
COL106: Assignment 4

Trie, Red-Black tree and Priority queue

Updated: October 14, 2019

1 Fixes

• Please note some changes in the output format for Trie.

• Allowed imports: List, Stack and Queue.

Logistics:
Release date: September 13, 2019
Submission deadline: 30th September, 23:55 2nd October, 23:55
Total marks: 5
PDF Version: Assignment 4 PDF
FAQ: See Section 8
Code can be downloaded from here : Download code
Changes:

• Download the new Makefile. Replace the current Makefile in the src folder with this
one. This takes care of the file encoding issues while comparing.

• Constant files, the files that you are NOT suppose to change can be found here:
Download constant files. Just replace these files in their respective directories. You
can make changes to other files as per your requirements.

Brief description:
In this assignment you need to work with Tries, Red-Black trees and Priority queues. There
will be four components of the assignment. The first three will check tries, red-black trees
and priority queues independently. The last part of the assignment will be a combination of
all the previous components.

2 General instructions

The grading will be done automatically. To ensure a smooth process, an interface will be
provided to you, which you are NOT suppose to change. Your solution classes will
implement these interfaces.

1

RES/assignment_4_v4.zip
RES/constant_files.zip

For each of the component, you will be given and input file, which will contain the
commands that your code must execute. As per the command, the program will produce
the output, which will be compared against an expected output for grading. Please ensure
that you follow the proper formatting criteria, failing to do so will results in a penalty or no
marks for that particular component.

2.1 Code skeleton

You are provided with the skeleton of the code. This contains the interfaces and other
relevant information. Your task is to implement these functions. The code also contains
driver code for all the components of assignment. These will be used to check the
correctness of the code. Please DO NOT modify the interface and the driver code. You
are free to change and implement other parts in any way you like.
Code can be downloaded from here: Download code

2.1.1 Building and Running

In the code, within the src folder, you can use the following commands to check your code.

make

This will check all the components. Components can also be checked independently:

make trie

make rbtree

make pq

make pm

for Trie, Red-Black tree, Priority-Queue and Project-Management (4th component)
respectively.

3 Trie [1 Mark]

Trie is an efficient information reTrieval data structure. Using Trie, search complexities can
be brought to optimal limit (key length) [3].
In this part of the assignment, you need to implement a Trie data structure. To make
things interesting, you will be implementing a telephone directory using Tries. Name of a
person will be the key (assuming all names are unique). Associate with every name will be
a Person object.

1 package Trie;

2 public class Person {

3 public Person(String name , String phone_number) {

4 }

2

RES/assignment_4_v2.zip

5 public String getName () {

6 return "";

7 }

8 }

Listing 1: Person class.

3.1 Interface

You version of Trie must implement the TrieInterface as shown in Listing 2 and is also
present in the code provided.

1 package Trie;

2 /**

3 * DO NOT EDIT THIS FILE.

4 */

5 public interface TrieInterface <T> {

6 /**

7 * @param word Word to be input in the Trie

8 * @param value Associated value of the word

9 * @return Success or failure

10 */

11 boolean insert(String word , T value);

12 /**

13 * @param word Search for this word , Case -Sensitive

14 * @return Returns the Trienode associated if the word is

found else NULL

15 */

16 TrieNode <T> search(String word);

17 /**

18 *

19 * @param prefix Search a particular prefix

20 * @return Returns the last Trienode associated with the

prefix. Eg: If PARIS and PARROT is in the Tries ,

searching for PAR , returns the trienode of first R

21 */

22 TrieNode <T> startsWith(String prefix);

23 /**

24 *

25 * @param trieNode Prints all the possible word possible

from this Trienode

26 * Eg: PAR and PARIS ,

printTrie(startWith ("PAR")) should print PARIS and

3

PARROT i.e all the words with suffix PAR

27 */

28 void printTrie(TrieNode trieNode);

29 /**

30 *

31 * @param word Delete a word from the Trie

32 * @return Success or Failure

33 */

34 boolean delete(String word);

35 /**

36 * Print the complete Trie

37 */

38 void print();

39 /**

40 * Print a specific level of the Trie.

41 *

42 * @param level

43 */

44 void printLevel(int level);

45 }

Listing 2: Interface specifications for Trie.

3.2 Input specifications

Commands:

1. INSERT: It takes a Person name and phone number (in next line) as input and
inserts that into the trie.

2. DELETE: It takes a String as an input and deletes that from the trie.

3. SEARCH: It takes a String as input and returns true or false, based on whether that
word is present in trie or now.

4. MATCH: It takes a String as an input, and return all words where the prefix is the
entered String. Printing is done in a lexicographical order.

