Gnutella-based P2P applications such as

BearShare, LimeWire, Morpheus, and Gnucleus are prevalent on the residential net-

work. KaZaA was hardly seen in the traces.

3.6 Empirical Motivation for this Research

We supplement our trace data analysis with three empirical observations that further

motivate our traffic classification work. These observations concern port numbers,

amount of variable-length offset bytes, and encryption.

Table 3.6 shows that use of non-standard ports is prevalent2. Approximately

92% of the BitTorrent flows used non-standard ports. This contrasts starkly with the

study by Sen et al. [67] in 2004 where they found only 1% of the BitTorrent flows used

2Default port numbers used were BitTorrent (6881-6889,32459), Gnutella-based (6346), eDon-
key/eMule (4661,4662,4711,4712).
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Figure 3.4: Variable-Length Offset of Gnutella Signature

non-standard ports. This provides further evidence on the declining effectiveness of

port-based classification.

Figure 3.4 shows the empirical distribution of variable-length offsets in Gnutella

before the characteristic payload signature is found. We found that signature match-

ing using only the initial 64 bytes of the payload bytes will allow approximately only

25% of the Gnutella flows to be identified. Over 400 payload bytes of each packet

would need to be captured to increase the number identified to 90%. Furthermore,

an application could easily make the length greater than 400 bytes if it helped avoid

detection.

Finally, our base truth establishment process indicates the presence of encrypted

traffic, most of which is likely to be from P2P applications. We have labelled these

as P2P Possible in Tables 3.1-3.3. We believe that as P2P applications evolve,

encryption will become the norm, and in that case, packet inspection techniques will

likely fail.
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3.7 Summary

This chapter discussed the data sets used in this thesis. The majority of the traces

used in this study were collected from the Internet link at the University of Calgary.

These University of Calgary traces were collected over a 6-month time period. In

total, over 1 terabyte of data was collected and we identified flows based on their

5-tuple. We established a “base truth” classification for our traces using a payload-

based approach. We present a breakdown of the traffic based on the application types

we identified. In addition, we confirm that port-based classification is ineffective and

provide additional empirical motivation for our proposed approach.

The next chapter presents our semi-supervised classification approach.



Chapter 4

Semi-Supervised Classification Framework

Many of today’s network monitoring solutions operate on the notion of network

flows. A flow is defined as a series of packet exchanges between two hosts, identifiable

by the 5-tuple (source address, source port, destination address, destination port,

transport protocol), with flow termination determined by an assumed timeout or

by distinct flow termination semantics. For each flow, network monitors can record

statistics such as duration, bytes transferred, mean packet interarrival time, and

mean packet size. This chapter outlines our classification method that can map

flows (characterised by a vector of flow statistics) to applications (or traffic classes),

with high accuracy and in realtime.

4.1 Terminology

We now introduce notations and terminology to describe the problem formally. Let

X = {X1, · · · , XN} be a set of flows. A flow instance Xi is characterised by a vector

of attribute values, Xi = {Xij|1 ≤ j ≤ m}, where m is the number of attributes, and

Xij is the value of the jth attribute of the ith flow. In the traffic classification context,

examples of attributes include flow statistics such as duration, bytes transferred, and

total number of packets. The terms attributes and features are used interchangeably

in the machine learning literature, and often Xi is referred to as a feature vector.

Also, let Y = {Y1, · · · , Yq} be the set of traffic classes, where q is the number of

classes of interest. The Yi’s can be classes such as “HTTP”, “Streaming”, and “Peer-

to-Peer”. Our goal, therefore, is to learn a mapping from a m-dimensional variable

X to Y . This mapping forms the basis for classification models, also referred to as

49
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classifiers in the machine learning literature.

Traditional learning methods of classifiers use a training data set that consists of

N tuples (Xi,Yi) and learn a mapping f(X) → Y. The goal is to find a mapping

that (correctly) generalizes to previously unseen examples. Such learning methods

are referred to as supervised learning methods [23]. Supervised machine learning

techniques have previously been applied for classifying network flows. Roughan

et al. [65] classified flows into four predetermined traffic classes (interactive, bulk

data transfer, streaming, and transactional) using the Nearest Neighbor and the

Linear Discriminate Analysis classification techniques. Moore et al. [53] evaluated

the suitability of a Näıve Bayes classifier for the Internet traffic classification problem.

Recently, Williams et al. [72] presented a preliminary comparison of five supervised

learning algorithms.

In designing our classification method, we are interested in overcoming two main

challenges faced by supervised techniques:

1. Labelled examples are scarce and difficult to obtain. With few labelled exam-

ples, traditional supervised learning methods often produce classifiers that do

not generalize well to previously unseen flows.

2. Not all types of applications generating flows are known a priori, and new ones

may appear over time. Supervised methods force a mapping of each flow into

one of q known classes, without the ability to detect new types of flows.

To address these challenges, we designed a method that combines unsupervised

and supervised methods. Our classification method consists of two steps. We first

employ a machine learning approach called clustering [23] to partition a training data

set that consists of scarce labelled flows combined with abundant unlabelled flows.

Clustering partitions the training data set into disjoint groups (“clusters”) such that

flows within a group are similar to each other whereas flows in different groups
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are as different as possible. Second, we use the available labelled flows to obtain

a mapping from the clusters to the different known q classes (Y ). This step also

allows some clusters to remain unmapped, accounting for possible flows that have

no known labels. The result of the learning is a set of clusters, some mapped to the

different flow types. This method, referred to as semi-supervised learning [3, 10, 16],

has received considerable attention, recently, in the machine learning community.

We note that our application of semi-supervised learning is novel in that we leave

some of the clusters unlabelled. This is different from the traditional application of

semi-supervised learning; in the traditional application of this approach, all classes

are known a priori, and unlabelled flows are used to improve precision of the classi-

fier. In the traffic classification problem, however, not all classes are known a priori,

and thus, we use the unlabelled clusters to represent new or unknown applications.

In effect, unlabelled flows are used to improve precision and handle unknown ap-

plications. The remainder of this chapter discusses the details of the classification

method.

4.2 Model Building: Clustering

The first step in training our classifier is to leverage all available training flows and

group them into clusters. In the machine learning paradigm, clustering is an example

of an unsupervised learning algorithm [23] because the partitioning of the flows in

the training data is guided only by the similarity between the flows and not by any

predetermined labelling of the flows. A key benefit of the unsupervised learning

approach is the ability to identify hidden patterns. For example, new applications

as well as changed behaviour of existing applications can be identified by examining

flows that form a new cluster.

Clustering algorithms use a measure d(xi,xj) of similarity between feature vectors
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xi and xj, and find a partition that attempts to place similar examples in the same

cluster, and dissimilar examples in different clusters. There are various similarity

metrics that can be used. Without loss of generality, in this thesis we use the

Euclidean distance as the similarity measure:

d(xi,xj) =

[

m
∑

k=1

(xik − xjk)
2

]1/2

. (4.1)

There are many different clustering algorithms in the machine learning litera-

ture. Although the proposed classification approach is not specific to any particular

clustering algorithm, our offline and realtime implementations use the K-Means al-

gorithm [23]. In Chapter 5, we analyze three different clustering algorithms namely,

K-Means, DBSCAN, and AutoClass; this analysis provides insight into the mod-

els produced by these clustering algorithms and the type of clusters formed, and

furthermore, provides rationale for our choice of using the K-Means algorithm.

4.3 Classifier: Mapping Clusters to Applications

The output of the K-Means clustering algorithm is a set of clusters, represented by

their centroids, γk. Given a flow feature vector x, we assign it to one of the clusters

by finding the nearest centroid to x, using:

Ck = arg min
k

d(x, γk), (4.2)

where d(·, ·) is the distance metric chosen in the clustering step. For K-Means with

Euclidean distance, this step amounts to the maximum likelihood cluster assignment

solution. In the machine learning literature, this form of classification is known as a

“distance-based” classifier [26].

However, knowing to which cluster a flow feature vector most likely belongs does

not provide the actual classification to one of the application types. Therefore, we



Semi-Supervised Classification Framework 53

need a mechanism to map the clusters found by the clustering algorithm to the

different application types.

We use a probabilistic assignment to find the mapping from clusters to la-

bels: P (Y = yj|Ck), where j = 1, ..., q (q being number of application types) and

k = 1, ..., K (K being the number of clusters). To estimate these probabilities, we

use the set of flows in our training data that are labelled to different applications

(xi,yi), i = 1, ..., L, where L is the total number of different labelled applications.

P (Y = yj|Ck) is then estimated by the maximum likelihood estimate,
njk

nk
, where njk

is the number of flows that were assigned to cluster k with label j, and nk is the

total number of (labelled) flows that were assigned to cluster k. To complete the

mapping, clusters that do not have any labelled examples assigned to them are de-

fined as “Unknown” application types, thus allowing the representation of previously

unidentified application types.

Finally, the decision function for classifying a flow feature vector x is the maxi-

mum a posterior decision function:

y = arg max
y1,...,yq

(P (yj|Ck)), (4.3)

where Ck is the nearest cluster to x, as obtained from Eq. 4.2. Our approach uses

hard clustering. However, labelling using soft clusters can easily be accommodated

into our framework. For instance, the confidence of a flow’s label could be based

on P (yj|Ck) and labels below a certain threshold could be considered “Unknown”.

Exploration of soft clustering and its potential benefits is left for future work.

4.4 Summary

In this chapter, we formally described the proposed semi-supervised classification

framework. The classification framework contains two primary steps: model build-
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ing and classification. This framework forms the basis of our offline and realtime

classification systems discussed in Chapter 6.

The next chapter presents a description and analysis of clustering algorithms that

can be used in the aforementioned classification framework.



Chapter 5

Clustering Analysis

This chapter describes and analyzes the potential of clustering algorithms for use

in our semi-supervised approach to traffic classification. This analysis provides in-

sight into the clustering models used by the semi-supervised classification framework

presented in the preceding chapter. Section 5.1 describes the three clustering algo-

rithms considered. Section 5.2 presents analysis where the algorithms are compared

based on their ability to generate clusters that consist primarily of a single applica-

tion type. In Section 5.3, we describe how a classifier for each clustering algorithm

can be developed for our framework and why K-Means is selected as the clustering

algorithm used to build our offline and realtime classifiers.

5.1 Clustering Algorithms

We restrict our attention to three popular clustering algorithms, namely K-Means [39],

DBSCAN [33], and AutoClass [11]. Each of these algorithms is based on a different

clustering principle: K-Means is partition-based, DBSCAN algorithm is density-

based, and AutoClass is probabilistic model-based. The data mining literature con-

tains many well-understood clustering algorithms developed during the past three

decades [23, 39, 73]. A possible future work direction is to consider other clustering

algorithms.

