Design Document for PIMS

1. Overview

After reviewing the Use Case analysis, following are the basic classes and actions that
emerge out:-

Classes: (Basic building blocks of PIMS)

SI no. Class Principle Responsibility

1 Investment Manages computations regarding total investment.

2 Portfolio Manages computations regarding a Portfolio.

3 Security Manages computations related to a security.

4 Transaction Manages computations and stores attributes related to a
transaction.

5 GUI Manages the Graphical User Interface.

6 NetLoader Manages downloading current prices of shares from the
Internet.

7 Current Value Manages current value of shares.

System

8 Alerts Manages alerts.

9 SecurityManager Manages user validation.

10 | DataRepository Manages all file operations. It is an interface between the
main modules and the database (which in our case is
done using file system.)

Note: Other subsidiary classes may get added to the list in course of implementation for the
purpose of load balancing and modularity.

Actions:
Sl. no. Action

1 Create/Delete/Rename Portfolio/Security.
2 Create/Delete/Edit Transactions.
3 Calculate Net Worth of Investment/Portfolio/ Security.
4 Calculate Rate of Investment of a security.
5 Load Current Prices from the Internet.
6 Check/Set/Delete Alerts.
7 Validate User.

Note: There are other minor actions that does not play major role in modeling.

2. System Structure

Here we describe the final structure. It should, however, be kept in mind that the
obtaining the final structure is an iterative exercise - an initial structure is refined as the
design progresses. In particular, the dynamic modeling has an impact on the structure.

2.1. Inheritance Structure

There does not seem to be any inheritance structure because of the lack of commonality
between the classes. In some places inheritance seems intuitive, for example in
specializing Security into BankSecurity and ShareSecurity and specializing Transaction
into Buy and Sell. The figure below shows the inheritance structures.

Security Transaction

Bank Share Buy Sell

Fig 2.1.1: Possible Inheritance

However these inheritance structures are not necessary. We can model them using an
extra attribute securityType and transactionType in the classes Security and Transaction
respectively.

2.2. Aggregations

The logical structure of Investment suggests the following aggregation between the
classes.

Investment
1
m
Portfolio
1
m
Security
1
m
Tranzaction

Fig 2.2.1: Aggregation Structure

2.3. Associations

We figure out the association between classes in the process of modeling the principle
actions.

Example: Classes (with aggregations and associations) involved in the principle action
Create/Delete/Edit Transactions

pims)

GUl MY Investnent

+addTranzadion...) boolean
+deleteT ran saction .. Thoolean
+editTranzadion ...):boalean

* + portfolioLis

Portfolio

+addTranzadion...) boolean
+deleteT ran saction .. Thoolean
+editTranzadion ...):boalean

* ¥ zecurityList

Sec urity

DataRepository

+DR

+addTranzadion...) boolean
+deleteT ran saction .. Thoolean +uriteTransactions?...) boolean
+editTranzadion ...):boalean

* ¢ tranzadionList

Transaction

Fig 2.3.1: Class diagram showing associations for action Create/Delete/Edit Transaction

24. Complete class diagram

Finally after considering all the major actions the complete association + aggregation
structure is arrived at.

PIM & Clas=s Disgram
+DR \tDR L DR
DataR epository
Ser writyManager Alerts
+oreatePortfolio() kool ean
+validatellser (. xhoolean +checkForalerts(:String +DR | +deletePortiliof... 1 String
' +changeP assword ... Thoolean) lets(.. xhoolesn +reram e ortfoliol..) boolear
+oleleteAletl. . Thalean +renamer otfoliol...) boolean
+5M ! +oreateSecutity(... Yhool ean
s ' +ieleteSecurity(.. boolean
+renameSecurit .. hooleat
+aethewallets(..) hoolsan
Gul +witeShanePricest...xhodl ean
P val 1 +DR +readT mngactions(...): TransactionList | | np
urrentValueSy sten cvs — +igiteT ransactions..):bool gan
* +oreateGUI O vold +deletetler(thoolean
et Authenticat L =h
+price0fsharel..) double oR b ertication(y string
+updat eCurentP i o () eoid M oR
-
+CWE !
FINY
ML
Investment Portfolio
HetLoader
+com putehl et ort it double +com putehl et ort it cdoubl e
+loadCurentP ios()vaid +cotmputeN etWort hi.):double +computeMetWort hi.) double
+commputeM ot hil.. double +computeR 010 double
+computeR O Jvaid +oreate Securityl... Thool gan
+oreate P ortioliol.. ool ean +ileleteSecurityl.. ool ean
+deleteP ortfoliol... Thoolean +renameSecurity..boolean
+renatn P otfoliol...):hoolean o +addTransation(... Thool ean
+create Security(... Thoolean * partolioList +deleteT ransaction(.. Thoolean
+deleteSecurity(...k boolean + | +editTransation(...)boolean
+renatn es ecurit .. rhoolesn
+addTransactiond...; hoolean
+deleteT ransaction(.. Thoolean
+editTransadion .. ;hoolean
securityList
Security
Transaction » +securityType: hoolean
+zecuritytlame: String
+transadionList +portfolioh am e: String
+COmm parytam e String
+rateinteres: String
+computeR O double
+computeh etdort hi double
+addTransadion...khoolesh
+deleteT ransaction .. Thoolean
+editTransadion (...x boolean

Fig 2.4.1: Class diagram showing all classes and associations in the system

3. System behavior

The dynamic behavior of the system is modeled by figuring out the interactions between
the classes involved in each principal action. We are showing the final diagrams here. It
should be remembered that these models have an impact in refining and enhancing the
class diagrams - we are not discussing these aspects here.