5. PRINTLEVEL: Print the specified level in lexicographical order separated by comma
and DO NOT print spaces.

6. PRINT: Print all the LEVELS of the trie. The print format same as that of
PRINTLEVEL.

Sample input file:

4

1 INSERT

2 Diljeet Singh , +91987654321

3 INSERT

4 Bhavesh Kumar , +91987654321

5 INSERT

6 Chayan Malhotra , +91987654321

7 INSERT

8 Ekta Mittal , +91987654321

9 INSERT

10 Farhan Khan , +91987654321

11 INSERT

12 Dishant Goyal , +91987654321

13 INSERT

14 Dishant Kumar , +91987654321

15 INSERT

16 Dishant Gupta , +91987654321

17 SEARCH

18 Dishant Goyal

19 MATCH Di

20 MATCH di

21 DELETE

22 Dishant Goyal

23 SEARCH

24 Dishant Goyal

25 MATCH SK

26 PRINTLEVEL 2

27 PRINT

28 DELETE

29 Dishant Goyal

Listing 3: Input for Trie.

Expected Output file:

1 Inserting: Diljeet Singh

2 Inserting: Bhavesh Kumar

3 Inserting: Chayan Malhotra

4 Inserting: Ekta Mittal

5 Inserting: Farhan Khan

6 Inserting: Dishant Goyal

7 Inserting: Dishant Kumar

8 Inserting: Dishant Gupta

9 Searching: Dishant Goyal

5

10 FOUND

11 [Name: Dishant Goyal , Phone =+91987654321]

12 Matching: Di

13 MATCHED:

14 [Name: Diljeet Singh , Phone =+91987654321]

15 [Name: Dishant Goyal , Phone =+91987654321]

16 [Name: Dishant Gupta , Phone =+91987654321]

17 [Name: Dishant Kumar , Phone =+91987654321]

18 Matching: di

19 NOT FOUND

20 Deleting: Dishant Goyal

21 DELETED

22 Searching: Dishant Goyal

23 NOT FOUND

24 Matching: SK

25 NOT FOUND

26 Level 2: a,h,h,i,k

27 -------------

28 Printing Trie

29 Level 1: B,C,D,E,F

30 Level 2: a,h,h,i,k

31 Level 3: a,a,l,r,s,t

32 Level 4: a,h,h,j,v,y

33 Level 5: a,a,a,e,e

34 Level 6: M,e,n,n,n,s

35 Level 7: h,i,t,t

36 Level 8: K,M,t

37 Level 9: G,K,K,S,a,h,t

38 Level 10: a,a,i,l,u,u,u

39 Level 11: h,l,m,m,n,n,p

40 Level 12: a,a,g,o,t

41 Level 13: a,h,r,r,t

42 Level 14: r

43 Level 15: a

44 Level 16:

45 -------------

46 Deleting: Dishant Goyal

47 ERROR DELETING

Listing 4: Ouput for Trie.

6

4 Red-Black Tree [1 Mark]

In this part you need to implement a Red-Black tree. A tutorial on Red-Black tree can be
found here [2]. In this part, the basic operations on a Red-Black tree, insert and search will
be tested. Note: you are not required to implement the delete feature. You will be given an
input file, whose format is listed in Section 4.2. A sample output for the input command
given in Section 4.2 is shown in 7
In this case also you will implement a telephone directory, with an extra feature that a
person can have multiple numbers.

4.1 Specifications

You Red-Black tree, must implement the interface as shown in listing 5.

1 package RedBlack;

2 public interface RBTreeInterface <T extends Comparable , E> {

3 /**

4 * Insert and element using the "key" as the key and the

corresponding value.

5 * Please note that value is a generic type and it can be

anything.

6 *

7 * @param key

8 * @param value

9 */

10 void insert(T key , E value);

11 /**

12 * Search using the key.

13 *

14 * @param key

15 * @return

16 */

17 RedBlackNode <T, E> search(T key);

18 }

Listing 5: Interface for Red-Black tree.

Things to keep in mind:

• All the items insert into the RB-Tree has a key and the corresponding value with it.
In this version of Red-Black tree, a key can have multiple items. If we are trying to
insert an element with a key which is already present in the tree, the value will get
attached /appended to that key. This can be seen in the Listing 6.

