
2010 Second Pacific-Asia Conference on Circuits, Communications and System (PACCS)

XML Component-Based Modeling
for Digital Circuits

Fulong Chen Zhaoxia Zhu Xiaoya Fan
Department of Computer Science and Technology

Anhui Normal University

College of Computer Science School of Computer

Yangtze University Northwestern Poly technical University

Wuhu, Anhui Province, China

chenfulong@gmail.com

Jingzhou, Hubei Province, China Xi' an, Shaanxi Province, China

zhuz;x1973@126.com fanxy@nwpu.edu.cn

Abstract- This paper presents a method of scheduler mod­
eling for components of embedded systems, making the spec­
ification and verification process practical for real designs. In
this method, designers can regard all circuits as components.
A bigger component is constructed from those smaller com­
ponents connecting with connectors (wires). Designers specify
components in XML, and simulate their behaviors and verify
their correctness. All components can be mapped into Verilog
or VHDL automatically. This method supports hierarchical
models, provides an efficient simple solution to model and verify
our design quickly, and can be used in design and verification
of embedded systems.

Index Terms- Component ; XML ; digital circuits; FSM;
truth table

I. INTRODUCTION

Currently, V LSI (Very Large Scale Integration) circuits are
becoming an integral part of our day-to-day lives, being em­
bodied in various forms- microprocessors in home computers,
embedded controllers in automobile fuel-injection systems,
graphics controllers in video games, micro-controllers in
toasters, answering machines, automated data-acquisition and
manipulation components in bio-medical systems, etc. Before
2008, the IC market grew steady. In the third quarter of
2008, IC market peaked, and there were 44.1 billion of units
shipped. But the global financial crisis affected the IC market.
In 2009 the IC market fell. But since the second and third
quarters of 2009, the IC market has been rapidly recovering.
This indicates there is a strong demand in the IC market. IC
Insights forecasts, as the global economy recovers in 2010[1],
the IC market will enjoy very healthy growth rates.

In the development of embedded systems, especially digital
circuit design, before we submit our design result for manu­
facturing, usually we have to face two key questions. The first
one is how to specify what we want. The second one is how
to make sure that what we specify is want we want. It has
been widely estimated that over 70% of the design time for

*This work is partially supported by Project of Scientific Research
for Young University Teachers of Anhui Province of China under Grant
No.2008jq1057 to Fulong Chen

978-1-4244-7968-9/1 0/$26.00 ©20 1 0 IEEE

148

circuits is spent in performing various kinds of verification
tasks and the effort devoted to this process eclipses all other
aspects of the design process. Specification and verification
have become the most important two tasks in current design
flows and can have major impact on the timely delivery of a
functionally correct product.

To get the final product, designers need to specify its
functionalities and simulate its behaviors under the help
of some simulation and verification tools. To save costly
engineering effort, much of the effort of designing large logic
machines need to be automated.

A. Specifying and Verifying Circuits Today

Verilog[2] and VHDL[3] are two HDLs (Hardware De­
scription Languages) widely used to describe circuits. How­
ever, these HDLs have no enough system-level support
for complex circuit design. They don't fully support the
algorithm-level specification. Due to the low level of abstrac­
tion, designing VerilogIVHDL modules manually takes very
skilled engineers and a significant time investment. Writing in
HDLs can be more tedious and time consuming than writing
a software program to do the same thing. After the design is
complete, verification takes even more time. Currently, there
are some expansions in traditional HDLs for enhancing their
describing capability.

System Verilog [4] is an superset of Verilog, which extends
some synthesizable design specifications. However, for the
same function, the design descriptions in System Verilog are
still much different from software programs, and designers
still cannot ignore some timing constructs.

SystemC [5] has semantical similarities to Verilog and
VHDL, and is emerging as a standard for high-level hard­
ware! software co-design and system-level modeling. How­
ever, it is neither used nor supported as widely as Verilog.
Some specifications in SystemC are not synthesizable despite
being valid for prototyping and simulation. To become a
widely used HDL, SystemC still has a long way to go.

Recently, there are also some researches on converting
from other software programming languages such as OCaml

PACCS2010

[6] and C [7] to HDLs.