5.1.1 K-Means

There are a variety of partition-based clustering algorithms available [23,39]. The K-

Means algorithm [23] , shown on page 56, is selected because it is one of the quickest

55
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Algorithm 1 The K-Means Algorithm

Input : Training Data Set D = {x1, · · · , xn} and number of clusters K.
Output: Clusters C1, · · · , CK such that D = ∪K

i=1
Ci and Ci ∩ Cj = ∅,∀i 6= j.

for each k do
let γk be a randomly chosen object from D;

end
repeat

for each object xi, i ∈ {1, · · · , n} do
k = arg minj d(xi, γj) assign xi to cluster Ck

end
for each cluster Ck do

compute new cluster centroid γk

end
until convergence criterion satisfied ;

and simplest. The K-Means algorithm partitions the feature vectors in the training

data set into a fixed number of spherical-shaped clusters by minimizing the total

mean square error between feature vectors and the cluster centroids. Starting with

an initial partition (random or other), the algorithm iteratively assigns each vector

to the cluster whose centroid is nearest, and recalculates the centroids based on the

new assignments. This process continues until membership within clusters stabilizes.

The complexity of the algorithm is O(lKn) where l is the number of iterations [23].

For the data sets used in this thesis, the algorithm converges within a few iterations.

5.1.2 DBSCAN Clustering

Density-based algorithms regard clusters as dense areas of objects that are separated

by less dense areas [2,33]. Unlike algorithms such as K-Means, these algorithms are

not limited to finding spherical shaped clusters but can find clusters of arbitrary

shapes. We choose the Density Based Spatial Clustering of Applications with Noise

(DBSCAN) algorithm as a representative of density-based algorithms [33]. The

DBSCAN results are obtained from the implementation available in the WEKA

software suite [73].
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The DBSCAN algorithm takes two inputs: epsilon (eps) and minimum number of

points (minPts). The algorithm uses these input parameters to define the concepts of

eps-neighbourhood, core object, density-reachability, and density-connectivity. The

eps-neighbourhood of an object p is defined as the set of all objects that are within

eps distance of p. An object q is described as a core object if the number of objects

within its eps-neighbourhood is at least minPts. An object p is said to be density-

reachable from a core object q provided there exists a finite sequence of core objects

between p and q, with each of these core objects being in the eps-neighbourhood of

its immediate predecessor. Finally, objects p and q are said to be density-connected

if an object o exists from which both p and q are density-reachable.

The DBSCAN algorithm defines a cluster as the set of objects in a data set that

are density-connected to a particular core object. Any object that is not part of a

cluster is categorized as noise. This is in contrast to the K-Means and AutoClass

algorithms which give every object a cluster assignment.

The DBSCAN algorithm works as follows. Initially, all objects in the data set are

assumed to be unassigned. The DBSCAN algorithm chooses an arbitrary unassigned

object p from the data set. If DBSCAN finds p is a core object, it finds all the density-

connected objects based on eps and minPts. It assigns all these objects as being from

a new cluster. If DBSCAN finds p to be not a core object, then p is considered to

be noise and the DBSCAN algorithm moves onto the next unassigned object in the

data set. Once every object is assigned, the algorithm stops.

5.1.3 AutoClass

Probabilistic model-based clustering is another powerful clustering technique. We

use an implementation of a probabilistic model-based clustering technique called

AutoClass [11]. This algorithm allows for the automatic selection of the number of

clusters and the soft clustering of the data. Soft clusters allow the data objects to
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be fractionally assigned to more than one cluster. In the analysis in Section 5.2, we

use the most probable assignment as the object’s assignment.

To build the probabilistic model, the clustering algorithm must determine the

number of clusters and the parameters that govern the distinct probability distri-

butions of each cluster. To accomplish this task, AutoClass uses the Expectation

Maximization (EM) algorithm [21].

The EM algorithm has two steps: an expectation step and a maximization step.

The initial expectation step guesses what the parameters are using pseudo-random

numbers. Then in the maximization step, the mean and variance are used to re-

estimate the parameters continually until they converge to a local maximum. These

local maxima are recorded and the EM process is repeated. This process continues

until enough samples of the parameters have been found (we use 200 cycles in our

experimental results).

AutoClass uses a Bayesian information criterion (BIC) to determine the best

set of parameters to use for the probabilistic model. BIC is based on intra-cluster

similarity and inter-cluster dissimilarity. Also, BIC penalizes the score of models

with more clusters to minimize potential over-fitting.

5.2 Clustering Evaluation

In this section, the overall effectiveness of each clustering algorithm is evaluated.

The algorithms are compared based on their ability to generate clusters that have a

high predictive power of a single application type. We believe that in order to build

an accurate classifier, a good classification model must be used.

The clustering analysis is done using two empirical packet traces: the Auckland

IV trace (discussed in Section 3.1) and a campus trace collected on March 10, 2006

from 1 to 2pm. We refer to this particular campus trace as the Calgary trace for the
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remainder of this chapter.

The majority of flows in both traces carry HTTP traffic. This unequal traffic

sample does not allow for the fair testing of different traffic classes (i.e., HTTP

would dominate the data set such that producing a single cluster containing all

flows would still give a high cluster purity). To address this problem, the Auckland

data sets used for this test consist of 1000 random samples of each of the following

traffic classes: DNS, FTP (control), FTP (data), HTTP, IRC, Gnutella, NNTP,

POP3, and SOCKS. The Calgary data sets used 2000 random samples of each of the

following traffic classes: HTTP, P2P, SMTP, and POP3. The size of the data sets

were limited to 8000 flows because this was the upper bound that the AutoClass

algorithm could cluster within a reasonable amount of time (4-10 hours). To achieve

greater confidence in our results, we repeated our tests using 10 different data sets

generated from each trace. We report the minimum, maximum, and average results

from the data sets of each trace.

The flow statistics considered in this test include: total number of packets, mean

packet size, mean payload size excluding headers, number of bytes transfered (in each

direction and combined), and mean inter-arrival time of packets. Our decision to use

these features is based primarily on the previous work done by Zander et al. [75].

Due to the heavy-tailed distribution of many of the features and our use of Euclid-

ean distance as our similarity metric, we found that the logarithms of the features

gives much better results for all the clustering algorithms [60,73]. We undertake an

extensive feature selection process later in Section 6.1.3 when evaluating the design

of our offline classifier.

5.2.1 Algorithm Effectiveness

The clustering algorithms are evaluated using a metric called cluster purity. This

cluster purity measurement determines how well the clustering algorithm is able to
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create clusters that contain only a single traffic class. Note that for these experiments

the traffic class a flow belongs to is known. We are interested in determining whether

flows of the same type form distinct clusters.

The traffic class that makes up the majority of the flows in a cluster is used to

label the cluster. When the flow label matches with its corresponding cluster label,

we have a True Positive (TP); otherwise, a False Positive (FP) occurs. Any flow

that has not been assigned to a cluster is labelled as noise. The cluster purity is

calculated as:

cluster purity =

∑

TP for all clusters

total number of flows
. (5.1)

In the following subsections, the effectiveness of the K-Means, DBSCAN, and Auto-

Class algorithms are presented.

5.2.2 K-Means Clustering

The K-Means algorithm has an input parameter of K. This input parameter as men-

tioned in Section 5.1.1, is the number of disjoint partitions generated by K-Means.

In our data sets, we would expect there would be at least one cluster for each traffic

class. In addition, due to the diversity of the traffic in some classes such as HTTP

(e.g., browsing, bulk download, streaming) we would expect even more clusters to

be formed. Therefore, based on this, the K-Means algorithm was evaluated with

K initially being 10 and K being incremented by 10 for each subsequent clustering.

The minimum, maximum, and average results for the K-Means clustering algorithm

are shown in Figure 5.1.

Initially, when the number of clusters is small the cluster purity of K-Means is

approximately 49% for the Auckland IV data sets and 67% for the Calgary data

sets. The cluster purity steadily improves as the number of clusters increases. This

continues until K is around 100 with the cluster purity being 79% and 84% on

average, for the Auckland IV and Calgary data sets, respectively. At this point,
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Figure 5.1: Purity using K-Means
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Figure 5.3: Parametrization of DBSCAN

the improvement is much more gradual with the cluster purity only improving by

an additional 1.0% when K is 150 in both data sets. When K is greater than 150,

the improvement is further diminished with the cluster purity improving to the high

80% range when K is 500. However, large values of K increase the likelihood of

over-fitting.
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5.2.3 DBSCAN Clustering

The purity results for the DBSCAN algorithm are presented in Figure 5.2. Recall

that DBSCAN has two input parameters (minPts, eps). We varied these parameters,

and in Figure 5.2 report results for the combination that produces the best clustering

results. The values used for minPts were tested between 3 and 24. The eps distance

was tested from 0.005 to 0.040. Figure 5.3 presents results for different combinations

of (minPts, eps) values for the Calgary data sets. As may be expected, when the

minPts was 3 better results were produced than when the minPts was 24 because

smaller clusters are formed. The additional clusters found using three minPts were

typically small clusters containing only 3 to 5 flows.

When using minPts equal to 3 while varying the eps distance between 0.005 and

0.020 (see Figure 5.2), the DBSCAN algorithm improved its cluster purity from 59.5%

to 75.6% for the Auckland IV data sets. For the Calgary data sets, the DBSCAN

algorithm improved its cluster purity from 32.0% to 72.0% as the eps distance was

varied with these same values. The cluster purity for eps distances greater than

0.020 decreased significantly as the distance increased. Our analysis indicates that

this large decrease occurs because the clusters of different traffic classes merge into

a single large cluster. We found that this larger cluster was for flows with few

packets, few bytes transfered, and short durations. This cluster contained typically

equal amounts of P2P, POP3, and SMTP flows. Many of the SMTP flows were for

emails with rejected recipient addresses and connections immediately closed after

connecting to the SMTP server. For POP3, many of the flows contained instances

where no email was in the users mailbox. Gnutella clients attempting to connect to a

remote node and having its “GNUTELLA CONNECT” packets rejected accounted

for most of the P2P flows.
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Table 5.1: Purity using AutoClass
Data Set Average Minimum Maximum

Auckland IV 92.4% 91.5% 93.5%
Calgary 88.7% 86.6% 90.0%

5.2.4 AutoClass Clustering

The results for the AutoClass algorithm are shown in Table 5.1. For this algorithm,

the number of clusters and the cluster parameters are automatically determined.

Overall, the AutoClass algorithm has the highest purity. On average, AutoClass

is 92.4% and 88.7% pure in the Auckland IV and Calgary data sets, respectively.

AutoClass produces an average of 167 clusters for the Auckland IV data sets, and

247 clusters for the Calgary data sets.

5.2.5 Discussion

For the traffic classification problem, the number of clusters produced by a clustering

algorithm is also an important consideration as more clusters increase the compu-

tational processing of the classifier. The reason being that once the clustering is

complete, each of the clusters must be labelled. Minimizing the number of clusters

is also cost effective during the classification stage.

One way of reducing the number of clusters to label is by evaluating the clusters

with many flows in them. For example, if a clustering algorithm with high accuracy

places the majority of the flows in a small subset of the clusters, then by analyzing

only this subset a majority of the flows can be identified. Figure 5.4 shows the

percentage of flows represented as the percentage of clusters increases, using the

Auckland IV data sets. In this evaluation, the K-Means algorithm had 100 for K.