7

4.2 Input specifications

Commands:

1. INSERT: Insert a Person into the tree.

2. SEARCH: Searches for a person in the tree.

Sample input (ignore the line numbers):

1 INSERT

2 Diljeet Singh , +91987654321

3 INSERT

4 Bhavesh Kumar , +91987654321

5 INSERT

6 Chayan Malhotra , +91987654321

7 INSERT

8 Ekta Mittal , +91987654321

9 INSERT

10 Farhan Khan , +91987654321

11 INSERT

12 Dishant Goyal , +91987654321

13 INSERT

14 Dishant Goyal , +91999999999

15 INSERT

16 Dishant Kumar , +91987654321

17 INSERT

18 Dishant Gupta , +91987654321

19 SEARCH

20 Dishant Goyal

21 SEARCH

22 Sandeep

Listing 6: Input for RedBlack Tree.

Expected Output (ignore the line numbers):

1 Inserting: Diljeet Singh

2 Inserting: Bhavesh Kumar

3 Inserting: Chayan Malhotra

4 Inserting: Ekta Mittal

5 Inserting: Farhan Khan

6 Inserting: Dishant Goyal

7 Inserting: Dishant Goyal

8 Inserting: Dishant Kumar

9 Inserting: Dishant Gupta

8

10 Searching for: Dishant Goyal

11 [Name: Dishant Goyal , Phone =+91987654321]

12 [Name: Dishant Goyal , Phone =+91999999999]

13 Searching for: Sandeep

14 Not Found

Listing 7: Output for RedBlack Tree.

5 Priority queues [1 Mark]

In this part you will be working with a priority queue. Specifically, you will be
implementing a max-heap which is an implementation of priority queue.
You will need to implement a marks scoring system using Max Heap. This will contains,
students name and their corresponding marks. The max-heap will use the marks to arrange
the students, i.e. the student with the highest marks will be on the top.

5.1 Specifications

1 package PriorityQueue;

2 /**

3 * DO NOT EDIT

4 *

5 * @param <T>

6 */

7 public interface PriorityQueueInterface <T extends Comparable > {

8 /**

9 * @param element Insert and element to the Priority Queue

10 */

11 void insert(T element);

12 /**

13 * Extract the current maximum element from the Queue

(assuming a max heap).

14 * @return

15 */

16 T extractMax ();

17 }

Listing 8: Interface for PriorityQueue.

Commands

9

1. INSERT
name marks: Insert the student in the tree. Student name and marks are give in the
next line. Students name will be unique.

2. EXTRACTMAX: Extract the student with highest marks and print it. Extract
operations also removes this from the max-heap.

Sample input (ignore the line numbers):

1 INSERT

2 Diljeet Singh , 10

3 INSERT

4 Bhavesh Kumar , 100

5 INSERT

6 Dishant Kumar , 67

7 EXTRACTMAX

8 EXTRACTMAX

9 EXTRACTMAX

10 EXTRACTMAX

Listing 9: Input for PriorityQueue.

Expected Output (ignore the line numbers):

1 Inserting: Diljeet Singh

2 Inserting: Bhavesh Kumar

3 Inserting: Dishant Kumar

4 Student{name=’Bhavesh Kumar ’, marks =100}

5 Student{name=’Dishant Kumar ’, marks =67}

6 Student{name=’Diljeet Singh ’, marks =10}

7 Heap is empty.

Listing 10: Output for PriorityQueue.

6 Project Management (Scheduler) [2 Marks]

In this part of the assignment you need to combine all the previous components of the
assignment, Trie, Red-Black Tree and Priority Queue to implement a Job scheduler
(Project management). The main part of this part are:

1. Project:
The project class will be have a name, budget and priority (as shown in Listing 11).

1 package ProjectManagement;

2 public class Project {

10

3 }

Listing 11: Project class

2. User:

1 package ProjectManagement;

2 public class User implements Comparable <User > {

3 @Override

4 public int compareTo(User user) {

5 return 0;

6 }

7 }

Listing 12: User class

3. Job:

1 package ProjectManagement;

2 public class Job implements Comparable <Job > {

3 @Override

4 public int compareTo(Job job) {

5 return 0;

6 }

7 }

Listing 13: Job class

A job can have two status: REQUESTED, COMPLETED.

6.1 Specifications

The main component in this part of the assignment is a Job. As shown in Listing 13, each
Job will belong to a Project and created by an User. The name of the Jobs will be unique
(this is guaranteed in the test cases). All the jobs have a running time, i.e. the time required
to run this job. The priority of a job is same as of that its project and a job can only be
executed if its running time is less than the current budget of the Project. Successfully
running a Job, will reduce the budget of that project by running time of the project.
All the projects will be stored in a Trie, using the project name as the key. Project names
will be unique. All the Jobs will be stored in a Priority Queue, specifically a Max-Heap,
using their priorities as the key.