3.1. Principle Action: Create/Delete/Rename Portfolio/Security.

=z CreatePortfolio J
el i)l Investm ent DataRepo st ory -Partfolio
| 1) .createPortiolio F—: | |
1 1 1
21 .createPortfolio
| 1 |
1 h_ 1
1 1
1 1
I 37 FPortfalio I
: == cregte ==
|
! 4
! o — — 2 _
1 1
1 1
1 1
1 1
| |
1 1
1 1
I 5] .=toreP ortfolio
| |
1 1
1 1
! =| return == !
1 - 1
| 5 |
I * -) I
| |
1 1
1 Tj 1
1 | 1
:) d == return == ! !
* ______ | | 1 1
: == return == : : :

Fig 3.1.1: Sequence diagram for principle action Create Portfolio

3.2. Principle Action: Create/Delete/Edit Transactions.

zd DeleteTransadian J
(GUI :Portfalio | (Security | ‘ Transaction ‘
1

| |

| i 1 | |
11 .deleteTrans;actlni H | |
| |

|

|

27 «deleteT ransaction

1
1
1
1
1
31 .deleteT ran saction :
1
=2 glesthoy == x'
b |
== FEtUrT == 1
‘- -2 - - .
1
1
1
1

B == return ==

|
|
I == return == 1 I
|

Fig 3.2.1: Sequence diagram for principle action Delete Transaction

3.3. Principle Action: Calculate Net Worth of Investment/Portfolio/Security

GUI

Investment

conbuteNet Y olith

Portfolio

rnlnhntrthWol_th

| =i ek el

Security

CurrentValue

counpoteMNetW olth

cullent Plice0f

[1]

34.

Fig 3.3.1: Sequence diagram for action Compute Net Worth of
Investment/Portfolio/Security

Principle Action: Calculate Rate of Investment of a security.

GUI

‘ Investment ‘

—_—_—
computeROI{)

computeROI()

.| Portfolio
<< credtes
wecreate»> Security

computeROI()

CurrentValue
SICL]

curcentPriceOo)

=]

pmpute]

Fig 3.4.1: Sequence diagram for action Compute ROI

3.5. Principle Action: Load Current Prices from the Internet.

=d UpdatePrices J
WUl ‘ L Curre ntvalue Sy stern | :Metloader :DataRepostary

17 st eCurrertP rice

P—I

1 |
1 |
1 |
I |
1 2) JdoadCurrertP rice l
1 > |
1 |
1 |
1 LdovnloadPrices |
1 |
1 |
: 3 wwiteSharePrices !
1
1
1 4)
1 + _______
1 = =< return == 1
1 + ________ |
1 £) =< return == 1
|
|
1

Fig 3.5.1: Sequence diagram for action Load current prices from the Internet

3.6. Principle Action: Check/Set/Delete Alerts.

sdl Check/SetDelete Alerts)

Merts :DrataR epost ory

1] setMewtleds

(G L
1 1 1
| | |
I 7). sethlewtlerts I
1
|
|
| o _n
1
X 4 =< peturn ==
o’ — — = — —
1
1
|
|
I
1
|
|
vl
1
|
|
1
1
I
|
1
1
|
|
1
1

71 deletetlert

1
3] .deletet]ert
_ %
H- . _1|ﬂ o =< peturn ==

== return ==

Fig 3.6.1: Sequence diagram for action Set/Check/Delete Alerts

3.7. Principle Action: Validate User.

zd Yalidatel zer I

(U (zecurityhManacer DataReposit ory

| 1
11 validatel zer ! :
1

27 .getAuthentication

4 == return ==

1 == return == 1

4
I
I
I
I
I

Fig 3.7.1: Sequence diagram for action Validate User

Now we are in a position to start with the design specification as we have all the
attributes and methods of all the classes.