C-to-Verilog[7] automates circuit design and allows users
to compile existing C functions into RTL Verilog codes. One
blemish is that it combines data paths with FSM within an
always-statement. Another one is that the only one return
value is insufficient for multiple return values.

Therefore, directly programming in these HDLs is time
consuming because they are in low abstraction level. Some
descriptions in HDLs are only suitable for simulation pur­
poses and cannot be synthesized into circuits. This means,
we can simulate it, but we cannot get the real product. The
verification is more important. It has been widely estimated
that over 70% of the design time for circuits is spent in
performing various kinds of verification tasks and the effort
devoted to this process eclipses all other aspects of the
design process. But it is also hard. Simulation is a method
widely used in verification. Through simulation, we may
know something is wrong in the HDL description, but it is
not easy to find where and why the error happens.

B. Contributions

We want develop a method towards making the speci­
fication and verification process practical for real designs.
In our method, we regard all circuits as components. Basic
gates such as AND, OR and NOT are the most simple
components. A bigger component is constructed from some
smaller components. We specify our components in OCarnl,
which is a functional language, more abstract and easily
used than HDLs. We can simulate the circuit behaviors
and verify its correctness. And we also can map it into
HDLs automatically. This is what we want to do-study on
scheduling models for component-based embedded systems

Our contribution is to give an efficient simple method
to model and verify embedded system quickly and make
the specification and verification process practical for real
designs. In this method, designers can regard all circuits
as components. Each component has some ports for getting
input signals from other components and generating output
signals to other components. Basic gates such as AND, OR
and NOT are the most simple components. Some small
components - combinational circuits specified in truth tables
and sequential circuits specified in FSMs(Finite State Ma­
chines),are synthesized into those interlinked gates. A bigger
component is constructed from those smaller components
connecting with connectors (wires). Designers specify com­
ponents in XML (Extensible Marknp Language)[8], which is
a simple, very flexible text format derived from SGML (ISO
8879), originally designed to meet the challenges of large­
scale electronic publishing, widely used for the representation
of arbitrary data structures, and playing an increasingly
important role in the exchange of a wide variety of data on the
Web and elsewhere. Due to its structure style, it is a good
format for specifying components of digital circuits a set

149

of rules for encoding documents electronically, and simulate
their behaviors and verify their correctness. All components
can be mapped into HDLs automatically. Designers also can
simulate the circuit in FPG A after translating the generated
HDL codes into one bitstream file with some available
synthesis tools.

This method supports hierarchical models, gives an effi­
cient simple solution to model and verify embedded system
quickly, and can be used in ASIC (Application-Specific
Integrated Circuit) design and simulation.

II. STRUCTURES OF LOGIC CIRCUIT

Most digital systems divide into "combinational systems"
and "sequential systems".

A. Combinational logic component

A combinational logic component is specified in a truth
table as shown in Figure.1. In the grammar, only TRUE(1),
FALSE(O) and UNKNOWN(x, X) are used for specifying
logic values. Given an input vector, it can generate a corre­
sponding output vector.

Truth table
Table tenn

tt
tterm .. -

< truthtable > tterm+ < /truthtable >
< term>
< input> value+ < /input >
< output> value+ < /output >
< /term >

Logic value value .. - 0111 x I X

Fig. 1. Grammar for the Truth Table

B. Sequential logic component

Sequential systems includes synchronous and asyn­
chronous systems. The former change all states at once
triggered by a clock signal. And the latter propagate changes
whenever inputs change. Only synchronous sequential sys­
tems are supported in our specification.

A Mealy logic component generates an output based on
its current state and input. In contrast, the output of a Moore
logic component depends only on its current state; transitions
are not directly dependent upon input. Figure 2 shows their
grammar.

III. SPECIFICATION FOR COMPONENTS

A component may be a combinational logic component,
sequential logic component or hierarchical component. Basic
gates such as AND, OR and NOT are the most simple
combinational logic components. Some small components
- combinational circuits specified in truth tables and se­
quential circuits specified in FSMs, are synthesized into
those interlinked gates. A bigger component is constructed
from those smaller components connecting with connectors

(wires). Each component has some ports for getting input
signals from other components and generating output signals
to other components.