6.2 Commands

A sample input file is shown in Listing 15.

11

1. USER: Create the user with given user name.

2. PROJECT: Create a project. NAME PRIORITY BUDGET

3. JOB: Create a job. NAME PROJECT USER RUNTIME

4. QUERY: Return the status of the Job queried.

5. ADD: Increase the budget of the project. PROJECT BUDGET

6. EMPTY LINE: Let the scheduler execute a single JOB.

6.3 Scheduler specifications

The scheduler will execute a single job whenever it will encounter an empty line in the
input specifications. After the end of the INP (input file) file, scheduler will continue to
execute jobs till there are jobs left that can be executed.
Each time the scheduler wants to execute a job, it will do the following:

1. It selects the job with the highest priority from the MAX HEAP.

2. It first check the running time of the Job, say t.

3. It will then fetch the project from the RB-Tree and check its budget, say B.

4. If B ≥ t then it executes the job. Executing a job means:

• Set the status of the job to complete.

• Increase the global time by job time.

• Set the completed time of the job as the current global time.

• Decrease the budget of the project by run-time of the job. i.e. B̂ = B − t, where
B̂ is the new budget of the project.

5. If: B < t, then select the next job from the max-heap (where jobs are stored) and try
to execute this.

6. A scheduler will return in following cases:

• It successfully executed a single job.

• There are no jobs to be executed.

• None of the jobs can be executed because of the budget issue.

7. After the execution returns, process the next batch of commands (all the commands
till next EMPTY LINE or EOF).

12

8. If there are no more commands in the INP (input file) file, then let the scheduler
execute jobs till there are no jobs left, or no jobs can be executed because of budget
issues. This marks the END of the execution.

9. Print the stats of the current system. See Listing 16.

1 package ProjectManagement;

2 /**

3 * DO NOT MODIFY

4 */

5 public interface SchedulerInterface {

6 /**

7 * @param cmd Handles Project creation. Input is the

command from INP1 file in array format (use space to

split it)

8 */

9 void handle_project(String [] cmd);

10 /**

11 * @param cmd Handles Job creation. Input is the command

from INP1 file in array format (use space to split it)

12 */

13 void handle_job(String [] cmd);

14 /**

15 * @param name Handles user creation

16 */

17 void handle_user(String name);

18 /**

19 * Returns status of a job

20 *

21 * @param key

22 */

23 void handle_query(String key);

24 /**

25 * Next cycle , is executed whenever an empty line is found.

26 */

27 void handle_empty_line ();

28 /**

29 * Executed as a thread to server a job.

30 */

31 void schedule ();

32 /**

33 * Add budget to a project Input is the command from INP1

file in array format (use space to split it)

13

34 *

35 * @param cmd

36 */

37 void handle_add(String [] cmd);

38 /**

39 * If there are no lines in the input commands , but there

are jobs which can be executed , let the system run till

there are no jobs left (which can be run).

40 */

41 void run_to_completion ();

42 /**

43 * After execution is done , print the stats of teh system

44 */

45 void print_stats ();