For the DBSCAN and AutoClass algorithms, the number of clusters cannot be set.

DBSCAN uses 0.02 for eps, 3 for minPts, and has, on average, 190 clusters. We

selected this point because it gave the best cluster purity for DBSCAN. AutoClass
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Figure 5.4: CDF of Cluster Weights

has, on average, 167 clusters.

As seen in Figure 5.4, both K-Means and AutoClass have more evenly distributed

clusters than DBSCAN. The 15 largest clusters produced by K-Means contain only

50% of the flows. In contrast, for the DBSCAN algorithm the five largest clusters

contain over 50% of the flows in the data sets. These five clusters identified 75.4% of

the NNTP, POP3, SOCKS, DNS, and IRC flows with a 97.6% cluster purity. These

results are unexpected when considering that by only looking at five of the 190 clus-

ters, one can identify a significant portion of traffic. (Qualitatively similar results

were obtained for the Calgary data sets.) However, the DBSCAN algorithm is the

only algorithm considered that can create non-spherical shaped clusters. This allows

these larger clusters to form. The K-Means and AutoClass algorithms can approxi-

mate these same areas using multiple clusters which explains why more clusters are

needed with K-Means to represent 50% of the flows.

Another noteworthy difference among the clustering algorithms is the time re-

quired to build the models. On average, to build the models, the K-Means algorithm

took less than 1 minute, the DBSCAN algorithm took 3 minutes, and the AutoClass
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algorithm took 4.5 hours. Clearly, the model building phase of AutoClass is time

consuming. We believe this may deter system developers from using this algorithm

even if the frequency of retraining for the model is low.

5.3 Designing an Efficient and Effective Classifier

The semi-supervised classification framework proposed in this thesis uses the K-

Means algorithm for its offline and realtime implementations. One reason for this

choice is that the more complex clustering algorithms required significantly longer

learning time than K-Means (e.g., hours versus minutes). We find that with K-

Means, large data sets can be leveraged to provide many benefits such as improving

classifier precision and allowing the classifier to handle unknown applications. That

notwithstanding, it is possible to design classifiers for the DBSCAN and AutoClass

algorithms as described below. During the course of this research work, we did in

fact build each of these classifiers.

A classifier for the DBSCAN algorithm can be developed using an approach

similar to the distance-based approach used for K-Means (discussed in Section 4.3).

However, the non-spherical shapes that the DBSCAN clusters can form cannot be

adequately represented by only calculating a single centroid of the cluster, thus

necessitating additional points to represent the cluster. To classify a new flow, the

distance between each of the points representing a cluster and the candidate flow is

calculated. A flow is assigned to the cluster that has the lowest distance measurement

overall to any of the cluster’s points. This DBSCAN classifier would be much slower

than K-Means because of these additional calculations per cluster.

AutoClass predicts the cluster to which a new flow belongs using the probabilistic

model developed during clustering. The probability of the new flow belonging to each

cluster is calculated. The cluster assignment can then be made using the most likely
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cluster. Note, that using a probabilistic assignment like this could be one method of

incorporating soft clustering into our framework mentioned in Section 4.2.

In addition to the fast clustering possible using K-Means, the simplicity and ease

of implementation of this algorithm prompted its use in the offline/realtime systems

developed in this work. The K-Means classifier has the least amount of compu-

tational overhead because the data structures representing the clusters allow fast

computations of distance (i.e., d(xi,xj) in Section 4.2). For example, we found the

DBSCAN algorithm would have required upto 10 times as many points to represent

its clusters as K-Means. Also, K-Means can generate clusters that largely consist of

a single application type. The other clustering algorithms investigated in some cases

provided more pure clusters, however, once converted into classifiers the difference

in classification accuracy was negligible. In the case of DBSCAN, we found in some

preliminary tests that the flows discarded as noise significantly impacted the accu-

racy of the classifier. Finally, the K-Means algorithm converges to a well-understood

probabilistic model: the Gauss Mixture Model [23]. Exploration of other clustering

algorithms for use with the semi-supervised method is left for future work.

5.4 Summary

In this chapter, we described and analyzed several clustering algorithms for potential

use in the semi-supervised framework proposed in this thesis. We found that the

clustering algorithms largely produce clusters that have a high predictive power of a

single traffic class. The results showed AutoClass produced the most pure clusters.

However, we also found that the K-Means algorithm is a more suitable choice for us

to use as a classifier; K-Means clusters are only marginally less pure, but K-Means

is much faster at clustering flows. This allows substantially larger training data sets

to be leveraged in the rest of our work.
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In the next chapter, we present classification results using the offline and realtime

classifiers developed based on the K-Means algorithm.



Chapter 6

Offline and Realtime Classification

This chapter presents the offline and realtime classification systems. Section 6.1 eval-

uates the design alternatives for offline classification, and Section 6.2 introduces and

evaluates the realtime classifier. The history of the traffic classification problem, the

longevity of the classifier, and the detection of when the classifier requires retraining

are discussed in Section 6.3.

6.1 Offline Classification

We implemented a prototype offline classification system, incorporating both steps

of the classification methodology, in approximately 3,000 lines of C++ code. In

this section, we discuss the design considerations that affect the performance of the

classifier. The design considerations are:

• Composition of the training data set: There are two related considerations, the

fraction of the training flows that are labelled, and the methodology used to se-

lect flows for the training; these issues are discussed in Sections 6.1.1 and 6.1.2,

respectively. Unless stated otherwise, we assume that all training flows are la-

belled.

• The features used to characterise the flows: Feature selection is discussed in

Section 6.1.3.

• The number of clusters K generated in the clustering step of the classification

method: This parameter can be used to tune our classifier to achieve better ac-

curacy, however, at the cost of additional computation for the classifier. Unless

68
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stated otherwise, we assume K = 400. We explore this factor in Section 6.1.4.

Our primary performance metrics are flow and byte accuracy. Flow accuracy is

the number of correctly classified flows to the total number of flows in a trace. Byte

accuracy is the number of correctly classified bytes to the total number of bytes in

the trace. In our results, we report for a given test data set the average results and

the 95% confidence interval from 10 runs each with a different training set of feature

vectors. Unless stated otherwise, the training data set of 8,000 samples is selected

from the test data set used for evaluation. In all our experiments the test data set

is a factor of 10 to 100 larger than the training data set.

6.1.1 Semi-Supervised Learning

Labelling of training feature vectors is one of the most time-consuming steps of any

machine-learning classification process, especially because many Internet applica-

tions purposefully try to circumvent detection. We expect a vendor to achieve la-

belling of flows using a variety of orthogonal approaches, including payload analysis,

port-based analysis, experimentation, expert knowledge, or a combination thereof.

Clearly, it is an advantage if high classification accuracy is achieved by labelling only

a small number of flows.

Recall that our approach allows clustering to use both labelled and unlabelled

training flows, and then relies on only the labelled flows to map clusters to applica-

tions. This semi-supervised approach to training the classifier leverages the fact that

clustering attempts to form disjoint groups, wherein each group consists of objects

that bear a strong similarity to each other. Thus, the hypothesis is that if a few

flows are labelled in each cluster, we have a reasonable basis for creating the cluster

to application type mapping.

To test the aforementioned hypothesis, we conducted a number of experiments.

The first experiment considers the possibility of the entire training data set being
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unlabelled. In this case, we can selectively label a few flows from each cluster and use

these labelled flows as the basis for mapping clusters to applications. The hypothesis

here is that the clustering step produces “pure” (in the sense of application types)

clusters; in Chapter 5, we provided empirical evidence of this hypothesis. Figure 6.1

presents results from this experiment. We assume that we are provided with 64,000

unlabelled flows. Once these flows are clustered we randomly label a fixed number of

flows in each cluster. Interestingly, the results show that with as few as two labelled

flows per cluster and K = 400, we can attain 94% flow accuracy. The increase in

classification accuracy is marginal once five or more flows are labelled per cluster.

For the second set of experiments, results of which are shown in Figure 6.2, we

utilized 80, 800, and 8,000 labelled flows, and mixed these labelled flows with varying

numbers of unlabelled flows to generate the training data set. Both labelled and

unlabelled flows were randomly chosen from the April 6, 9 am Campus trace. These

training flows were used to learn the flow to application mapping, with K = 400 in

the clustering step, and we tested the resulting classifier on the same Campus trace.

Note that there are 966,000 flows in this trace.
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Figure 6.2 reports the precision of the classifier. Precision is calculated as the

number of correctly labelled flows to the total number of labelled flows, with those

labelled “unknown” excluded from the calculation. We observe that for a fixed

number of labelled training flows, increasing the number of unlabelled training flows

increases our precision. This is an important empirical result because unlabelled

flows are relatively inexpensive to obtain and the penalty for incorrect labelling

of a flow might be high (e.g., assigning lower priority to business critical traffic).

Thus, by simply using a large sample of unlabelled flows, the precision rate can be

substantially increased. This experiment further demonstrates the potential of the

semi-supervised learning method.

The semi-supervised classifier makes it possible to start with a few labelled flows,

and over time incrementally label more training flows so as to improve the classi-

fication performance. The results in Figure 6.2 show that even when a very small

fraction of flows are labelled, the precision of the classifier remains high. As addi-

tional labels are added, the precision remains high, albeit decreasing slightly, but has

the accompanying effect of significantly reducing the amount classified as unknown.

Further reductions in unknown classifications can be hastened by “cherry picking”
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which flows to label; specifically, obtaining a few labels corresponding to highly used

clusters can substantially reduce the number of unknowns.

6.1.2 The Dichotomy of Elephant and Mice Flows

The presence of elephant and mice flows in Internet traffic is well documented (see [55]

and the references therein). Without proper representation of both types of flows in

the training data set, we run the risk of producing a classifier that may, for example,

have a high flow accuracy but a low byte accuracy. In this section, we investigate

how sampling methodology influences the selection of both elephant and mice flows

in the training data set.

We considered both sequential and random sampling techniques. For sequential

sampling, we generated each of the ten training data sets needed for the experiments

by randomly picking a point to begin sequential selection of flows. Along with

simple random sampling, we also considered weighted random sampling techniques

that bias selection of samples according to the transfer size of a flow or according to

the duration of a flow. Our weighted sampling policy takes 50% of the flows from

below and 50% of the flows from above the 95th percentile of the flow transfer sizes

or of the flow durations for the weighted bytes and duration policies, respectively.

We believe this weighted scheme allows additional clusters to be formed to better

represent elephant flows.

Figure 6.3 shows classification results from three single Campus traces (April 13,

9 am Campus trace is our largest), the Residential trace, and the WLAN trace. We

observe very high flow accuracies, in excess of 95% with the Campus traces and

around 90% with the Residential and WLAN traces, irrespective of the sampling

technique. However, the corresponding byte accuracies are lower and they vary across

the traces and with the sampling strategy. Depending on the sampling strategy, byte

accuracies between 50% and 85% are attained with the Campus traces, whereas byte
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accuracies between 80% and 93% and between 60% and 85% are obtained for the

Residential and WLAN traces, respectively.