A complete grammar for the components is defined as Fig­
ure 3. All components are specified in some XML documents.
Each document includes a head and body. The former is used
to define if the current document includes other documents
like head file in C language. And the latter is used to define
components.

Each component has a name, a list of input ports, a list of
output ports and a body. Of them, the body decides its type -
combinational logic component, sequential logic component
or hierarchical component. In a hierarchical component, some
subcomponents are connected with connectors.

IV. TRANSLATION INTO V ERILOG

A translator is needed to deal with the translation from
XML descriptions to Verilog codes.Figure.4 presents the
BNF of the target Verilog grammar subset. This set is
essentially a very small subset of Verilog that has structural
models.

Mealy machine mealy .. - < mealymachine >
init mltran+
< /mealymachine >

Moore machine moore . . - < mooremachine >
init mrtran+ mrout+
< /mooremachine >

Initial state init .. - < initial > int < /initial >
Mealy transition m1tran . . - < transition >

< input> value+ < /input >
< currentstate > int
< /currentstate >
< output> value+ < /output >
< nextstate > int < /nextstate >
< /transition >

Moore transition mrtran .. - < transition >
< input> value+ < /input >
< currentstate > int
< /currentstate >
< nextstate > int < /nextstate >
< /transition >

Moore output mrout .. - < mooreoutput >
< currentstate > int
< /currentstate >
< output> value+ < /output >
< /mooreouput >

Positive integer int E Integer

Fig. 2. Granunar for the Mealy and Moore Finite State Machine

150

Document doeu .. - head incls comps I head comps
Head head .. - <?xml version="1.0"

encocling="UTF-8"
standalone=opt? >

Option opt .. - "yes" I "no"
Includes incls .. - < includes> inel+

< /includes >
Include inel .. - < include> rn < /include >
Components comps . . - < components> comp+

< /components >
Component comp .. - < component>

compn inp outp bdy
< /component >

Component name compn .. - < name> id < /name >
Input port inp .. - < inputport > pH

< /inputport >
Output port outp .. - < outputport > pt+

< /outputport >
Bidirectional port iop .. - < inout > pt+ < /inout >
Port pt .. - < port> id < /port >
Body bdy .. - < body > tt < /body >

I < body> mealy < /body >
1< body> moore < /body >
I < body > subc ens < /body >

Sub components subc .. - < subcomponents > inst+
< /subcomponents >

Instance inst .. - < instance>
< name> id < /name >
< type > id < /type >
< /instance >

Connectors ens .. - < connectors> cn+
< /connectors >

Connector en . . - < /connector >
< port> {id. lid < /port >
< port> {id. lid < /port >
< /connector >

File name rn E X
Identifier id E X

Fig. 3. Grammar for the Components

Bit Constant C . . - 011
Signal Name s E X
Signals S .. - sis,S
Module Name m E X
Instance Name n E X
Module Definition D .. - module m(p)j b

endmodule Die
Assignment Statement A .. - assign s = Sj A

I assign S = Cj A I e
Module Body b .. - V A M
Port Type t .. - input I output
Port Declaration p . . - t s,p Its
Variable Declaration V .. - wire SjV Ie
Module Instance M .. - m n(S)jM I e

Fig. 4. Grammar for the Verilog subset

A. Minimization of Logic Functions

To reduce the circuit's complexity so that it has fewer er­
rors and less electronics, and is therefore less expensive,many
methods are used to minimize logic functions. Truth table­
style descriptions of logic are often optimized with Electronic
Design Automation (EDA)tools,which automatically produce
reduced systems of logic gates or smaller lookup tables.

The most widely used simplification is a minimization
algorithm like the Espresso heuristic logic minimizer[lO]
within a CAD system, working for those logic functions with
a large number of inputs.

An automated Quine-McCluskey algorithm[l2],developed
by W.V. Quine and Edward J. McCluskey, slower than the
former, is also used for simplifying those logic functions with
less inputs. Starting with the truth table for a set of logic
functions,it is a systematic and practical procedure to find
the smallest set of prime implicants the output functions can
be realised with. Although it is very well suited to be imple­
mented in a computer program, its time and space complexity
are so high that it is practical only for functions with a limited
number of input variables and output functions. For example,
adding a variable to the function will roughly double both of
them, because the truth table length increases exponentially
with the number of variables. A similar problem occurs when
increasing the number of output functions of a combinational
function block.However, it is very attractive since it can get
the most optimal solution.