46 }

Listing 14: Interface specification

1 USER Rob

2 USER Harry

3 USER Carry

4 PROJECT IITD.CS.ML.ICML 10 15

5 PROJECT IITD.CS.OS.ASPLOS 9 100

6 PROJECT IITD.CS.TH.SODA 8 100

7 JOB DeepLearning IITD.CS.ML.ICML Rob 10

8 JOB ImageProcessing IITD.CS.ML.ICML Carry 10

9 JOB Pipeline IITD.CS.OS.ASPLOS Harry 10

10 JOB Kmeans IITD.CS.TH.SODA Carry 10

11

12 QUERY Kmeans

13 QUERY Doesnotexists

14

15 JOB DeepLearningNoProject IITD.CS.ML.ICM Rob 10

16 JOB DeepLearningNoUser IITD.CS.ML.ICML Rob2 10

17

18 JOB DeepLearning1 IITD.CS.ML.ICML Rob 10

19 JOB ImageProcessing1 IITD.CS.ML.ICML Carry 10

20 JOB Pipeline1 IITD.CS.OS.ASPLOS Harry 10

21 JOB Kmeans1 IITD.CS.TH.SODA Carry 10

22

23 JOB DeepLearning2 IITD.CS.ML.ICML Rob 10

24 JOB ImageProcessing2 IITD.CS.ML.ICML Carry 10

25 JOB Pipeline2 IITD.CS.OS.ASPLOS Harry 10

14

26 JOB Kmeans3 IITD.CS.TH.SODA Carry 10

27

28 ADD IITD.CS.ML.ICML 60

29 JOB DeepLearning3 IITD.CS.ML.ICML Rob 10

30 JOB ImageProcessing3 IITD.CS.ML.ICML Carry 10

31 JOB Pipeline3 IITD.CS.OS.ASPLOS Harry 10

32 JOB Kmeans3 IITD.CS.TH.SODA Carry 10

33

34 QUERY Kmeans

35

36 JOB DeepLearning4 IITD.CS.ML.ICML Rob 10

37 JOB ImageProcessing4 IITD.CS.ML.ICML Carry 10

38 JOB Pipeline4 IITD.CS.OS.ASPLOS Harry 10

39 JOB Kmeans4 IITD.CS.TH.SODA Carry 10

40

41 JOB DeepLearning5 IITD.CS.ML.ICML Rob 10

42 JOB ImageProcessing5 IITD.CS.ML.ICML Carry 10

43 JOB Pipeline5 IITD.CS.OS.ASPLOS Harry 10

44 JOB Kmeans5 IITD.CS.TH.SODA Carry 10

45

46 QUERY Kmeans

Listing 15: Input specification

1 Creating user

2 Creating user

3 Creating user

4 Creating project

5 Creating project

6 Creating project

7 Creating job

8 Creating job

9 Creating job

10 Creating job

11 Running code

12 Remaining jobs: 4

13 Executing: DeepLearning from: IITD.CS.ML.ICML

14 Project: IITD.CS.ML.ICML budget remaining: 5

15 Execution cycle completed

16 Querying

17 Kmeans: NOT FINISHED

18 Querying

19 Doesnotexists: NO SUCH JOB

15

20 Running code

21 Remaining jobs: 3

22 Executing: ImageProcessing from: IITD.CS.ML.ICML

23 Un -sufficient budget.

24 Executing: Pipeline from: IITD.CS.OS.ASPLOS

25 Project: IITD.CS.OS.ASPLOS budget remaining: 90

26 Execution cycle completed

27 Creating job

28 No such project exists. IITD.CS.ML.ICM

29 Creating job

30 No such user exists: Rob2

31 Running code

32 Remaining jobs: 1

33 Executing: Kmeans from: IITD.CS.TH.SODA

34 Project: IITD.CS.TH.SODA budget remaining: 90

35 Execution cycle completed

36 Creating job

37 Creating job

38 Creating job

39 Creating job

40 Running code

41 Remaining jobs: 4

42 Executing: DeepLearning1 from: IITD.CS.ML.ICML

43 Un -sufficient budget.

44 Executing: ImageProcessing1 from: IITD.CS.ML.ICML

45 Un -sufficient budget.

46 Executing: Pipeline1 from: IITD.CS.OS.ASPLOS

47 Project: IITD.CS.OS.ASPLOS budget remaining: 80

48 Execution cycle completed

49 Creating job

50 Creating job

51 Creating job

52 Creating job

53 Running code

54 Remaining jobs: 5

55 Executing: DeepLearning2 from: IITD.CS.ML.ICML

56 Un -sufficient budget.

57 Executing: ImageProcessing2 from: IITD.CS.ML.ICML

58 Un -sufficient budget.

59 Executing: Pipeline2 from: IITD.CS.OS.ASPLOS

60 Project: IITD.CS.OS.ASPLOS budget remaining: 70

61 Execution cycle completed

16

62 ADDING Budget

63 Creating job

64 Creating job

65 Creating job

66 Creating job

67 Running code

68 Remaining jobs: 11

69 Executing: ImageProcessing from: IITD.CS.ML.ICML

70 Project: IITD.CS.ML.ICML budget remaining: 55

71 Execution cycle completed

72 Querying

73 Kmeans: COMPLETED

74 Running code

75 Remaining jobs: 10

76 Executing: DeepLearning1 from: IITD.CS.ML.ICML

77 Project: IITD.CS.ML.ICML budget remaining: 45

78 Execution cycle completed

79 Creating job

80 Creating job

81 Creating job