Our experiments and the results in Figure 6.3 also show that sequential sam-

pling for selecting training flows performs poorly in comparison to the random and

weighted random sampling techniques. For example, in the WLAN trace, on average,

byte accuracy of 61% is achieved with sequential sampling whereas byte accuracy of

86% is achieved with weighted byte sampling. The weighted byte sampling technique

results in a 41% improvement of the byte accuracy compared to that with sequential

sampling. Similar improvements in byte accuracies are observed in experiments with

the remaining Campus traces. The byte accuracies with the Residential trace are

generally higher; yet, a modest improvement of 13% can be achieved by switching

from sequential to weighted byte sampling. In general, the weighted bytes sampling

technique achieves the best byte accuracies when classifying traffic. We attribute

this improved classification performance to the increased probability of forming more

representative clusters for infrequently occurring elephant flows. Finally, it is worth

noting that the large improvement in byte accuracy is possible with only a marginal

reduction in flow accuracy.

We conclude this section with a discussion of classification accuracy by application

type. Figure 6.4 shows the classification accuracies for applications that contribute

at least 0.5% of the flows or bytes in the traces. The results are from the weighted

byte sampling experiments shown in Figures 6.3. Overall, our approach is able to

classify any type of traffic, including P2P traffic, provided there are enough samples

in the training data set from which the mapping between flows and applications

may be learned. For the Campus trace considered (Figure 6.4(a)), we find that the

classification accuracy for P2P traffic is lower than that for other traffic because

P2P flows account for only a small percentage, typically less than 3% of the total

flows, and therefore, our sampling techniques are unable to capture enough of the
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Figure 6.4: Classification Accuracy by Application

P2P dynamics to learn the flow to application mapping. It is the misclassification of

P2P flows that results in the overall lower byte accuracy seen in Figure 6.3(a). As

can be seen in Table 3.1, P2P accounts for a small fraction of the flows but a large

fraction of the total bytes. When P2P is prominent (Figures 6.4(b) and (c)), as in

the WLAN and the Residential traces, we achieve flow and byte accuracies near 90%

for this type of traffic.
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6.1.3 Feature Selection

Another important design choice in training our classifiers is the set of features used

in the classifier. Many flow statistics (or features) can be calculated from a flow;

however, not all features provide good discrimination between the classes. Using such

features can decrease the accuracy of the classifier. We started with 25 candidate

features. To find a subset of discriminating features we employ a feature selection

method. In general, the feature selection task is exponentially hard; however, efficient

methods for feature selection are widely used [34].

We use a backward greedy feature selection method [34]. The method works as

follows. Given n features, we train a classifier with all features and compute its

accuracy. We then find the single feature to remove such that the classifier with

n − 1 features has the highest accuracy. This process is continued until we find the

maximum number of features to remove such that the resultant classifier has the

best accuracy.

To choose a subset of features to use in all of our experiments, we perform the

backward greedy search with the various data sets. We then find which subset of

the features were chosen most often in the different experiments. The eleven flow

features that were chosen are: total number of packets, average packet size, total

bytes, total header (transport plus network layer) bytes, number of caller to callee

packets, total caller to callee bytes, total caller to callee payload bytes, total caller to

callee header bytes, number of callee to caller packets, total callee to caller payload

bytes, and total callee to caller header bytes. In the rest of this Chapter we use this

set of features as a basis for our classifiers1.

Interestingly, we found that flow features that have a time component such as

1Caller is the host that initiates a flow (e.g., the host that sends the SYN packet during TCP
connection establishment); callee is the host that reacts to the initiation request (e.g., the host that
responds with a SYNACK packet during TCP connection establishment).
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duration, interarrival time, and flow throughput were found not to be useful by the

feature selection algorithm. In general, selection of time-oriented features should be

avoided as they are less likely to be invariant across different networks.

Internet flow features, in general, exhibit a high degree of skewness [60]. We found

it necessary to transform the flow features to obtain higher classification accuracies.

Experimentation with several commonly used transforms indicated that logarithmic

transformations yield the best results. In general, transformation of features is often

necessary in most machine learning applications.

6.1.4 Tuning the Classifier

The number of clusters (K) impacts the quality of clustering (and thus the quality

of classification), the time complexity of building the classifier, and the runtime

performance of the classifier. To determine a suitable K, we varied both the number

of clusters and the number of labelled training flows. Figure 6.5 shows the results

from experiments where we varied K from 50 to 1,000, and varied the number of

vectors in the training data sets from 500 to 32,000 flows. The training flows were

selected using a simple random sampling (See Section 6.1.3.).

Several observations can be made from the flow accuracy results in Figure 6.5(a).

First, flow accuracies in excess of 95% are achieved when using training data sets with

2,000 or more labelled flows. Second, although having more flows in the training data

set improves flow accuracy, the percentage improvement shows diminishing returns.

Third, as K increases, we observe that the flow accuracy also increases. For example,

for training data sets with 8,000 or more flows, a large K (≥ 4, 000) can facilitate flow

accuracies around 97.5%. However, having such large values for K is not practical

as this increases the time complexity of the classification step.

Figure 6.5(b) shows the byte accuracy results. The byte accuracies, on average,

ranged from 52% to 62%. We did not find any clear relationship between number of
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Figure 6.5: Parameterizing the Classification System (April 6, 9 am Campus Trace)

flows in the training data set and the corresponding byte accuracy. Byte accuracy

is very sensitive to a few large elephant flows in network traffic. In general, a simple

random selection of training flows from the traces is unlikely to capture enough

elephant flows in the training data sets, especially because the training data sets

consist only of a few thousand flows. For example, there are 58 FTP data transfers

that account for 6.5% of the bytes in the April 6, 9 am Campus trace, and these

are rarely captured in the (randomly chosen) training data set. Thus, these large

FTP flows are typically misclassified. Increasing the number of clusters K typically
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improves byte accuracy, albeit marginally, because the likelihood of forming clusters

for the elephant flows when they are selected in the training data set increases.

The use of more sophisticated sampling techniques such as weighted bytes policy

(discussed in Section 6.1.2) can substantially improve the byte accuracies. Another

solution we found for classifying “rare” applications of interest is to specifically add

flows of this type to the training data set. This makes it possible for the classifier to

have clusters representing this application as well.

Figure 6.5(c) shows cluster compactness [36]. Cluster compactness measures the

degree of homogeneity within the clusters formed; a low compactness measure in-

dicates more homogeneity among flows in the clusters. Clearly, if each flow in the

training set is assigned its own independent cluster, then cluster compactness will

reach zero. We see this trend in the graph wherein the larger K becomes, the lower

compactness becomes. However, we also see a plateau effect for K ≥ 400, wherein

compactness decreases slowly with increases in K.

Choosing parameter values for the clustering step presents a tradeoff between

accuracy and classification overhead. Our results show that a larger training data

set improves the flow accuracy, and a larger K improves flow accuracy, byte accuracy,

and cluster compactness. A large value for K, however, increases the classification

overhead and some caution must be emphasized when choosing K. Because our semi-

supervised learning does not require all flows to be labelled, we advocate using a large

training data set with as many labelled flows as possible, and a K value that achieves

the desired tradeoff between accuracy and computation overhead. Essentially, the

size of the training data set and the value for K are tuning parameters that can be

adjusted depending upon the application.
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6.2 Realtime Classification

In this section we discuss the design, implementation, and performance of a prototype

realtime classification system we developed using our classification framework.

6.2.1 Design Considerations

A fundamental challenge in the design of the realtime classification system is to

classify a flow as soon as possible. Unlike offline classification where all discriminating

flow statistics are available a priori, in the realtime context we only have partial

information on the flow statistics.

We address this challenge by designing a layered classification system. Our layers

are based upon the idea of packet milestones. A packet milestone is reached when

the count of the total number of packets a flow has sent or received reaches a specific

value. We include the SYN/SYNACK packets in the count. Each layer is an inde-

pendent model that classifies ongoing flows into one of the many class types using

the flow statistics available at the chosen milestone. Each milestone’s classification

model is trained using flows that have reached each specific packet milestone.

To classify flows in realtime we track the flow statistics of each ongoing flow.

When a flow reaches the first packet milestone, it is classified using the first layer’s

classification model. When the flow reaches further packet milestones it is then

reclassified using the appropriate layer’s model. When a flow is reclassified, any

previously assigned labels are disregarded.

This layered approach allows us to revise and potentially improve the classifica-

tion of flows. The memory overhead of our approach is linear with respect to the

number of flows because we use the same feature set at all layers.

An alternative approach would be to classify at points that are significant in the

transport-layer protocol. For example, the first layer could classify with just the
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transport protocol and port number when the very first packet is seen. For TCP

connections, the next layer could be when the first data packet is seen (i.e., following

the connection establishment phase). We defer this approach for future work.

The prototype was built using an existing IDS system called Bro [59]. Bro is an

ideal candidate for our prototyping effort because by design it performs the realtime

analysis of network traffic. We added two scripts to Bro 0.9a (unmodified) to enable

our realtime classifier. The first script tracks the flow feature set. When a flow

reaches a specific packet milestone, the script calls a classification function in our

second Bro script. The second Bro script contains a classification function for each

specific milestone at which we reclassify our flows. This second Bro script was

generated by a C++ program that reads in the training flows and generates the

mapping from flows to applications. We use the same features as in Section 6.1 with

one obvious exception; we do not use total number of packets.

6.2.2 Classification Results

For these experiments, we trained the classifier using flows from the April 6, 9 am

trace with 966,000 flows. For each of N layers we created models using 8,000 training

flows, using K = 400. In our implementation, we use thirteen layers and separate our

packet milestones exponentially (8, 16, 32, · · · ). For layers eleven and higher (packet

milestones greater than 4,096), fewer than 5% of flows in the trace reached these

milestones. Therefore, for these layers we trained with all available flows in the trace

(always more than 500). We do not test our model on the same trace from which we

generated the training data to avoid biasing our results.

We calculated realtime byte accuracy as follows. When a packet arrives for a given

flow we use the current label assigned by our classifier to determine if the bytes for

this packet have been correctly classified. Byte accuracy in a given time interval

is simply the fraction of bytes that were assigned the correct labels. Note that the
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Figure 6.6: Performance of Realtime Classifier

system may reclassify a flow several times and could therefore assign multiple labels

to the flow during its lifetime. Thus, we report only byte accuracy in a moving time

window and do not report flow accuracy.

Figure 6.6 presents example results by using the April 7, 9 pm and April 13,

9 am campus traces (April 13, 9 am is our largest 1-hour campus trace). We see that

the classifier performs well with byte accuracies typically in the 70% to 90% range.

Quantitatively similar results were obtained when tested on the other traces.