Moreover, Karnaugh Maps[ll] and Boolean algebra have
been used manually, difficult to be automated in the form
of a computer program and only suited for up to 4 input
functions.Both of them work in a laborious, tedious and error
prone process,and therefore seldem used in practical design.

B. Minimization of State Machines

To automate costly engineering processes, we need take
state tables that describe state machines and automatically
produce a truth table for the combinatorial part of a state
machine. However, the state machine often need optimizing
because of the existence of some redundant states. Optimiz­
ing a state machine means finding the machine with the
minimum number of states that performs the same function.
The fastest known algorithm doing this is the Hopcroft
minimization algorithm[13] used in our design.

C. Logic Synthesis

Logic synthesis is a process by which an abstract form of
desired circuit description is turned into a design implemen­
tation in terms of logic gates. In some logic families, NAND
gates are the simplest digital gate to build. All other logical
operations can be implemented by NAND gates. Otherwise,
sum-product based on NOT, AND, and OR gates is also
widely used in logic mapping. Both of them are provided.

151

D. Hierarchical Component Translation

A hierarchical component is composed of some subcom­
ponents and connectors. In the translator, all subcomponents
are mapped into instances, and all connectors are mapped
into continuous assignment statements.

V. CONCLUSIONS

To our best knowledge, this paper presents a practical way
to describe circuit by providing specialized XML grammer.
Our design will enable the quick development and data
exchange of new IC product. Hierarchical structure helps to
divide and conquer verification. A tool called XCOMP is
developed for users.

REFERENCES

[1] IC Insights, Inc., "2009 IC market enJoymg a V-shaped
recovery", http://www.icinsights.com/news/bulletins/

bulletins2009/bulletin2009l001.html, Oct.I, 2009
[2] IEEE Standard Board, "IEEE standard verilog hardware description

language"(IEEE Std 1364-2(05),IEEE, New York, 2006.
[3] IEEE Standard Board, "IEEE standard VHDL language reference man­

ual"(IEEE Std 1076-2(08), IEEE, New York, 2009.
[4] IEEE Standard Board, "IEEE standard for SystemVerilog- unified hard­

ware design, specification, and verification lanaguage"(lEEE Std 1800-
2(05), IEEE, New York, 2005.

[5] IEEE Standard Board, "IEEE standard SystemC language reference
manual"(IEEE Std 1666-2(05), IEEE, New York, 2005.

[6] F., R.Goyal, E. Westbrook, W. Taha, "Implicitly heterogeneous multi­
stage programming for FPGAs", Proceedings of 11th Symposium on
Trends in Functional Programming, 2010, pp.217-235

[7] Y. Ben-Asher and N. Rotem, "Synthesis for variable pipelined function
units", Proceedings of International Symposium on System-on-Chip,
2008, pp.I-4

[8] T.Bray, J. Paoli, C. M. Sperberg-McQueen, et al, "Extensible markup
language (XML) 1.0" (Fifth Edition), http://www . w3. org/TR/

2008/REC-xml-20081126/, November 26, 2008
[9] R. Sharp, "Higher-Ieverl hardware synthesis", Springer-Verlag,Berlin

Heidelberg, 2004
[10] R. L. Rudell "Multiple-valued logic minimization for PLA

synthesis", Memorandum No. UCBIERL M86-65 (Berkeley),
http://www.eecs.berkeley.edu/Pubs/TechRpts/1986/

ERL-86-6S.pdf,June 5, 1986.
[11] M. Kamaugh, "The map method for synthesis of combinational logic

circuits", Transactions of American Institute of Electrical Engineers part
I1953729,pp.593-599

[12] A. Popov and K. Filipova, "Genetic algorithms synthesis of finite state
machines", Proceedings of 27th International Spring Seminar on Elec­
tronics Technology: Meeting the Challenges of Electronics Technology
Progress, 2004, pp.388-392.

[13] J. E. Hopcroft, "An n log n algorithm for minimizing states in a finite
automaton", Stanford University Stanford, CA, USA,1971.