82 Creating job

83 Running code

84 Remaining jobs: 13

85 Executing: ImageProcessing1 from: IITD.CS.ML.ICML

86 Project: IITD.CS.ML.ICML budget remaining: 35

87 Execution cycle completed

88 Creating job

89 Creating job

90 Creating job

91 Creating job

92 Running code

93 Remaining jobs: 16

94 Executing: DeepLearning2 from: IITD.CS.ML.ICML

95 Project: IITD.CS.ML.ICML budget remaining: 25

96 Execution cycle completed

97 Querying

98 Kmeans: COMPLETED

99 Running code

100 Remaining jobs: 15

101 Executing: ImageProcessing2 from: IITD.CS.ML.ICML

102 Project: IITD.CS.ML.ICML budget remaining: 15

103 System execution completed

17

104 Running code

105 Remaining jobs: 14

106 Executing: DeepLearning3 from: IITD.CS.ML.ICML

107 Project: IITD.CS.ML.ICML budget remaining: 5

108 System execution completed

109 Running code

110 Remaining jobs: 13

111 Executing: ImageProcessing3 from: IITD.CS.ML.ICML

112 Un -sufficient budget.

113 Executing: DeepLearning4 from: IITD.CS.ML.ICML

114 Un -sufficient budget.

115 Executing: ImageProcessing4 from: IITD.CS.ML.ICML

116 Un -sufficient budget.

117 Executing: DeepLearning5 from: IITD.CS.ML.ICML

118 Un -sufficient budget.

119 Executing: ImageProcessing5 from: IITD.CS.ML.ICML

120 Un -sufficient budget.

121 Executing: Pipeline3 from: IITD.CS.OS.ASPLOS

122 Project: IITD.CS.OS.ASPLOS budget remaining: 60

123 System execution completed

124 Running code

125 Remaining jobs: 7

126 Executing: Pipeline4 from: IITD.CS.OS.ASPLOS

127 Project: IITD.CS.OS.ASPLOS budget remaining: 50

128 System execution completed

129 Running code

130 Remaining jobs: 6

131 Executing: Pipeline5 from: IITD.CS.OS.ASPLOS

132 Project: IITD.CS.OS.ASPLOS budget remaining: 40

133 System execution completed

134 Running code

135 Remaining jobs: 5

136 Executing: Kmeans1 from: IITD.CS.TH.SODA

137 Project: IITD.CS.TH.SODA budget remaining: 80

138 System execution completed

139 Running code

140 Remaining jobs: 4

141 Executing: Kmeans3 from: IITD.CS.TH.SODA

142 Project: IITD.CS.TH.SODA budget remaining: 70

143 System execution completed

144 Running code

145 Remaining jobs: 3

18

146 Executing: Kmeans3 from: IITD.CS.TH.SODA

147 Project: IITD.CS.TH.SODA budget remaining: 60

148 System execution completed

149 Running code

150 Remaining jobs: 2

151 Executing: Kmeans4 from: IITD.CS.TH.SODA

152 Project: IITD.CS.TH.SODA budget remaining: 50

153 System execution completed

154 Running code

155 Remaining jobs: 1

156 Executing: Kmeans5 from: IITD.CS.TH.SODA

157 Project: IITD.CS.TH.SODA budget remaining: 40

158 System execution completed

159 --------------STATS ---------------

160 Total jobs done: 19

161 Job{user=’Rob’, project=’IITD.CS.ML.ICML’,

jobstatus=COMPLETED , execution_time =10, end_time =10,

name=’DeepLearning ’}

162 Job{user=’Harry’, project=’IITD.CS.OS.ASPLOS ’,

jobstatus=COMPLETED , execution_time =10, end_time =20,

name=’Pipeline ’}

163 Job{user=’Carry’, project=’IITD.CS.TH.SODA’,

jobstatus=COMPLETED , execution_time =10, end_time =30,

name=’Kmeans ’}

164 Job{user=’Harry’, project=’IITD.CS.OS.ASPLOS ’,

jobstatus=COMPLETED , execution_time =10, end_time =40,

name=’Pipeline1 ’}

165 Job{user=’Harry’, project=’IITD.CS.OS.ASPLOS ’,

jobstatus=COMPLETED , execution_time =10, end_time =50,

name=’Pipeline2 ’}

166 Job{user=’Carry’, project=’IITD.CS.ML.ICML’,

jobstatus=COMPLETED , execution_time =10, end_time =60,

name=’ImageProcessing ’}

167 Job{user=’Rob’, project=’IITD.CS.ML.ICML’,

jobstatus=COMPLETED , execution_time =10, end_time =70,

name=’DeepLearning1 ’}

168 Job{user=’Carry’, project=’IITD.CS.ML.ICML’,

jobstatus=COMPLETED , execution_time =10, end_time =80,

name=’ImageProcessing1 ’}

169 Job{user=’Rob’, project=’IITD.CS.ML.ICML’,

jobstatus=COMPLETED , execution_time =10, end_time =90,