Another aspect we considered was the effect of adding additional layers to our
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Table 6.1: Real-Time Byte Accuracy with Number of Layers Varied
Layer Packet Milestone Byte Accuracy
1 8 40.0 %
2 16 45.8 %
3 32 48.9 %
5 128 49.5 %
10 4096 49.7 %
13 16384 77.5 %

classification system. For the April 13, 9 am trace shown in Table 6.1, 78% of the

flows had correct labels after classification at the first layer (8 packets). If this

were the only layer used in our system, this would result in 40% of the bytes being

correctly classified. This low value occurs because many of the elephant flows are

incorrectly classified at the early stages. Using five layers improves the byte accuracy

to 50%. Finally, with thirteen layers, byte accuracy reaches 78% as we are correctly

classifying the elephant flows. We also note that the last label given to a flow is

correct 82% of the time.

Some of the intermediate layers appear to provide little or no improvement in byte

accuracy. These additional layers can be removed and still allow our classification

system to achieve similar byte accuracies while reducing overhead.

6.3 Discussion

In this section we discuss three topics: the arms race occurring between network

operators and users/application developers, the longevity of our classifier, and the

ability of our methodology to determine when retraining is required.

6.3.1 The Classification Arms Race

To fully comprehend the traffic classification problem, one needs to understand its

history. For many years, traffic classification was trivial, as applications tended to
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abide by well-known port numbers. Application developers had little motivation to

deviate from this. Over time though, things changed; network bandwidths increased,

new applications emerged, and the Internet became available to a much larger audi-

ence. In the late 1990’s, the exchange of high fidelity music (and later video) became

feasible and accessible to a large audience. The increased bandwidth consumption

contributed to the creation of the traffic classification problem.

What ensued can best be described as an arms race involving at least four parties

- content owners, ISPs, users, and application developers. The race started slowly.

Initially ISPs could identify these file sharing applications using well known ports.

The ISPs could then control or block the offending applications. In September

2002 KaZaA escalated the race by introducing dynamic ports, effectively bypassing

blocked ports. Since that time, the two sides have gone back and forth numerous

times.

One important observation is that file sharing users have little loyalty to the

applications. If an application is blocked or impeded by an ISP, users will quickly

migrate to an application that can provide them with access to the content they want.

It is, therefore, important for a traffic classifier to overcome current countermeasures,

and also be able to function with the countermeasures that may come in the future.

For example, encryption is currently not widely used by file sharing applications,

even though some of these applications already support it. If required, users could

easily start encrypting their traffic. This would immediately prevent content-based

classifiers from properly identifying file-sharing traffic.

We believe our classifier based on flow statistics will be difficult to circumvent.

This is because it is very hard for applications to disguise their behaviour with-

out adding large amounts of overhead. Consider the average packet size feature.

To disguise this feature, an application would need to modify flows so the average

packet size across all its flows appear random. This would involve adding significant
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overhead because sometimes either padding would need to be added to packets to

increase the packet size or full packets broken up into several smaller packets when

sent to decrease packet size. Similarly, changing the ratio of data sent between hosts

could also require substantial amounts of extra data transfer. Ultimately, to defeat

the classifier the overhead required would be crippling. Nevertheless, if new applica-

tions originate or old applications change behaviour, we would like the classification

system to adapt accordingly.

In light of the above discussion, we can identify (at least, to first order) two

important considerations. One, a classification system should be robust and be

able to maintain high classification accuracy in the presence of transient changes

in network/application usage patterns; our hope would be that classifiers have a

reasonably long shelf life. Two, when there are substantial changes, for example,

owing to introduction of new applications, or owing to behavioural changes of existing

applications, the classifier should automatically detect the need for retraining; our

intent in this case is to keep up with the arms race. These two issues are further

discussed in Sections 6.3.2 and 6.3.3, respectively.

6.3.2 Longevity

To experimentally evaluate the long-term predictive value of classifiers, we tested

the classifiers that were built by sampling from the April 6, 9 am Campus trace

(see Section 6.1.2) across the forty-eight Campus traces. Figure 6.7 presents sample

results from our experiments.

Figure 6.7 (a) shows the classification accuracy as a function of time. The results

shown are for classifiers trained using labelled flows sampled by the weighted bytes

technique. Qualitatively similar results were obtained for other sampling techniques

(we do not show them on the graph to avoid line “crowding”). Our results show that

the classifier retained a high flow accuracy throughout the 6-month period. Flow
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Figure 6.7: Longevity of Classifier

accuracies close to 95% are consistently achieved in the traces we tested, including

major transitions such as end of winter semester, summer break, and beginning of

fall semester. For example, the student population substantially dwindles during the

summer months. Also, during the summer months, the number of Database flows

(MSSQL) substantially increased from the 5% originally seen in the training data

sets to over 25% during during this period. However, our classifier is still able to

classify the new database traffic correctly. There is no substantial loss in classification

accuracy.

In Figure 6.7 (b), we present the byte classification accuracies for the 9 am Cam-

pus traces. The results for the 9 pm Campus traces are qualitatively similar. The

byte accuracy trend is similar to the flow accuracy trend but shows more variability.

We also find that the weighted bytes approach for selecting training flows consistently

achieves higher accuracies than the random and sequential selection techniques be-

cause more P2P traffic is successfully classified by the former. We further investigated

why the byte accuracy drops significantly on April 15 and April 23. The drop in

byte accuracy was due to misclassification of FTP flows as either P2P or HTTP.
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In general, FTP is not captured well by any of the sampling techniques because it

accounts for only a small fraction (< 0.01%) of the flows, and thus, is unlikely to be

captured in a small-sized training data set. Typically, FTP accounts for less than

5% of the bytes but on those days it accounted for 21.6% and 26.6% of the bytes,

respectively.

6.3.3 Retraining

The results above show that our classifiers remained fairly robust over time and for

different traces. While encouraging, a mechanism for updating the classifiers is still

required. An update of the classifier can be in the form of re-clustering, re-labelling

of clusters, or both. The ideal way to determine if an update is required is to

track and measure the classification accuracy as new flows are classified. However,

measuring the accuracy is not possible, as the flow labels are not known. There

are, however, two indirect measures for measuring reliability of the classifiers. The

first is to build classifiers using a mix of labelled and unlabelled flows, as discussed in

Section 6.1.1. Then, we can track the number of flows that are not assigned any label.

If this number increases, it indicates the need for labelling some of those unknown

flows so that their corresponding clusters are also labelled. The semi-supervised

approach makes it possible over time that this type of an update would capture

under-represented flow types and allow the accuracy of the classifier to improve.

Alternatively, a statistical measure could be used to detect changes in the quality

of the clustering model. We propose using the average distance of new flows to their

nearest cluster mean; a significant increase in the average distance indicates the need

for an update. Formally, this measure corresponds to the likelihood function of the

clustering model in representing the new flows. The measure is easy to compute and

track, as it does not require knowledge of the flow labels. While an indirect measure

of accuracy, the clustering likelihood measure is correlated to the accuracy of the
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classifier. Recall from Section 4.3 that new flows are mapped to clusters using the

distance metric as a measure of similarity. Thus, it is expected that average distance

between flows and cluster centres is negatively correlated with accuracy.

Figure 6.8 shows a scatter plot of flow accuracy and average distance for all

forty-eight Campus traces for one of the classifiers used in Figure 6.7. These sample

results show that when the average distance to the cluster centres is higher, the

flow accuracies are typically lower, and vice versa. We repeated the above test

for the 9 remaining weighted bytes classifiers we built by sampling from the April

6, 9 am Campus trace and found similar results. The correlation between average

distance and accuracy ranged from -0.57 to -0.75 in the models we tested; the average

correlation was -0.69.

In practice, the clustering likelihood can be easily used as an indicator of when

our classification models need to be retrained. As previously demonstrated, the

classification model is fairly robust and would not need to be retrained frequently.

The average distance could be recorded for large intervals such as on an hourly or a

daily basis. The average distance obtained during the interval just after retraining
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could be used as a baseline as this most likely is when the model is most accurate.

If the hourly or daily average distance increases, and stays generally above a certain

threshold (e.g., 50% above the baseline), then this may be treated as an indicator

for retraining. The detection threshold can be adjusted to accommodate different

amounts of variation in flow accuracy.

Once the need for retraining is detected there are various approaches to retraining

that can be employed to update the classification model besides the simple and

extreme one of retraining the models completely from “scratch” using new labelled

and unlabelled flows. While we do not evaluate these approaches, we note some

approaches to retraining that do not require completely rebuilding the model. One

approach is to create new clusters using new flows that were far from their means.

This would be followed by selectively querying the labels of flows from these uncertain

clusters. In the machine learning literature, this is known as active learning [71].

Another approach is to sample new flows and randomly replace only a fraction of

the existing flows in the training data set and then rebuild the classifier.

6.4 Summary

In this chapter, we evaluated the proposed semi-supervised classification framework

using offline and realtime prototypes. We found that both high flow and byte ac-

curacy can be achieved in both cases and we can successfully classify a variety of

applications such as P2P, HTTP, FTP, and email. The classifiers are robust to

transient changes in the network. The detection of non-transient changes such as

introduction of new applications or behavioural changes to existing applications can

be facilitated using the proposed detection of retraining points.

In the next chapter, we address the problem of applying our framework at the

network core where only unidirectional traces are available.



Chapter 7

Classification at the Network Core

This chapter considers the problem of traffic classification at the network core.

Specifically, the offline classification framework developed in Chapter 6 is extended

and applied for classifying network traffic as may be observed at egress/ingress points

of the network core. At egress/ingress points at the network core, observing both

directions of a flow may not be possible because of routing asymmetries. This poses

two challenges. First, important statistics for the satisfactory classification of a flow

may not be available. Second, classification can only use per-flow information and

cannot rely on additional information such as communication patterns between hosts.

In light of the above, we study in Section 7.1 the influence of “directionality” of

flow statistics in classifying traffic. Our results show that flow statistics for the server-

to-client direction of TCP flows achieve better classification accuracies. Server-to-

client statistics of a flow may not always be available at the network core, thus, we

develop a flow statistics estimation algorithm in Section 7.2.

7.1 Classification Results using Unidirectional Flows

The empirical traces at our disposal have both directions of a flow. Our goal is to

study how the directionality (i.e., client-to-server or server-to-client) of a flow impacts

classification results. We generated from each empirical trace a “server-to-client”

data set and a “client-to-server” data set that for each flow in the trace records only

the packets seen in the server-to-client direction or the client-to-server direction,

respectively. To represent the typical case of traffic seen at the network core, we

selected for each flow in an empirical trace either the client-to-server direction packets

90
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or the server-to-client direction packets. We refer to this third category of data sets

as “random directionality” in this chapter. We restrict our attention to the first

week of the campus traces for this study.

7.1.1 Configuring the Classifier

We have found in our experimentation that increasing the sample size of our training

data set between 2000 and 128,000 does improve our classification results, albeit,

with diminishing returns when increasing the training data set sizes. This finding is

expected and corresponds well with the results in Section 6.1.4. From each data set,

we generated training data sets, each of which were generated by selecting 64,000

random flows using random sampling. As we advocated using a large training data set

in Section 6.1.4, a sample size of 64,000 was chosen because we wanted to maximize

the ability of the models to represent different applications and their dynamics within

the limits of computational requirements of building the model. Furthermore, for the

purpose of evaluation we assumed that all training flows are labelled. Much smaller

training data sets or data sets with labelled and unlabelled flows could also be used

for these experiments. However, as similar types of cases were already evaluated in

the previous chapter, we do not explore them again and strictly focus on the impact

that the directionality of the unidirectional flows has at the network core.