4. Detail Design Specification:

It consists of a list of main classes and their attributes and methods with proper

comments.
1. class GUI{
/ /attributes/ /
CurrentValueSystem CVS; //Object of the class CurrentValue.
Alerts AL; //Object of the class Alerts.
Investment INV; / / Object of the class Investment.
DataRepository DR;//Object of the DataRepository class
//methods//
void createGUI(); //creates the Graphical Interface.
}
2. class Alerts{
/ / attributes/ /
String alertList[N][2]; /list containing date and details of all the alerts.
//method//
String [] checkForAlerts(); //check and return all the pending alerts.
boolean setNewAlerts(Date date, String details); //set a new alert as specified
by the user.
boolean deleteAlert(String Alert);//Deletes a specified alert
}
3. class NetLoader{
//method/ /
void loadCurrentPrice(); /Downloads the page from the internet parses it and
updates the database.
}

5.

class CurrentValueSystem{

}

/ / attributes/ /

NetLoader NL;//Net loader object used to call the loadCurrentPrice() method
String sharePrices[N][2]; /list of current price of shares.

//method//

double priceOfShare(String security_name); //returns the current price of a
security.

void updateCurrentPrice(); //This method invokes the NetLoader which
updates the share prices,by downloading the current price from the remote
database.

class SecurityManager{

/ / attributes/ /
String username; //stores the user name of the investor.
String Password; //stores the password of the user.

//methods//

10

}

boolean validateUser(String user_name, String password); //checks for the
validity of the user.

boolean changePassword(String oldPassword, String newPassword); //
Changes the password of the authorized user

6. class Investment{

}

/ / attributes/ /

String PortfolioList[]; /Ilist of names of all the portfolios.

/ /methods/ /

double computeNetWorth(); / / computes net worth of the investment.

double computeNetWorth(String portfolio_name);//computes and returns
the net worth of a specified portfolio

double computeNetWorth(String portfolio_name, String security_name);
//computes and returns the net worth of a specified security in a specified
portfolio

double computeROI(String portfolio_name, String security_name);
//computes the ROI of a specified security in a specified portfolio

boolean (create/delete/rename)Portfolio(String portfolio_name); //creates
/deletes/renames a portfolio.

boolean (create/delete/rename)Security(String portfolio_name, String
security_name); // creates/deletes/renames a security.

boolean (add/delete/edit)Transaction(String portfolio_name, String
security_name, Transaction trans);// adds/deletes/edits a transaction

7. class Portfolio{

}

/ / attributes/ /

String SecurityList[]; //list of securities in this particular portfolio.

String PortfolioName;//Name of this portfolio

/ /methods/ /

double computeNetWorth(); //returns the net worth of this portfolio.

double computeNetWorth(String security_name); //returns the net worth of
a specified security

double computeROI(String security_name); //computes the ROI of a
specified security in this portfolio

boolean (create/delete/rename)Security(String security_name); //
creates/deletes/renames a security in this portfolio

boolean (add/delete/edit)Transaction(String portfolio_name, String
security_name, Transaction trans);/ adds/deletes/edits a transaction of a
specified security

8. class Security{

/ / attributes/ /
Transaction transactionList[]; //list of transaction objects.
boolean securityType; //stores the type of security, bank or share

11

}

String SecurityName;//Name of this security

String PortfolioName;//Name of the portfolio to which it belongs

String CompanyName;//Name of the company if share type

double RateOflInterest;//Rate of Interest if bank type

/ /methods/ /

double computeROI(); / / computes the rate of returns of the security.

double computeNetWorth(); //computes the net worth of this security.
boolean (add/delete/edit)Transaction(Transaction trans);/Adds/Deletes/
Edits a transaction of this security

9. class Transaction{

}

/ / attributes/ /

Date date; //stores the date of the transaction.

String details; //stores details of the transaction.

double TransactionAmount; //stores the amount of money exchanged.
boolean Transtype; //stores the type of transaction buy/sell.

int numShares; //stores the number of shares exchanged..

double CostOfShare;//stores the cost of share exchanged

10. class DataRepository{

//methods//

/ /all these methods do file operations.

boolean createPortfolio(); //creates a portfolio.

boolean deletePortfolio(String portfolio_name); //deletes a portfolio.
boolean renamePortfolio(String portfolio_name); //renames a portfolio.
boolean createSecurity(String portfolio_name, String security_name);
//creates a security.

boolean deleteSecurity(String portfolio_name, String security_name);
//deletes a security.

boolean renameSecurity(String portfolio_name, String security_name);
//renames a security.

boolean setNewAlerts(String alertList[][]); //set a new alerts as specified by
the user.

void deleteAlert(int index); // Deletes an alert from the alerts file.

boolean writeSharePrices(String currentValues([][]); //sets the new values of
the securities.

TransactionList readTransactions(String portfolio_name, String
security_name); //reads the transactions and returns a list of transaction
objects.

boolean writeTransactions(TransactionList list, String portfolio_name,
String security_name); //writes the transactions into a specified file.

String getAuthentication(); //Returns <login>:<password> by reading from
the login file

12

Note: The Investment class has the list of portfolio names as the attribute and not the list of
portfolio objects. This is done to put less pressure on the RAM, keeping all the objects of
portfolios, securities and transactions live means that we have the whole database in RAM this

might severely effect the efficiency. The portfolio object can be made on the run as and when it is
needed. Similar thing has been done for portfolios.

13