name=’DeepLearning2 ’}

19

170 Job{user=’Carry’, project=’IITD.CS.ML.ICML’,

jobstatus=COMPLETED , execution_time =10, end_time =100,

name=’ImageProcessing2 ’}

171 Job{user=’Rob’, project=’IITD.CS.ML.ICML’,

jobstatus=COMPLETED , execution_time =10, end_time =110,

name=’DeepLearning3 ’}

172 Job{user=’Harry’, project=’IITD.CS.OS.ASPLOS ’,

jobstatus=COMPLETED , execution_time =10, end_time =120,

name=’Pipeline3 ’}

173 Job{user=’Harry’, project=’IITD.CS.OS.ASPLOS ’,

jobstatus=COMPLETED , execution_time =10, end_time =130,

name=’Pipeline4 ’}

174 Job{user=’Harry’, project=’IITD.CS.OS.ASPLOS ’,

jobstatus=COMPLETED , execution_time =10, end_time =140,

name=’Pipeline5 ’}

175 Job{user=’Carry’, project=’IITD.CS.TH.SODA’,

jobstatus=COMPLETED , execution_time =10, end_time =150,

name=’Kmeans1 ’}

176 Job{user=’Carry’, project=’IITD.CS.TH.SODA’,

jobstatus=COMPLETED , execution_time =10, end_time =160,

name=’Kmeans3 ’}

177 Job{user=’Carry’, project=’IITD.CS.TH.SODA’,

jobstatus=COMPLETED , execution_time =10, end_time =170,

name=’Kmeans3 ’}

178 Job{user=’Carry’, project=’IITD.CS.TH.SODA’,

jobstatus=COMPLETED , execution_time =10, end_time =180,

name=’Kmeans4 ’}

179 Job{user=’Carry’, project=’IITD.CS.TH.SODA’,

jobstatus=COMPLETED , execution_time =10, end_time =190,

name=’Kmeans5 ’}

180 ------------------------

181 Unfinished jobs:

182 Job{user=’Carry’, project=’IITD.CS.ML.ICML’,

jobstatus=REQUESTED , execution_time =10, end_time=null ,

name=’ImageProcessing3 ’}

183 Job{user=’Rob’, project=’IITD.CS.ML.ICML’,

jobstatus=REQUESTED , execution_time =10, end_time=null ,

name=’DeepLearning4 ’}

184 Job{user=’Carry’, project=’IITD.CS.ML.ICML’,

jobstatus=REQUESTED , execution_time =10, end_time=null ,

name=’ImageProcessing4 ’}

185 Job{user=’Rob’, project=’IITD.CS.ML.ICML’,

20

jobstatus=REQUESTED , execution_time =10, end_time=null ,

name=’DeepLearning5 ’}

186 Job{user=’Carry’, project=’IITD.CS.ML.ICML’,

jobstatus=REQUESTED , execution_time =10, end_time=null ,

name=’ImageProcessing5 ’}

187 Total unfinished jobs: 5

188 --------------STATS DONE ---------------

Listing 16: Output for INP in Listing 15

7 Submission instructions

As always compress src directory to zip format and rename the zip file in the format
entrynumber assignment4.zip. For example, if your entry number is 2012CSZ8019, the zip
file should be named 2012CSZ8019 assignment4.zip. Then you need to convert this zip
file to base64 format as follows and submit the .b64 file on Moodle.

base64 entrynumber_assignment4.zip > entrynumber_assignment4.zip.b64

Folder structure: Inside the src directory, you need to have a README.pdf (case sensitive)
and your solution (exactly following the folder structure that of the code provided.). Please
do not rename the existing directories. You need to report the time complexities of various
operations for both the implementations. You should also report any interesting findings
based on your experiments with the two implementations.

Grading: While grading we will replace the driver code and the interface code with the
original files before the compilation. So please ensure that your code compiles and run
correctly with the original driver and interface files.

MOSS: Please note that we will run MOSS on the submitted code. Anyone found with a
copied code, either from Internet or from another student, will be dealt as per the class
policy.

8 FAQ

• See some fixes here: 1

• Project Management: In what data-structure projects are stored?
Ans: Trie

• Trie: Match: match the search term with pre-fix of entries.

21

• Lists and its subclasses (ArrayList, LinkedList) etc. are allowed.

• Maps (e.g. HashMap) are also allowed.

• You need to override the toString() method in classes to print in a particular format.