The selection of features plays an important role in machine learning. Although

many statistics can be obtained from a flow as discussed in Section 6.1.3, in the case

of unidirectional flows the number of available features is reduced. We experimented

with feature selection algorithms and settled on the following features: total num-

ber of packets, mean packet size, mean payload size excluding headers, number of

bytes transferred, flow duration, and mean inter-arrival time of packets. Due to the

aforementioned skewed distribution of many of these features, we found that using

logarithmic transformations yields the best results. In these experiments we have
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restricted our focus to only unidirectional features of a single direction of a flow.

Recall that the K-Means algorithm takes the number of clusters K as input. In

general, and as discussed in Section 6.1.4, K can be considered a tuning knob that

can be adjusted based on the needs of the classifier. The evaluations in this chapter

used K equal to 400 as this represented the best tradeoff between accuracy and

computational overhead.

7.1.2 Experimental Methodology

From each data set, we generate 10 different training data sets. After the clustering

was complete, we used each of these models in our classifier for classification of

the entire respective trace. We report the average results and the 95% confidence

intervals for the 10 models. The number of flows in a test data set typically ranges

between 500,000 to 1,000,000.

7.1.3 Results

Figure 7.1 shows the classification accuracy results for data sets derived from each of

the selected traces. Overall, we found that the server-to-client data sets consistently

give the best classification accuracy achieving, on average, 95% and 79% in terms

of flows and bytes, respectively. With the random data sets, the average flow and

byte accuracy was 91% and 67%, respectively. The client-to-server data sets were

able to correctly classify, on average, 94% of the flows with an average byte accuracy

of 57%. In general, use of the client-to-server data sets resulted in the worst byte

accuracies in all traces, except for the April 9, 9 pm trace.

Figure 7.2 shows the flow and byte accuracies achieved for the four most sig-

nificant applications (in terms of number of flows). We found that all three types

of data sets have a high flow accuracy for Database, Email, and Web traffic, with

both client-to-server and server-to-client data sets achieving, on average, accuracies
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Table 7.1: Confusion Matrix with Server-to-Client Data Sets (April 6, 9 am Campus
Trace)

Classification
Actual Class Web Email P2P DB OTHER

Web 511375 5214 7284 520 1084
Email 6620 64732 3066 88 631
P2P 6886 3620 47716 199 254
DB 1262 420 872 41262 166

OTHER 1904 232 1018 103 5336

in excess of 90%. The application type that proved the most difficult to classify was

P2P. The server-to-client data sets achieved a 77% flow accuracy; this is 20% greater

than the accuracies with client-to-server and random data sets.

Table 7.1 shows the confusion matrix [73] with the classifier using a server-to-

client data set to help further illustrate the accuracy of the classification by appli-

cation. In this m × m matrix the data point ci,j indicates the number of flows from

class i that were classified as class j. Obviously, we want values along the diagonal

to be much larger than the others which is what we do find. By looking across the

row of the confusion matrix at a given class i we can calculate the recall for that

class. Likewise, by looking down a column at a given class j we can calculate the

precision of that class.

The per-application byte accuracy for Database and Web is high with all three

types of data sets. However, for Email and P2P flows the accuracies vary considerably

between the different data sets. For Email flows, the client-to-server data sets provide

86% accuracy, but the random and server-to-client data sets have extremely low

accuracies of 7% and 23%, respectively.

While it is difficult for us to make a generalization to encompass every model

and trace, in the models where we did extensive analysis of the results, the reason

why the client-to-server data sets classified Email so well was that SMTP flows were
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being correctly classified. In the client-to-server models, SMTP flows were put into a

few large clusters that classified most of the SMTP traffic, with one of these clusters

normally capturing most of the large (in terms of bytes) SMTP flows. However, in

the server-to-client models the SMTP clusters were more fragmented and generally

formed many small clusters. The smaller clusters were generally for SMTP flows with

few bytes transferred (less than 2000 bytes). The larger SMTP flows that accounted

for most of the Email bytes generally did not form a cluster and were included in

clusters labelled either as P2P or Web. The confusion matrix in Table 7.1 further

confirms that these misclassifications with the server-to-client models are P2P and

Web. In the random models, SMTP did not form many clusters, which resulted in

SMTP being misclassified most of the time.

The server-to-client data sets are better able to classify the P2P flows than the

other data sets. With the server-to-client data sets, byte accuracy of approximately

83% is achieved, which represents a 30% increase over client-to-server and random

data sets. This higher classification accuracy is because 20% more P2P flows are

correctly classified using the server-to-client data sets. This marked difference from

the other data sets is one of the main reasons why server-to-client data sets achieve

the best flow and byte accuracies in Figure 7.1.

If we were to employ this type of traffic classification system at the network core

and, for example, tried to give a lower priority to P2P traffic or higher priority to

Web traffic, we think we would be quite successful. Overall, in all our models Web

has precision and recall values of 97%. P2P flows have a precision of 82% and a recall

of 77%. In the case of lowering the priority of P2P traffic, these results indicate that

77% of the P2P would be correctly given a lower priority and at the same time

less than 3% of the Web flows would be mistakenly given a lower priority. Such a

system if deployed in real-time could greatly reduce the strain that P2P puts on

many networks.
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While we have advocated the discrimination of P2P and Web traffic in the above

example we are, however, not limited to just these two types of applications. If

reducing P2P was not the concern and instead prioritizing mission-critical business

traffic was the focus then our classification system could be used just as successfully.

Business-critical traffic from a Database achieves a high accuracy as well. The con-

fusion matrix provides further evidence of this fact with a precision of almost 98%

and a recall of 94% when classifying Database flows.

We investigated why the Database flows achieved high accuracies with all the

statistics. The confusion matrix provides further evidence of the Database flows

being accurately classified and the classifier having a precision of almost 98% when

classifying Database flows. We found that in the client-to-server direction the Data-

base flows generally sent 5 packets with 76 bytes of total payload data, and in the

server-to-client direction the Database flows sent 4 packets with 63 total bytes of

payload data. This very regular pattern exhibited by the Database flows allowed for

highly accurate clusters to be formed in our models even though these clusters are

at spatially different places in the client-to-sever and the server-to-client models. In

models with the random flows, we found clusters were forming at both places which

accounts for its high accuracy as well.

7.2 Classification Results using Flow Estimation

In this section we introduce and use our flow statistic estimation algorithm. This

algorithm uses the packets of an unidirectional flow to estimate the flow statistics of

the other direction of the flow it does not see in the trace. The estimation algorithm is

based on the syntax and semantics of the TCP protocol and thus, would not work for

other transport protocols such as UDP. The algorithm is introduced in Section 7.2.1.

Section 7.2.2 discusses some of the assumptions made by the algorithm. Section
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7.2.3 outlines exceptions that may influence the accuracy of the algorithm. In Section

7.2.4, we empirically verify the estimation algorithm’s predictions. Finally, in Section

7.2.5, we test the classification accuracy using the estimated statistics.

7.2.1 Algorithm

The statistics of interest to us can be divided into three general categories: duration,

number of bytes, and number of packets. After we obtain the data for these three

general categories we can calculate other statistics such as average throughput, mean

packet interarrival time, and packet average size.

The duration of a flow is the amount of time from when the first packet of a flow

is sent until the last packet of the flow is sent. This statistic is fairly easy to calculate;

we can use the first and last packet sent in the direction we observe of the flow as

a good estimate of the duration. This works because typically in a well-behaving

TCP connection every packet that is sent receives a corresponding acknowledgment

from the other host. The packet exchanges typically occurring at the beginning and

at the end of a flow have the SYN and FIN packets, respectively. In cases where we

did not see the SYN and/or FIN exchange, such as when the traffic monitor drops

packets, we calculate the duration with the first or last exchange of data packet and

acknowledgment packets which may result in a less accurate estimate of the flow

duration.

The second category of statistics is concerned with the number of bytes trans-

mitted. Our approach for calculating the number of missing bytes is similar to the

technique developed by Smith et al. [69]. In the TCP protocol, the host responds to

reception of TCP segments (packets) by sending acknowledgments (ACKs) with the

sequence number field (SEQ) in the TCP header set to indicate the next expected

in-order byte. By using these ACK numbers we can estimate the amount of data that

has been received by calculating the offset between the highest ACK number and the
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lowest ACK number seen. This works fairly well for all TCP connections. We did,

however, find one exception that caused our calculations to go astray. This occurred

for connections that were closed using TCP resets (RST). For TCP RST packets, the

ACK number may not correspond to the in-order byte sequence received. Instead,

some TCP implementations let the field be a randomly assigned value. To combat

this problem we exclude the ACK numbers from RST packets when we calculate the

highest and lowest ACK numbers.

The last category of statistics, the number of packets sent, is the most difficult

to estimate. We derive a set of heuristics that estimate, for each TCP flow, the

number of packets that could potentially be received in the other direction between

transmission of two successive packets. We assume that if a SYN packet is seen,

then we are seeing the client-to-server packets of a flow. Otherwise, we assume we

are seeing the server-to-client packets. Algorithm 2 shows the rules that we defined.

We track the last sequence (PrevSeq) and acknowledgment numbers (PrevAck) seen

in the flow; before a flow starts these values are set to zero. We also calculate the

change in the sequence (SeqChg) and acknowledgment (AckChg) number between

the packets that we see. In the event that we do not receive a SYN or a SYNACK

packet at the beginning (or at all), our algorithm processes the first data packet with

either our first (line 5) or second rule (line 7), and then works correctly afterward.

We explain the remainder of this algorithm using examples. Let us assume that

we are seeing the client-to-server packets and the last packet (for the flow of interest)

had a sequence number of 100 and an acknowledgment number of 200, and the next

packet has a sequence number of 1560 and an acknowledgment number of 200. The

increase in sequence number indicates that the most recent packet carried some

payload data. However, since the acknowledgment number has not increased we

infer that the missing server-to-client packets for this interval had no payload data

and would most likely be ACKs corresponding to the payload in the last packets
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Algorithm 2 Packet Estimation Algorithm

Input: Set of Unidirectional Flows
Output: Set of Estimated Flow Statistics
foreach TCP flow f do1

PrevSeq = 0, PrevAck = 0, MissedAcks = 0, MissedData = 02

foreach Packet p do3

Calculate (SeqChg,AckChg)4

if SeqChg > 0 and AckChg = 0 and PrevSeq = 0 then5

continue; . SYN packet sent and nothing is missed6

else if SeqChg > 0 and AckChg > 0 and PrevAck = 0 then7

MissedAcks = MissedAcks + 1; . SYNACK or SYN missed8

else if SeqChg > 0 and AckChg = 0 then9

MissedAcks = MissedAcks + dSeqChange/MSSe;10

else if SeqChg = 0 and AckChg > 0 then11

MissedData = MissedData + dAckChange/MSSe;12

else if SeqChg > 0 and AckChg > 0 then13

MissedData = MissedData + dAckChange/MSSe;14

else if SeqChg ≤ 0 or AckChg ≤ 0 then15

continue; . Nothing has been missed from last packet seen16

end17

end18

end19
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sent. This case would be caught by our third rule (line 9) where we check to see if

the sequence number has increased and the acknowledgment number has not. We

calculate the number of ACKs missed as the sequence number change divided by the

expected maximum segment size (MSS). Conversely, if the sequence number does not

increase but the acknowledgment number does increase we infer that in this interval

packets that were sent in the other direction contained a total payload size directly

proportional to the change in the acknowledgment numbers. To calculate the number

of data packets that should have been received we divide the acknowledgment number

change by the MSS. This case is handled by our fourth rule (line 11). The fifth rule

(line 13) handles cases where data is being sent simultaneously in both directions

and the sixth rule (line 15) handles retransmissions and packets that are received

out of order.

7.2.2 Assumptions

In our rules we make three general assumptions, the first pertaining to the expected

MSS of packets, the second pertaining to the ACK-ing policy of the TCP stacks, and

the last in regards to retransmissions and packet loss.

We use MSS in our calculations for the number of packets sent. The MSS can be

estimated from the options field in the SYN/SYNACK packets of a connection. A

MSS announcement is made by each host at the beginning of a TCP connection with

the lowest value typically being used. In a unidirectional trace it would be possible

on a per-flow basis to estimate MSS based on any announcements seen. However, to

be more computationally efficient to determine the expected MSS, we analyzed the

empirical distribution of MSS in our traces. Our analysis showed that 95% of the

connections had a MSS of 1460 bytes. Approximately 5% had a MSS of 1380 and

some other minor groupings at 512 and 1260. Therefore, we used 1460 bytes as the

expected MSS in our verification and results.
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How TCP acknowledges segments depends on the TCP stacks of both the client

and the server. In some cases, an ACK is sent for every packet, while in other cases an

ACK is sent for every other packet. Our heuristics assume a simple acknowledgment

strategy of an ACK (with 40 bytes of header data and no payload) for every data

packet in the flow. We realize that this may overestimate the number of ACKs.

We also assume there are no packet losses, and therefore, our statistics do not take

into account any retransmissions. We make this assumption because retransmissions

have more to do with the transmission media and congestion than application specific

behaviour of the flows we want to classify. However, this does make our estimations

lower than what the actual numbers should be but this has the positive effect of

balancing the overestimation of the number of ACKs.

7.2.3 Sources of Errors

The largest source of error we found was not from faults in our algorithm, but

were a byproduct of problems encountered in the flow collection and separation.

The most significant errors we found in our results occurred when SYN packets (or

other random packets) of different flows were wrongly put into the same flow. This

affected our estimator because having a SEQ number or ACK number range much

larger than it should be causes the estimated number of bytes to be very wrong (e.g.,

1 GB instead of a few couple hundred bytes). We caught these errors by having a

sanity check that determines if the average packet size was larger than 1500 bytes.

Another error we found was when there were large jumps in the ACK/SEQ

numbers. The main cause of this anomaly was flow merging (i.e., the end of one

flow merged into the start of the next flow). To handle these, when we saw a jump

in the ACK/SEQ numbers greater than 100 packets worth of data we assumed flow

merging had occurred. We closed the original flow and started a new one starting

with the new sequence number. When we split the flow, however, if the new flow
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did not receive any more packets we assumed these jumps must have been errors

and remove these single packet flows. These jumps in ACK/SEQ numbers typically

occurred in approximately 750 out of every 1 million flows. The value of 100 packets

was chosen so that it would be larger than the largest typical bursty loss of packets.

Originally, we had set this value at 10 but found a few large flows were being split

because they had consecutive packet losses of 10 to 15 packets. Thus, we increased

the number to 100 and found that this was large enough to handle almost all the

bursty packet losses and flows were not inadvertently split.

7.2.4 Validation

Estimating flow duration is easy, and overall the error in the duration estimation

is low. The average flow duration was 27.5 seconds, with an error of 7.3%. In our

estimation results shown in Figure 7.3, we found that normally 90% of the flows had

duration errors less than 1 msec. In most cases where there was a high error in the

duration, we found that the error was caused by a RST or FIN packet being sent

well after the rest of the flow’s packets were sent.

Figure 7.4 shows a scatter plot of the actual number of bytes versus the estimated

number of bytes for the random data set generated from the April 6, 9 am trace.

The scatter plot shows strong agreement between the actual and estimated amount

of bytes. For our traces, the algorithm was always within 0.4% and 1.4% of the

actual number of bytes.

Figure 7.5 shows a scatter plot of the actual number of packets versus the esti-

mated number of packets for the random data set generated from the April 6, 9 am

trace. As seen in the scatter plot, the estimated number of packets closely follows the

actual number of packets; the estimate accuracy appears to be somewhat lower when

there are more packets transferred along the missing direction of the flow. Experi-

ments with the remaining traces showed that the packet estimate was, on average,
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within -5.3% and 1.6% of the actual number of packets.

On a per flow basis, Figure 7.6 shows the distribution of the per-flow percentage

error for both packet and byte estimation. It shows that our estimate is within 30%

of the actual number of packets for 80% of the flows, and within 20% of the actual

number of bytes, for 90% of the flows.

Looking solely at the percentage error is somewhat misleading, since the high

error cases often correspond to flows with few packet transmissions (fewer than 10).

The main sources of inaccuracy are flows that after the TCP handshake had occurred

saw a single reject or RST packet from the server. The clients in such cases attempts

to send the initial data packet several times. This typically occurred in P2P connec-

tions that were refused. If our algorithm sees the server side of such flows it estimates

it missed either 0 or 1 packets because we ignore RST packets. Otherwise, if it sees

the client side of the flow it thinks it missed several ACKs because we assume all

packets are acknowledged. In both cases, the algorithm is off by a few packets but

the percentage error is large. We found that the overall average error per flow is 2.4

packets, and that 87% of flows are within 5 packets of the actual number. In terms
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of bytes, the overall average error is 120 bytes, and 92% of the flows are within 500

bytes of the actual number.

7.2.5 Classification Using Estimated Statistics

We examine the accuracy of our classifier if we use the estimation algorithm described

in the previous section to estimate server-to-client statistics for our traces when only

the client-to-server or random flows are seen.

Figure 7.7 shows the classification accuracy. These experiments are similar to

those reported in Figure 7.1, except that both model building and the subsequent

classifier use the estimated statistics when necessary. As seen in this figure, we find

that when we use the estimation algorithm to estimate the server-to-client statistics

the flow accuracy and byte accuracy achieved using the client-to-server and random

flows is very close to the actual accuracy we achieved when using the actual server-

to-client statistics obtained from the empirical traces.

Interestingly, our classification accuracies are largely unaffected by the potential
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errors in our estimated flow statistics. We think this robustness is due to the fact

that we use the logarithm of the flow statistics (as mentioned in Section 7.1). The

magnitude of difference of the flow statistics has a much greater impact in the classi-

fication than the small errors in the estimations. This makes us believe it is possible

to use our estimation technique to calculate the different statistics which allows for

the best classification even though only partial information is available.

7.3 Summary

This chapter considered the problem of classifying network traffic when only one

direction of network flows are observed, as may be the case in the network core. We

found that, in general, rich traffic classification using only unidirectional statistics is

feasible, with our experiments showing accuracies of 95% in terms of flows and 80% in

terms of bytes. We also found that better classification performance is achieved when

statistics for the server-to-client direction are used than when statistics for the client-

to-server direction are used. Because collection of the server-to-client statistics may

not always be feasible, we developed and validated an algorithm that can estimate

the missing statistics from a unidirectional packet trace.

The next chapter concludes this thesis and presents avenues for future work.



Chapter 8

Summary and Conclusions

This chapter summarizes the work done in this thesis. An overview of the thesis and

its contributions are presented in Section 8.1 and Section 8.2, respectively. Section

8.3 discusses the conclusions we have drawn from our work. Finally, related open

research problems are discussed in Section 8.4.

8.1 Thesis Summary

This thesis proposed a semi-supervised traffic classification framework that relies on

using only flow statistics to classify traffic. We designed this approach to overcome

the limitations and drawbacks of port-based and payload-based classification tech-

niques. We provide an extensive evaluation of our proposed classification framework

and of our design decisions; we believe these will be useful to future researchers and

practitioners when applying machine learning techniques to this and other classifi-

cation problems.

Chapter 1 presented the goals of the thesis.

Chapter 2 presented background and relevant prior work. Specifically, we dis-

cussed the TCP/IP protocol suite and the different traffic classification techniques

in the literature. Historically, port [38] and payload [35, 52, 67] based approaches

have been used for traffic classification in the literature and by commercial vendors.

However, these approaches have several drawbacks such as being either increasingly

ineffective or incurring high overhead, hampering their deployment. While these

drawbacks have received some attention [35,44,49], they have spurred new traffic clas-

sification techniques to be developed based on using the behaviours of hosts [41,42,74]
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and using machine learning [6, 17,53,72].

Chapter 3 described our data sets and our methodology of collecting traces. This

research was facilitated by over 1 terabyte of full-payload packet traces collected

over a 6-month time period from the University of Calgary. We described the es-

tablishment of a “base truth” classification of the flows in our data sets using a

payload-based approach. We presented a breakdown of the application types we

found predominantly in our base truth classification results of our traffic traces. We

provided empirical evidence that re-affirmed the unreliability of port-based classifi-

cation to classify traffic accurately.

The contributions of this work were presented in Chapters 4 - 7, and are summa-

rized in the next section.

8.2 Contributions Summary

Chapter 4 formally described the semi-supervised classification framework proposed

in this thesis. One of the specific contributions made is that we designed a flex-

ible mathematical framework that leverages unlabelled flows and is not restricted

to a specific clustering algorithm. This semi-supervised framework recognizes that

obtaining labelled flows is hard and that not all applications are known a priori.

Chapter 5 investigated the potential of several clustering algorithms for use in the

proposed semi-supervised framework. We showed that all the clustering algorithms

considered can produce “pure” clusters and we described how a classifier for each

algorithm can be designed. Furthermore, we discussed our decision to use K-Means

in our classifier.

Chapter 6 evaluated the offline and realtime classifiers developed. Our results

show that:

1. Both high flow and byte accuracy can be achieved;
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2. A variety of applications, including P2P, HTTP, FTP, and email can be suc-

cessfully classified; and,

3. Robust classifiers can be built that are immune to transient changes in network

conditions.

Furthermore, to facilitate automatic detection of non-transient changes such as

introduction of new applications or behavioural changes to existing applications, we

proposed a retraining point detection mechanism. A salient feature of our work is

the development of working prototypes.

Chapter 7 considered the problem of classifying network traffic when only one

direction of network flows are observed, as may be the case when the point-of-

observation is the network core. To address this problem, we applied our semi-

supervised classification framework for classifying network traffic to only use unidi-

rectional flow statistics.