• Printing order in Trie: Lexicographical order. DO NOT print spaces (which is present
in the name). You need to store spaces in the Trie, otherwise MATCH command will
print first-name and second-name together(without a space) and it will not match the
output.

• Trie: Names can contain any character whose ASCII code is between 32-126, see an
ASCII table here: [1].

• Trie: If a particular entry is not found, print NOT FOUND.

• Build issues: Please use the Makefile provided.

• Only List, Stack, Queue and Maps arze allowed to be imported.

• There are some encoding issue in file compare. We are working on it.

• Extract-Max in Priority Queue should follow FIFO (if the priority of two objects is
same).

• Casting from and to Object is allowed.

• Please adhere to return types of the function. It will be used in the driver code.

• You can use Iterator.

• Print: Trie. Last level is empty, which represents the end of the Trie.

• Question: Adding budget to a project, what to do with its unfinished (but already
tried) jobs?
Answer: https://piazza.com/class/jyic9aa2xyb34g?cid=649

• Project insertion and retrieval doubt: We are inserting project in a trie and retrieving
from a RB tree, how?
Answer:When a new Project is created, it is stored in a Trie. RB-Tree is used as a
NOT READY queue. To store the jobs which cannot be executed because there is
not enough budget left. As mentioned in the RB-Tree implementation, using a single
key we can store multiple objects.

• Files NOT to be edited: Please make no changes to the Driver code for the Trie,
RedBlack and PriorityQueue. And please do not change any of the interface files.

• Size of Max-heap: Upper bound on the size of the heap: 10000. You can use lists.

22

• Project management, empty line, run to completion:

"1. How is schedule() different from handle_empty_line()?"

handle_empty_line is there so do dome pre-processing before calling schedule.

If you feel like this is not required, use this:

public void handle_empty_line() {

schedule();

}

"2. What is the use of run()? What is schedule() doing inside that?

If it is for completing the pending jobs at the end, then why

run_to_completion()?"

The driver uses a thread to execute the jobs. schedule() contains

the logic to check the budget, then either execute the code or move

it to a NON_READY queue.

As can be seen from the driver code, run_to_completion() is used

when we are done processing the INPUT FILE (i.e. no more

commands are left to process).

• What to return in RBTree when key is not found?
A RedBlackNode with NULL key and NULL values.

• If a key has multiple values associates with it, then the output of search query for
that key should have values printed in lexicographic order or FIFO.

• Priority order:
FIFO order comes after priority.
If there are two jobs with a different priority, then you take the job which has the
higher priority, irrespective of who came first.
FIFO has to be maintained only if their priorities are same.

• print stats specification: After the system is done with executing all the commands, it
tries to executed as many job it can. Once it is done with that, it prints the stats of
the system and exists. The order of printing:

1. Print all the executed job first in the order which they were executed. The job
executed first should be printed first.

23

2. After this print all the un-finished job. At this point, the waiting-queue or the
MAX-HEAP used by the scheduler to find the job should be empty. Jobs must
have been completed or will be in the NOT READY queue.
Printing order:

– Process projects based on their priority.

– Processing a project means, printing all the jobs belonging to that project.

– Project priority is determined in the same way as that of the jobs. The
project having a higher value of the “priority” has the higher priority. If the
value of the priorities is same, then the project created first has the higher
priority.

– With-in a project: Print jobs based on their priority. See Priority order

in this FAQ to decide priority of a job.

References

[1] Ascii table - ascii character codes and html, octal, hex and decimal chart conversion.
http://www.asciitable.com/. (Accessed on 09/15/2019).

[2] Painting nodes black with red-black trees - basecs - medium. https://medium.com/
basecs/painting-nodes-black-with-red-black-trees-60eacb2be9a5. (Accessed
on 09/10/2019).

[3] Trie — (insert and search) - geeksforgeeks.
https://www.geeksforgeeks.org/trie-insert-and-search/. (Accessed on
09/12/2019).

24

http://www.asciitable.com/
https://medium.com/basecs/painting-nodes-black-with-red-black-trees-60eacb2be9a5
https://medium.com/basecs/painting-nodes-black-with-red-black-trees-60eacb2be9a5
https://www.geeksforgeeks.org/trie-insert-and-search/

	Fixes
	General instructions
	Code skeleton
	Building and Running

	Trie [1 Mark]
	Interface
	Input specifications

	Red-Black Tree [1 Mark]
	Specifications
	Input specifications

	Priority queues [1 Mark]
	Specifications

	Project Management (Scheduler) [2 Marks]
	Specifications
	Commands
	Scheduler specifications

	Submission instructions
	FAQ