The results show that, in general, rich traffic classification using only unidirec-

tional statistics is feasible, with our experiments showing accuracies of 95% in terms

of flows and 80% in terms of bytes. We also found better classification performance

is achieved when statistics for the server-to-client direction are used than when sta-

tistics for the client-to-server direction are used. Because collection of the server-to-

client statistics may not always be feasible, we developed and validated an algorithm

that can estimate the missing statistics from a unidirectional packet trace.

8.3 Conclusions

This thesis proposed and evaluated a semi-supervised framework for classifying net-

work traffic using only flow statistics. A key advantage of the semi-supervised ap-

proach is the ability to accommodate both known and unknown flows during devel-

opment of the classifier. We show that our technique can achieve high classification
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accuracy by using only a few labelled examples in combination with many unlabelled

examples.

We concentrate on achieving both high flow accuracy and high byte accuracy,

unlike many of the other proposed traffic classification approaches in the literature

(e.g., [6, 17, 19, 72]). As we discussed, byte accuracy is specific to the problem of

traffic classification wherein a minority of the flows (e.g., the “elephants”) have a

much greater impact on the network, and therefore, is an important aspect that

cannot be disregarded. We found that achieving high flow accuracy is relatively

easy. The more difficult problem is obtaining a high byte accuracy as well.

Our evaluations show that generic classifiers based on flow statistics can be de-

veloped. A vendor may train the classifier using a mix of labelled and unlabelled

flows, where labelled flows may be obtained from operational or test networks. Our

retraining point detection enables the possibility of discovery of network specific un-

knowns; these may be, at the discretion of the operator, delivered to the vendor for

labelling. As and when required, vendors may distribute new classifiers along with

a set of labelled flow feature vectors.

One challenge to our proposed approach is the selection of relevant features. This

problem is not specific to our proposed classification framework; it is applicable to

all machine learning problems in general. It is not possible to prove that a particular

set of features is optimum. Some features might prove to be better discriminators

for some application types than others; thus, depending upon the mixture of the

traffic in the data sets it is possible for a different combination of features to provide

better accuracy. However, as we have demonstrated, with appropriate selection

of features, highly accurate classification using only flow statistics is possible. If

application behaviours change or if the mix of applications on a network is different

the optimum set of features may change. This is an open problem, but is nevertheless

still manageable, because there exists a rich set of tools and methods in the machine
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learning literature for feature selection [23,46].

8.4 Future Work

Many opportunities exist for future work, several of which have already been men-

tioned earlier in the thesis. These opportunities are further elaborated upon in this

section.

Performance Comparisons

One potential area for future work is comparing the performance of our classifica-

tion framework against existing classification techniques. In general, an extensive

comparison between the existing approaches in the literature is missing and would

be an interesting avenue to pursue. A study of this nature would be non-trivial for

several reasons. First, publicly available data sets with a reliable “base truth” (i.e.,

not from port-based analysis) are not available due to privacy issues. This makes the

reproduction of results impossible. Second, many of the current proposed approaches

only attempt to classify a small subset of applications and this subset differs between

studies. Third, the performance metrics used to evaluate techniques varies widely.

For example, byte accuracy is ignored in the results of several studies [6, 17, 19, 72].

Finally, many of the techniques have different tuning parameters (e.g., [41, 42, 74])

and use different features (e.g., [6, 17,53,72]).

Exploring Different Design Choices

The development and evaluation of our semi-supervised classification framework fo-

cused on the use of K-Means to build our offline and realtime classifiers. Many

clustering algorithms are available from the rich and diverse machine learning liter-

ature. For example, we built a classifier based on “hard” clustering where a flow is
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always assigned to a most probable cluster; soft clustering techniques allow a flow

to be probabilistically assigned to multiple clusters. In information theory, soft deci-

sions have been shown to increase accuracy in certain situations. Another extension

could be to evaluate different layering schemes for the realtime classifier.

Realtime Classification Performance

In our evaluation of our offline and realtime prototype classifiers we did not consider

classification speed. Classification speed is most relevant to the problem of realtime

classification as the timeliness of classification can affect the network’s performance.

This is not as applicable to offline classification because the flow has already ended.

Our realtime classifier in terms of performance was slow and took approximately

three hours to process a one hour trace. This aspect was not discussed in our results

because we did not attempt to optimize the prototypes for performance. In fact, we

added significant additional overhead to the realtime classifier as we measured its

accuracy against the payload-based “base truth” and recorded its incremental clas-

sifications at each layer. By simply removing these measurements we could greatly

increase the processing speed of the classifier.

We believe there exists several other opportunities to increase the speed of the

classifier. First, collecting flow statistics in Bro accounted for the majority of the

overhead in the classifier. Commercial products (e.g., Cisco’s NetFlow [13]) op-

timized for collecting flow statistics could be integrated to reduce this overhead.

Second, the hardware used in our evaluations was an IBM x335 series server with

an Xeon 2.4GHz CPU and 1GB of RAM. This is not the most up-to-date hardware

available and we think that Bro was constrained by the amount of RAM available

on the machines. Finally, in our realtime prototype classifier our classification rules

were generated in a Bro script that was interpreted by Bro as it ran. However, if

we moved our classification rules into C code that is then compiled into Bro, then
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we believe this could greatly improve the performance. In addition, the classifica-

tion rules could be hierarchically structured to reduce the number of comparisons

required.

Classifying UDP Traffic

The evaluation of our classification framework focused on TCP traffic. The frame-

work can be extended, as discussed in Section 3.3, to classify UDP traffic. Flow

statistics for UDP flows could be collected and a classifier built to handle this new

type of flow. In addition, new features might need to be chosen to effectively dis-

criminate between UDP-based applications.

Developing Generic Classifiers

Currently, we are investigating the applicability of classifiers developed using training

data from one environment in successfully classifying traffic from another environ-

ment. Preliminary experiments with classifying the Campus traces using classifiers

developed from the WLAN trace are encouraging. We are now trying to obtain

traces from other environments to further validate our preliminary observations.
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Appendix A

Payload Signatures

These are the payload-based signatures we used in Bro to create our classification

base truth. Note \x signifies a hex character.

signature bb_id {

dst-port = 1984

payload /(server|ack|page)/

event "BB"

}

signature bittorrent_id {

payload /.*(BitTorrent|BT_CHOKE|BT_UNCHOKE|BT_UNINTERESTED|BT_HAVE|BT_BITFIELD|BT_REQUEST

|BT_PIECE|BT_CANCEL|BT_HAVE|BT_KEEP_ALIVE|AZ_PEER_EXCHANGE)/

event "BitTorrent"

}

signature directconnect_id {

payload /\$(Send|Get|Dir|ConnectT|Supports|Hello|MyINFO|Search|MyNick|Quit|Key|RevConn|Version

|Lock|HubName)/

event "DirectConnect"

}

signature edoneky_id {

ip-proto = tcp

payload /(\xe3|\xc5)/

event "eDonkey"

}

signature ftp_id {

ip-proto = tcp

dst-port = 21

payload /.*(FTP)/

event "FTP"

}
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signature ftp2_id {

dst-port = 21

payload /.*(PASS|USER|CWD|PASV|PORT|250 OK|220)/

event "FTP"

}

signature gnutella_id {

payload /GNUTELLA CONNECT/

event "Gnutella"

}

signature gotomypc_id {

payload /GET \/jedi\?reques/

event "GoToMyPC"

}

signature http_id {

ip-proto == tcp

payload /.*(HTTP|GET.\/|POST |HEAD |HTTP\/1|GET )/

event "HTTP"

}

signature kazaa_id {

payload /.*KazaaClient/

event "Kazaa"

}

signature icq_id {

dst-port = 5190

payload /.*ICQ/

event "ICQ"

}

signature ident_id {

dst-port = 113

payload /[0-9]*,.*25/

event "IDENT"

}
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signature imap_id {

dst-port = 143

payload /.*(CAPABILITY|LOGIN|login)/

event "IMAP"

}

signature jetdirect_id {

dst-port = 9100

payload /.*(PJL.SET.PAGEPROTECT=OFF|PJL.JOB)/

event "JetDirectProtocol"

}

signature msnmessenger_id {

dst-port = 1863

payload /.*(CAL|JOI|XFR|RINGING|USR|ANS|VER|MSG|QRY|CHL|NLN|ILN|CHG|LST|INF)/

event "MSN"

}

signature msnwebcam_id{

payload /recipientid=[0-9]*&sessionid=[0-9]*/

event "MSNWEBCAM"

}

signature mssql_id {

dst-port = 1433

payload /.*(\0S\0E\0R\0V\0E\0R|\0S\0Q\0L)/

event "MSSQL"

}

signature mysql_id {

payload /.*\x03(SELECT|select|INSERT|insert|SHOW|show|UPDATE|update)/

event "MySQL"

}

signature nntp_id {

dst-port = 119

payload /.*(mode.stream|MODE.STREAM|CHECK <|TAKETHIS <|check <|takethis <|LISGROUP|ARTICLE |\x0d\x0a=ybegin

|mode.reader|MODE.READER)/

event "NNTP"

}
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signature otherp2p_id {

payload /.*(LimeWire|BearShare|Gnucleus|Morpheus|XoloX|gtk-gnutella|Mutella|MyNapster|Qtella|AquaLime

|NapShare|Comback|PHEX|SwapNut|FreeWire|Openext|Toadnode|GnucDNA|morph500|morph460|Shareaza)/

event "P2P"

}

signature otherp2p2_id {

payload /.*(CONNECT BACK)/

event "P2P"’

}

signature otherp2p3_id {

payload /.*GIV.*(mp3|avi|mpg|zip|iso|img|rar|file)/

event "P2P-other"

}

signature pop3_id {

dst-port = 110

payload /.*(POP3|Mail|mail|\+OK|ok|Ok|sender|recipient|RCPT TO|INBOX|DONE|\* OK|USER|PASS|APOP

|AUTH|CAPA|STAT)/

event "POP3"

}

signature real_id {

dst-port = 3077

payload /.*GET/

event "GETSon3077"

}

signature rtsp_id {

dst-port = 554

payload /.*(rtsp)/

event "RTSP"

}

signature samba_id {

dst-port = 873

payload /.*RSYNCD/

event "Samba"

}
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signature sip_id {

payload /.*(REGISTER|INVITE).*SIP/

event "SIP"

}

signature smtp_id {

ip-proto = tcp

payload /.*(SMTP|ESMTP)/

event "SMTP"

}

signature smtp2_id {

dst-port = 25

ip-proto = tcp

payload /.*(ELHO|elho|HELO|ELH0|EHLO|ehlo)/

event "SMTP"

}

signature spamassassin_id {

dst-port = 2703

payload /.*(cn=razor|a=(c|g)\x26|-nsl)/

event "SpamAssassin"

}

signature ssh_id {

dst-port = 22

payload /.*SSH/

event "SSH"

}

signature vnc_id {

dst-port = 5900

payload /.*RFB/

event "VNC"

}

signature z3950_id {

payload /.*(Mike Taylor|Net::Z3950.pm|MetaStar Search SDK|BookWhere)/

event "Z3950Client"

}


